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Abstract: Global climate change, specifically rising temperature, can alter the molecular physiology
of weedy plants. These changes affect herbicide efficacy and weed management. This research
aimed to investigate the combined effect of heat stress (HS) and sublethal doses of herbicides (four
active ingredients) on adaptive gene expression and efficacy of herbicide on Echinochloa colona (L.)
Link (junglerice). Three factors were evaluated; factor A was E. colona generation (G0-original
population from susceptible standard; G1 and G2 were progenies of recurrent selection), factor B
was herbicide treatment (florpyrauxifen-benzyl, glufosinate-ammonium, imazethapyr, quinclorac
and nontreated check) and factor C was HS (30 and 45 ◦C). The herbicides were applied at 0.125×
the recommended dose. Recurrent exposure to HS, combined with sublethal doses of herbicides,
favors the selection of plants less susceptible to the herbicide. Upregulation of defense (antioxidant)
genes (APX: Ascorbate peroxidase), herbicide detoxification genes (CYP450 family: Cytochrome P450),
stress acclimation genes (HSP: Heat shock protein, TPP: Trehalose phosphate phosphatase and TPS: Trehalose
phosphate synthase) and genes related to herbicide conjugation (UGT: UDP Glucosyltransferase) was
significant. The positive regulation of these genes may promote increased tolerance of E. colona to
these herbicides.

Keywords: Echinochloa colona; climate change; high temperature; low-dose herbicide; weed resistance
evolution; susceptibility; transcriptome

1. Introduction

Accelerated world population growth means intensifying demand for food, both in quantity
and quality [1]. Food security is compromised, directly or indirectly, by the increasing complexity of
pest problems (including weeds), limitations in production inputs, variable availability of technology
and infrastructure—all of which are impacted by climate change [2–6]. Worldwide, the genus
Echinochloa (mainly, E. colona, E. crus-galli and E. phyllopogon) includes the most troublesome weeds
in rice [7,8]. E. colona also infests many major crops including corn, soybean, sorghum, cotton and
sugarcane [9]. E. colona can cause between 1.5% and 100% yield losses in rice mainly due its rapid
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growth, high competitive ability, high seed production potential and wide ecological range [10,11].
Herbicides are still the most important tools for weed management because of their cost-effectiveness,
rapid action, ease of use and residual efficacy in the case of soil-active compounds [12]. However, the
intensive and extensive use of herbicides exerts high selection pressure on weed populations, selecting
rare individuals with the ability to survive or escape the herbicide treatment, leading to a gradual loss
of herbicide efficacy [12,13].

The International Survey for Herbicide Resistance database depicts 502 cases (species × site of
action) of herbicide-resistant weeds globally as of July 2020 and counting [9]. Weeds have evolved
resistance to 23 of the 26 known herbicide sites of action involving 167 different herbicides [9]. The first
case of herbicide-resistant weed of any species in this genus was E. colona, reported in 1987 in Costa Rica,
and this was to propanil, a photosystem II inhibitor [9]. Currently, 26 unique cases of herbicide-resistant
E. colona have been reported globally [9]. The Echinochloa genus (specifically, E. colona, E. crus-galli and
E. phyllopogon) has been ranked among the top four most problematic weeds with rapidly increasing
cases of multiple resistance [12,14].

Recurrent selection with sublethal doses of herbicides leads to resistance evolution. This has been
demonstrated in Lolium rigidum [15–17], Raphanus raphanistrum L. [18] and Amaranthus palmeri [19].
‘Low-dose selection’ of weed populations occurs in the field all the time [20]. Low-dose selection in crop
production fields arises from insufficient coverage of some individuals partially covered by other plants;
variations in per-plant dose due to differences in weed size, weed density, field topography or soil
type; drift rates to populations on field edges and other biological, environmental or physical factors.

Maximum herbicide efficacy is highly dependent on optimum environmental conditions [21].
The occurrence of high temperature events and increasing temperatures projected by the
Intergovernmental Panel on Climate Change (IPCC), certainly has major consequences for global
agriculture including pronounced effects on weed management [22,23]. Data are starting to accumulate
showing reduced efficacy of certain herbicides under high temperature. This reduced efficacy was
seen for cyhalofop on E. colona [24], glyphosate on Conyza canadensis and Chenopodium album [25],
and glyphosate on E. colona [26]. A decline in sensitivity to ACCase inhibitors under high temperature
was reported by Matzrafi et al. [27], which could be attributed to increased herbicide metabolism.
The effect of genotype × environment and gene × environment interactions on non-target-site resistance
(NTSR) mechanisms is apparent. If high temperature reduces the efficacy of certain foliar herbicides,
then the effect of recurrent ‘low-dose exposure’ on weed resistance evolution will be accelerated under
increasing temperature. Logically, there would be crosstalk between these stress responses in plants.

Understanding how herbicides and climate change shape the transgenerational memory of weed
populations imprinted in their genomic profile is important as this could help discover novel tools
and strategies to mitigate the evolution of weed resistance to herbicides. We hypothesized that:
(a) treatment with sublethal doses of herbicide on E. colona under high temperature selects plants
with greater adaptability to such conditions, resulting in reduced susceptibility to chemical control,
with transgenerational effects; and (b) the application of low herbicide doses at high temperature
promotes changes in adaptations to abiotic stresses, across generations (i.e., upregulation of protection
genes), which consequently also reduce sensitivity to herbicides. Therefore, the objective of this
research was to study the joint effect of high temperature and sublethal doses of herbicides on E. colona
susceptibility to herbicides across generations.

2. Materials and Methods

2.1. Plant Material

This study was conducted using seeds of susceptible E. colona (referred to hereafter as G0),
collected in 2011 from a field in Prairie County, Arkansas, USA. G0 was then exposed to three successive
cycles of recurrent selection with sublethal doses of herbicides under optimal or high temperature to
produce G1 and G2. The procedure is described in the following section.
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2.2. General Procedure for Population Generation

The treatments tested in this study included optimal (30 ◦C) and high temperature (45 ◦C) and four
herbicides recommended for E. colona control in rice crop (Table 1). Seeds (G0) were planted into 50-cell
trays (four per cell) containing commercial potting soil (Sun Gro Horticulture Canada Ltd., Vancouver,
Canada). Approximately one week later, seedlings (one per pot) were transplanted into square pots
(7.6 cm wide, 10.2 cm tall) containing a 1:3 mixture by volume of commercial potting soil and field
soil (Captina silt loam-fine-silty, siliceous, active and mesic typic fragiudults). The experiment was
performed in a complete randomized block design, with six replications in each cycle. The experimental
unit was one pot containing one plant. The experiment with populations G1 and G2 followed the same
methodology described for G0 (Figure 1).
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Figure 1. Schematic diagram of the progression of experiments on Echinochloa colona submitted to
selection by low herbicides rates and heat stress starting with the parental population (G0) and selected
(G1 and G2) progenies. Herbicide treatments were: nontreated (no herbicide), florpyrauxifen-benzyl,
glufosinate-ammonium, imazethapyr and quinclorac, all applied at 0.125× the recommended dose.
T0 (prior to herbicide application) and T1 (12 h after herbicide application) represent the timings of leaf
tissue collection for RNA extraction and subsequent gene expression.

Preliminary experiments were conducted to determine the sublethal dose that would allow plants
to survive and produce seeds. The experiment was conducted in the greenhouse at the University of
Arkansas, Fayetteville, AR, USA with a 14-h photoperiod under a day/night temperature regime of
30 ◦C/21 ◦C. The pots were placed in trays and subirrigated until the seedlings reached the 2- to 3-leaf
stage for treatment. The plants were then submitted to optimal temperature (30 ◦C) in the greenhouse
and high temperature (45 ◦C) in the growth chamber for 7 d when the plants were sprayed with the
respective herbicide treatments (Table 1). The heat-stressed plants were returned to (45 ◦C) for seven
more days, after which all plants were grown under optimal temperature. The herbicides were applied
in a spray chamber equipped with a flat fan spray nozzle (TeeJet spray nozzles; Spraying Systems Co.,
Wheaton, IL, USA), at a pressure of 221 kPa and a volume of 187 L ha-1. After herbicide application,
the plants were returned to the greenhouse or to the growth chamber. Watering by subirrigation was
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resumed after 24 h. Three weeks after herbicide application, the herbicide effect was evaluated visually
on a scale of 0% (no symptoms) to 100% (dead).

Table 1. Herbicide treatments used in the recurrent selection experiment with Echinochloa colona under
concurrent high temperature stress.

Active Ingredient Trade Name WSSA
Group MOA a Chemical

Family

Labeled
Rate

(g ai ha–1)

Application
Rate b

(g ai ha–1)

Florpyrauxifen-benzyl Loyant™ 4 Synthetic auxins Arylpicolinate 30 3.75

Glufosinate-ammonium Liberty™ 280
SL

10 Inhibition of
glutamine synthetase Phosphinic acid 448 56

Imazethapyr Newpath™ 2 Inhibition of
acetolactate synthase Imidazolinone 211 26.38

Quinclorac Facet L™ 4 Synthetic auxins Quinoline
carboxylic acid 432 54

a MOA: Mechanism of action and b application rate: all corresponding to 0.125× the recommended dose. Doses
were based on preliminary experiments to allow survival and seed production (data not shown).

Prior to flowering, the plants were separated spatially to prevent cross-pollination. At maturity,
seeds were harvested and bulked for each treatment. During each selection cycle, a separate group of
six plants, without herbicide treatment, was grown to produce generations of plants exposed only to
either optimal or high temperature. This procedure was repeated over three cycles.

2.3. Determination of Susceptibility Level to Herbicides

The original population (G0) and selected progenies (G1 and G2) were subjected to their respective
heat treatment (30 or 45 ◦C) assignment, as implemented in the previous experiments, for 7 d and
sprayed with a range of herbicide doses when the plants were at the 2- to 3-leaf stage, with two
plants per treatment. The herbicide rates were 0×, 0.0625×, 0.125×, 0.25×, 0.5×, 0.75×, 1.0×, 1.5×, 2.0×
and 4.0× the recommended dose. The herbicide treatments were applied as described previously.
After herbicide application, the plants were returned to the greenhouse or growth chamber and were
subirrigated again 24 h later. At three weeks after herbicide application, the herbicide effect was
evaluated visually on a scale of 0% (no symptoms) to 100% (dead). Once the homoscedasticity and the
normal distribution were verified, the data were subjected to analysis of variance (ANOVA). Dose
response data were analyzed using the ‘drc’ package in R v. 3.3.0 (CRC Press Taylor & Francis Group:
Boca Raton, FL, USA) [28,29]. The three-parameter log-logistic model in Equation (1) was used:

Y = d/1 + exp[b(log x − log e)] (1)

where Y is the response (% control); d is asymptotic value of Y at the upper limit; b is the slope of the
curve around e (ED50: the herbicide rate giving response halfway between d and the lower asymptotic
limit, which was set to 0) and x is the herbicide rate. Susceptibility index (SI) was calculated as the
ratio of the ED50 of the G1 and G2 divided by the ED50 of the G0 at 30 ◦C.

2.4. Differential Gene Expression

2.4.1. Plant Material

The control sample was composed of leaf tissues of G0 plants without herbicide treatment, grown
under optimal temperature (30 ◦C), cultivated for three cycles, at the same period as the other plants to
produce G2. In other words, the control samples were G0 plants that were cultured under optimal
temperature without herbicide treatment. For all treatments, leaf tissues were collected before herbicide
application (T0) and 12 h after herbicide application (T1). The tissues were flash-frozen in liquid
nitrogen and stored in −80 ◦C until processed.
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2.4.2. RNA Extraction and cDNA Synthesis

The RNA extraction process was performed using the reagent PureLinKTM (Plant RNA
Reagent-InvitrogenTM, Carlsbad, CA, USA), following the manufacturer’s recommendations.
The quantity and quality were assessed by agarose gel electrophoresis (1% w/v). The amount
and purity of RNA were determined using a NanoDrop™ 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA). The RNA was treated with DNase and cDNA was synthesized using the
RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions.

2.4.3. qRT-PCR Assay

The qRT-PCR was conducted to determine changes in expression of NTSR candidate genes relative
to the reference genes. The qRT-PCR was performed following MIQE guidelines [30], using specific
oligonucleotides for target genes and the reference genes ACT1, UBQ5 and EF1-α (Table 2). The qRT-PCR
experiments were conducted in a total volume of 10 µL containing 5.0 µL of iTaq™ Universal SYBR®

Green Supermix (Bio-Rad, Hercules, CA, USA), 0.5 µL primer forward (10 mM), 0.5 µL primer reverse
(10 mM), 1 µL cDNA (1:5 dilution) and 3.0 µL of water. Two biological replicates and two technical
replicates were performed for each treatment and primer pair.

Table 2. Oligonucleotides used for gene expression assay by qRT-PCR of Echinochloa colona that have
undergone three cycles of recurrent selection with sublethal doses of herbicides under concurrent high
temperature stress.

Gene Family/Name Oligonucleotide Sequences (5′→3′) Reference

Act1
(Reference gene) Actin 1

F: ATCCTTGTATGCTAGCGGTCGA [31]
R: ATCCAACCGGAGGATAGCATG

EF1-α
(Reference gene)

Elongation
factor 1α

F: GTCATTGGCCACGTCGACTC [31]
R: TGTTCATCTCAGCGGCTTCC

UBQ5
(Reference gene)

Ubiquitin 5 F: ACCACTTCGACCGCCACTACT [32]
R: ACGCCTAAGCCTGCTGGTT

APX2 Ascorbate peroxidase F: CATCCTCTCCTACGCCGAC [33]
R: CCTTCAGGAGGAGGCTCAG

CYP709B1 Cytochrome
P450 709B1

F: GTCGTCAAGCAGGTGCTCTT [34]
R: CAGTGAGGACGAGACCCTTG

CYP709B2 Cytochrome
P450 709B2

F: GCCTGAGAGGTTCGAGTACG [34]
R: CGATCATCGCAAAGTTCTGA

CYP72A14 Cytochrome
P450 72A14

F: TCGGTGGCATCAAATATCCT [34]
R: GAACTTGCCTGCGTCTTTTC

CYP72A15 Cytochrome
P450 72A15

F: CCAGTGAGCTGATACGCAGA [34]
R: GACGTCGCCTGTGAGATTTT

UGT75D Glycosyltransferase F: GCTCACTTTCCCGTTCCAG [34]
R: GTGGTGGAGAATGTGACGAG

HSP10 Heat shock protein 71.10 F: CCGTGTGCTTCGACATTGAC [35]
R: CGTTGGTGATGGTGHTCTTGTT

HSP15 Heat shock protein 24.15 F: GATCAAGGCGGAGATGAAGAAC [35]
R: ACTCGACGTTGACCTGGAAGA

TPP
Trehalose phosphate
phosphatase

F: TTGAAGGTGCGAGTGTTGAG [34]
R: AACCACTCCCCAGTCCTTCT

TPS
Trehalose phosphate
synthase

F: ACAGAGGGGCTACATTGCAC [34]
R: CTGCAACTGCTCCAAGTGAA
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The amplification efficiency was determined for each primer pair and melt-curve analysis were
performed. The cycle conditions were amplified for one cycle of 95 ◦C for 5 min, followed by 39 cycles
of denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 1 min and extension at 72 ◦C for 30 s and a final
dissociation curve of denaturation at 95 ◦C for 5 s, followed by cooling to 70 ◦C for 1 min and gradual
heating at 0.11 ◦C steps to 95 ◦C and cooling 40 ◦C for 30 s. For each gene analyzed, UBQ5 was used as
an endogenous control to quantify cDNA abundance, after the stability analysis of the expression data
using DataAssist™ v3.0 Software (Applied biosystems, Life Technologies, Carlsbad, CA, USA).

Cycle threshold (Ct) during the reaction cycles, and relative gene expression values were calculated
using the 2−∆∆Ct method [36]. Gene expression data were analyzed using MultiExperiment Viewer
(MeV) software (The Institute for Genomic Research (TIGR), J. Craig Venter Institute, USA) and
presented as a heat map diagram using the harvest stage as a baseline [37]. mRNA abundance of each
gene from the G0 population (control from susceptible standard) served as the baseline for determining
relative RNA levels, in the G2 population treatment.

3. Results

3.1. Determination of Susceptibility Level to Herbicides

Dose response assays were performed to determine the level of sensitivity after the
herbicide-susceptible Echinochloa colona parental population was treated with sublethal doses of
florpyrauxifen-benzyl, glufosinate-ammonium, imazethapyr or quinclorac under optimal or high
temperature, over three consecutive cycles. Recurrent exposure to high temperature stress, combined
with low-dose herbicide stress, reduced the sensitivity of E. colona to the herbicides tested (Table 3).
Under optimal temperature (30 ◦C) the ED50 increased minimally in general between G0 and G2 with
all herbicides tested. Specifically, the ED50 increased by 0.12 with florpyrauxifen-benzyl (Figure 2A–C);
5.28 with glufosinate-ammonium (Figure 2D–F); 0.8 with imazethapyr (Figure 2G–I) and 0.5 with
quinclorac (Figure 2J–L). Thus, the susceptibility index remained unchanged (Table 3).

Table 3. Parameter estimates (b, d, ED50 and SI) for the control of Echinochloa colona with various
herbicides across cycles of exposure to high temperature stress and sublethal herbicide dose, three
weeks after herbicide treatment. The data were fitted with a three-parameter log-logistic regression
model in Equation (1).

Log-Logistic Regression Estimates a

Treatments b b d ED50 p Value c SI d

Florpyrauxifen-benzyl (g ae ha−1)

G0·30 ◦C −1.99 (0.08) 100.79 (0.67) 3.34 (0.07) -
G0·45 ◦C −1.36 (0.06) 103.93 (0.95) 3.91 (0.12) 0.00053 1.17
G1·30 ◦C −2.23 (0.10) 100.28 (0.61) 3.46 (0.07) 1.04
G1·45 ◦C −1.69 (0.07) 101.34 (0.81) 4.52 (0.11) 2.6685 × 10−11 1.35
G2·30 ◦C −2.23 (0.08) 100.28 (0.49) 3.46 (0.06) 1.04
G2·45 ◦C −1.81 (0.06) 102.08 (0.66) 5.69 (0.11) 2.5105 × 10−24 1.70

Glufosinate-ammonium (g ae ha−1)

G0·30 ◦C −1.67 (0.09) 101.89 (0.98) 53.65 (1.73) -
G0·45 ◦C −1.47 (0.08) 102.65 (1.13) 56.95 (2.07) 0.214212 1.06
G1·30 ◦C −1.85 (0.11) 101.58 (1.11) 58.93 (2.11) 1.10
G1·45 ◦C −1.43 (0.08) 104.00 (1.58) 81.00 (3.76) 2.7443 × 10−7 1.51
G2·30 ◦C −1.85 (0.16) 101.58 (1.52) 58.93 (2.89) 1.10
G2·45 ◦C −1.30 (0.10) 106.35 (2.72) 109.31 (7.93) 2.1293 × 10−11 2.04

Imazethapyr (g ai ha−1)

G0·30 ◦C −2.83 (0.32) 98.20 (1.31) 38.60 (1.37) -
G0·45 ◦C −1.83 (0.14) 102.23 (1.60) 39.98 (1.83) 0.54070 1.04
G1·30 ◦C −3.46 (0.49) 97.01 (1.40) 39.53 (1.44) 1.02
G1·45 ◦C −1.95 (0.16) 102.55 (1.95) 51.98 (2.65) 1.6142 × 10−5 1.35
G2·30 ◦C −3.47 (0.54) 96.57 (1.49) 39.40 (1.54) 1.02
G2·45 ◦C −2.03 (0.17) 102.61 (2.17) 61.18 (3.29) 1.0319 × 10−9 1.58
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Table 3. Cont.

Log-Logistic Regression Estimates a

Treatments b b d ED50 p Value c SI d

Quinclorac (g ae ha−1)

G0·30 ◦C −1.62 (0.13) 104.90 (2.25) 100.44 (6.07) -
G0·45 ◦C −1.86 (0.16) 104.69 (2.12) 116.99 (6.24) 0.04857 1.16
G1·30 ◦C −1.60 (0.12) 104.88 (2.01) 100.94 (5.44) 1.01
G1·45 ◦C −2.01 (0.16) 104.20 (1.89) 133.34 (5.93) 5.7162 × 10−5 1.33
G2·30 ◦C −1.60 (0.10) 104.88 (1.69) 100.94 (4.56) 1.01
G2·45 ◦C −2.24 (0.15) 102.71 (1.54) 139.53 (4.95) 1.2312 × 10−7 1.39

a Values in parenthesis are standard errors of the mean. b The temperature stress treatments were 30 and 45 ◦C;
G0 indicates the first cycle of treatments, G1 and G2 indicate the subsequent generations. c p value: comparing the
difference between optimal and high temperature at the same cycle by the SI function in the ‘drc’ package in R v.
3.3.0. d SI: susceptibility index was calculated as the ratio of the ED50 divided by the ED50 of the parental population
(G0) at 30 ◦C.
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Figure 2. Nonlinear regression analysis of herbicide efficacy on Echinochloa colona across cycles
of recurrent exposure to high temperature stress and the sublethal herbicide dose. The herbicide
treatments were: (A–C) florpyrauxifen-benzyl; (D–F) glufosinate-ammonium; (G–I) imazethapyr and
(J–L) quinclorac. G0 = original population; G1 and G2 are progenies after progressive cycles of selection.
Weed control was evaluated three weeks after herbicide application. Each data point is an average of
two replicates. The data were fitted with a three-parameter log-logistic model in Equation (1). Vertical
dotted gray lines indicate the recommended dose of each herbicide.

Under high-temperature stress (45 ◦C), the ED50 increased significantly between G0 and G2 with
all herbicides (Table 3). These increases were higher compared to the ED50 increases under optimal
temperature across generations. The ED50 increased 21.68 with florpyrauxifen-benzyl (Figure 2A–C);
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52.4 with glufosinate-ammonium (Figure 2D–F); 21.2 with imazethapyr (Figure 2G–I) and 18.4 with
quinclorac (Figure 2J–L). The increase in tolerance was 10–37 times higher under high temperature
stress compared to optimal temperature.

3.2. Differential Gene Expression

To understand the abiotic stress tolerance response between generations subjected to high
temperature stress and herbicides, genes related to oxidative stress (APX), herbicide detoxification
(CYP450 family), heat stress (HSPs family), abiotic stress response and tolerance (TPP and TPS) and
herbicide molecule conjugation (UGT) were analyzed (Figure 3). E. colona plants (G2) exposed to
high-temperature stress over three cycles showed increased expression of UGT (0.7-fold), TPP (0.9-fold),
TPS (1.6-fold), CYP72A14 (2.0-fold), CYP709B1 (5.1-fold) and with the highest relative expression
observed in CYP709B2 gene (6.4-fold), compared to G0 plants at optimal temperature (Figure 3).

3.2.1. Florpyrauxifen-Benzyl

The relative expression of some target genes increased in G2 compared to G0, after recurrent
exposure to a low dose of florpyrauxifen-benzyl, with or without heat stress. The APX gene was
constitutively expressed but was upregulated in G2 12 h after florpyrauxifen-benzyl application
(Figure 3). The expression of CYP72A15 in G2 plants selected with florpyrauxifen-benzyl was not
different between plants kept at 30 ◦C and those in 45 ◦C for seven days, without florpyrauxifen-benzyl
treatment. Upon treatment with florpyrauxifen-benzyl, CYP72A15 was induced 4.5-fold in G2
plants kept at high temperature and downregulated (−0.1-fold) in optimal temperature condition.
Florpyrauxifen-benzyl induced the expression of CYP72A14, but the induction was greater under
optimal temperature (4.2-fold) than at high temperature (3.2-fold). The other two genes of the
cytochrome P450 family showed a similar profile (Figure 3) without florpyrauxifen-benzyl treatment.
CYP709B1 and CYP709B2 were not differentially expressed under 30 ◦C, but both genes were highly
induced at 45 ◦C (6.1- and 8.4-fold, respectively). Both genes were downregulated after treatment with
florpyrauxifen-benzyl (4.9- and 2.0-fold, respectively).

The HSP10 and HSP15 genes are members of the heat shock protein family. The greatest induction
of HSP10 occurred at 30 ◦C with values of 0.9-fold and 3.1-fold at T0 and T1, respectively (Figure 3).
HSP10 was not induced under heat stress, either before or after treatment with florpyrauxifen-benzyl.
Similar to HSP10, HSP15 was induced 12 h after florpyrauxifen-benzyl application with values of
7.7-fold and 3.8-fold at 30 ◦C and 45 ◦C, respectively.

Concerning the TPS gene, induction of 1.6-fold was detected when plants were heat-stressed,
and plants which received heat and florpyrauxifen-benzyl treatment (12 h) a 0.2-fold expression was
detected. These findings indicated the possible involvement of the TPS gene with abiotic stress tolerance.
For the TPP gene the highest value was observed at 30 ◦C after the application of florpyrauxifen-benzyl
(2.7-fold); however, at 45 ◦C before the application it was 1.6 and 0.8 in T1. The UGT gene, which is
related to herbicide conjugation, increased its expression from −1.4 in T0 to 3.9 in T1 at 30 ◦C and from
2.3 in T0 to 3.7 in T1 at 45 ◦C (Figure 3).
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3.2.2. Glufosinate-Ammonium

The APX gene was induced 12 h after glufosinate-ammonium application with values ranging
from 0.6- to 1.4-fold and −1.2- to 0.4-fold at 30 and 45 ◦C, respectively (Figure 3). With HSP genes,
specifically HSP15 the expression level did not change (8.9-fold at 30 ◦C and 8.6-fold at 45 ◦C),
after glufosinate-ammonium treatment.

The TPS and TPP genes were significantly downregulated 12 h after glufosinate-ammonium
treatment under 45 ◦C, while UGT was upregulated under the same treatment (Figure 3). This indicates
possible use of the substrate from the trehalose biosynthesis pathway for conjugation with the
herbicide. The expression of CYP450 genes did not change between G0 and G2, nor was it affected by
glufosinate-ammonium treatment under optimal temperature conditions. However, the CYP450 genes
CYP709B1, CYP709B2, CYP72A14 and CYP72A15 were upregulated under high temperature 12 h after
glufosinate-ammonium treatment, also indicating a possible attempt to detoxify the herbicide.

3.2.3. Imazethapyr

Imazethapyr induced the expression of APX (3.2-fold) 12 h after treatment under optimal
temperature, but suppressed APX under high temperature (−1.2-fold; Figure 3). The heat shock
protein genes, HSP10 and HSP15, were induced by imazethapyr, under optimal and high temperatures,
specifically HSP15 with expression greater than 7.2-fold at 30 ◦C and 6.4-fold at 45 ◦C.

Under optimal temperature, TPS (1.1- to 1.3-fold), TPP (−2.4- to 3.4-fold) and UGT (1.5- to
4.2-fold) were upregulated 12 h after imazethapyr application. Additionally, TPS (0.4- to 1.0-fold) was
upregulated at 45 ◦C, but to a lesser extent (Figure 3). TPP and UGT were downregulated at 45 ◦C 12 h
after imazethapyr treatment, with an expression of −2.9- and −0.2-fold, respectively.

CYP709B1 and CYP709B2 were highly expressed at 45 ◦C in G2 plants before herbicide (4.8- and
6.5-fold, respectively), but expression was significantly reduced 12 h after imazethapyr application
(0.6- and 1.4-fold; Figure 3). The same gene expression pattern was observed at optimal temperature
with CYP709B1 expression being downregulated from 2.8- to 1.7-fold and CYP709B2 expression being
downregulated from 5.0- to 3.3-fold after imazethapyr treatment. However, CYP72A14 and CYP72A15
were induced 12 h after imazethapyr treatment at 30 ◦C, indicating the possible involvement of these
two genes with imazethapyr detoxification under optimal temperature conditions. As observed
with CYP709B1 and CYP709B2, the CYP72A14 and CYP72A15 genes were also downregulated after
imazethapyr treatment at high temperature.

3.2.4. Quinclorac

The APX antioxidant enzyme-encoding gene expression did not change 12 h after quinclorac
treatment under optimal temperature, but was downregulated (from 0.8- to −0.6-fold) under high
temperature (Figure 3). On the other hand, HSP10 and HSP15 were upregulated after quinclorac
treatment mainly under optimal temperature. The combination of quinclorac plus high temperature
also leads to an upregulation of HSP genes; however, lower transcript accumulation was detected
compared to optimal temperature. These results indicate that heat shock proteins are most likely to
play a role in mitigating the effect of quinclorac.

Under optimal temperature, TPS, TPP and UGT genes were induced 12 h after quinclorac
application, showing 5.9-, 3.8- and 4.1-fold expressions, respectively (Figure 3). This indicated the
possible role of these genes in coping with quinclorac stress. However, these genes were downregulated
after the plants were exposed to quinclorac and heat stress treatment, showing−1.4-,−1.7- and−0.8-fold
expression, respectively. Similarly, CYP450-encoding genes were induced after quinclorac application
under optimal temperature and downregulated at 45 ◦C.

In general, this study highlighted some candidate genes related to herbicide detoxification and/or
stress tolerance mechanisms that help promote the adaptive evolution of plants such as E. colona to
heat stress and herbicides. Some candidate genes are; APX, CYP72A14, CYP72A15, HSP15, TPS and
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UGT for florpyrauxifen-benzyl-benzyl; APX, CYP709B2, CYP72A14, CYP72A15, HSP10, HSP15 and
UGT for glufosinate-ammonium; HSP10, HSP15, TPS and UGT for imazethapyr and HSP10 and HSP15
for quinclorac.

4. Discussion

4.1. Heat Stress Reduces Susceptibility of Junglerice to Herbicides

Temperature governs plant growth and development, herbicide uptake and translocation and
herbicide detoxification and protection processes thereby influencing herbicide efficacy and evolution
of weed resistance to herbicides [26,38–40]. This research supports our hypothesis that recurrent
selection of E. colona with a sublethal dose of herbicides under high temperature increases plant
tolerance to the herbicide, with transgenerational effects. The increase in the level of tolerance to
the herbicides tested was still below the recommended dose (Table 3), but the accelerated evolution
of higher tolerance under high temperature was apparent. The ‘resistance evolution rate’ observed
here was not higher than was reported for either Lolium rigidum with low doses of the herbicide
diclofop-methyl for two generations or Raphanus raphanistrum following four generations of low doses
of 2,4-D selection [16,18]. It is important to highlight that E. colona is a self-pollinating species and
evolution may be slower due to the low crossing rate, unlike allogamous species where genetic traits
of resistance can accumulate rapidly during crossing and in successive generations from surviving
plants [15,41,42]. Moreover, previous studies also suggested that abiotic stresses, such as herbicides
(propanil, quinclorac, imazethapyr and cyhalofop), elevated temperature (26/38 ◦C night/day) and
elevated CO2 concentration (700 ± 50 mmol·mol−1) favor the selection of Echinochloa spp. plants
resistant to herbicides [14,24], corroborating the results reported in this study.

4.2. Gene Expression Profile Reflects the Transgenerational Reduces Susceptibility Memory

In the plant-environment system there is a dynamic signaling and response process resulting
from the metabolic capacity that results in a series of molecular, physiological, biochemical and
morphological changes [43–46]. At the molecular level, the complex signaling system reprograms
gene expression, prioritizing stress-responsive genes so that response in plants can be characterized as
increased tolerance to a subsequent stressful event [47–50]. In the literature there are suggestions that
epigenetic regulation is also involved in the evolution of resistance, based on the response of oxidative
stress arising from herbicides, as is seen with abiotic stresses in plants [51–53].

The ability to upregulate genes to detoxify a range of chemicals in a plant is a result of increased
metabolism that is directly affecting increased tolerance and, eventually resistance, to herbicides.
Such increased metabolism is strongly influenced by climate change, which can accelerate the adaptation
process in both crops and weeds [54–58]. The complexity of the system and the data scarcity on
weed species make it difficult to understand the herbicide metabolism mechanisms, as there is a great
variability of candidate genes and processes that may be involved [59].

During the development of an organism, epigenetic mechanisms establish patterns of gene
expression to ensure adequate differentiation, adaptation to environmental changes and future
responsiveness due to previous exposure to particular conditions over the short and long term, even
affecting subsequent generations [60,61]. In this context, the APX enzyme plays an essential role in
the antioxidant defense system, acting to prevent oxidative damage caused by ROS (reactive oxygen
species) [62,63]. The APX gene has been reported to respond to thermal stress, endowing protection
from herbicide effects, as corroborated by the increased expression seen in the current study (Figure 3).
This response was previously reported after florpyrauxifen-benzyl and glufosinate-ammonium
application, indicating a potential mechanism for adaptation to abiotic stress related to the mechanisms
of action (MOAs) of these active ingredients [62,64–66]. On the other hand, a reduction in
APX expression observed 12 h after quinclorac application was also observed in the shoots of
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quinclorac-sensitive Echinochloa oryzicola [40,67]. This reduction indicates that the adaptation of
Echinochloa colona at low quinclorac use rates and high temperature is not a result of APX expression.

Herbicide detoxification is a complex metabolic process involving herbicide transformation,
conjugation and exportation for final processing, coordinated by enzymes and regulatory genes [55,68].
Herbicide metabolism studies indicate that tolerance or resistance is mostly due to increased rates of
herbicide detoxification, in both crops and weeds, and generally involves the activity of cytochrome
P450 monooxygenases [12,14,69–73]. In this study, the expression of CYP72A14 and CYP72A15
increased when exposed to florpyrauxifen-benzyl-benzyl, while CYP709B1, CYP709B2, CYP72A14
and CYP72A15 were induced by glufosinate-ammonium treatment, especially when subjected to
high temperature stress. Cytochrome P450s are phase 1 detoxification enzymes. The induction of
the genes mentioned, by florpyrauxifen-benzyl and glufosinate, indicates some level of metabolic
degradation of these herbicides in susceptible E. colona, although such a process would not occur fast
enough to prevent plant death. However, higher induction of these genes after herbicide treatment
under high temperature indicates that the degradation process could occur slightly faster, effecting
some elevation in tolerance to the herbicide. Recurrent exposure to these conditions apparently has
some transgenerational footprint; thus, we observed increased ED50 values in G2 plants under high
temperature relative to G0. Herbicide metabolism mediated by increased CYP450 expression was
reported in resistant plants such as Alopecurus aequalis, Arabidopsis, Echinochloa phyllopogon, Glycine max,
Lolium rigidum and Oryza sativa [73–77].

The reduction of CYP450 gene expression observed with imazethapyr and quinclorac may be due
to a variety of reasons. First, the mechanisms by which E. colona copes with these herbicides do not
involve these specific CytP450 genes. The CYP450 family is large and diverse (350,000 cytochrome
P450 sequences) [78,79]. It is possible that other CytP450 genes are involved, which are not included in
the selection of primary target genes. Dalazen et al. [80] demonstrated the importance of degradation
enhancement for resistance of Echinochloa crus-galli to imazethapyr in terms of relatively high expression
of CYP81A6 and GSTF1 genes. Wright et al. [59] studying a biotype of junglerice with resistance to
four herbicides (imazamox, fenoxaprop-P-ethyl, quinclorac and propanil) demonstrated that for two
of these herbicides (imazamox and quinclorac) the resistance was reduced when the herbicide was
applied with a cytochrome P450 inhibitor (malathion). Therefore, the differential expression analysis
and qPCR were performed, but did not identify any cytochrome P450s as differentially expressed; they
did identify a GST and kinase as being significantly upregulated. Other coping mechanisms might
be involved, as demonstrated by Chayapakdee et al. [81] where Echinochloa phyllopogon resistance to
quinclorac was associated with reduced ethylene synthesis rather than enhanced cyanide detoxification
by β-cyanoalanine. On the other hand, the EcCAS gene mutation and higher gene expression may
enhance the activity of β-CAS to avoid the accumulation of toxic cyanide in resistant populations,
thus contributing to the resistance mechanism of E. crus-galli var. zelayensis to quinclorac [82]. Thus,
there are many possibilities involved in the pathways of tolerance and resistance of Echinochloa spp.
to herbicides.

Plants are exposed to various biotic and abiotic conditions that, when exceeding the limits of
fluctuations, can be deemed as stress [83,84]. The action of HSPs can be activated under various
stress conditions including osmotic and oxidative stress, drought, salinity, extreme temperatures,
pesticide response and multiple stress resistance, among others [25,85–89]. The upregulation of HSP
12 h after application of all herbicides under both temperature treatments (30 and 45 ◦C), especially
HSP15, indicates possible contribution to the adaptation to herbicides with different MOAs and
thermotolerance. HSPs are molecular chaperones particularly important for plant survival, playing a
large role in many processes that regulate protein molding/folding, localization, accumulation and
degradation, and assisting in cellular homeostasis under ideal and adverse conditions [35,90,91].

In response to several environmental stresses, another process important to plant adaptation is
the trehalose biosynthetic pathway and trehalose accumulation. Here, the TPP gene was upregulated
at 30 ◦C in response to all herbicides, but was downregulated after herbicide treatment at 45 ◦C.
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This suggests the use of trehalose substrate for another purpose that does not need to flow through the
action of TPP [34,91–93]. Another component of the trehalose pathway, TPS, was also induced under
high temperature stress after application of florpyrauxifen-benzyl and imazethapyr. The trehalose
pathway could have a significant role in the evolution of NTSR mechanisms to florpyrauxifen-benzyl and
imazethapyr in E. colona. However, TPS expression declined after application of glufosinate-ammonium
and quinclorac at 45 ◦C. Thus, TPP and TPS gene expression appears to be inhibited by high temperature
and the application of glufosinate-ammonium and quinclorac, indicating that these genes are not
involved in tolerance to thermal stress combined with these particular herbicides. These results
corroborate previous reports about HSPs and trehalose being important in plant adaptation and
tolerance to various environmental stresses [94–101].

UDP-glucosyltransferases (UGT) is another group of genes involved in xenobiotic detoxification,
which is also associated with auxin synthesis, signaling and response [86]. UGT may play a role in
plant response to florpyrauxifen-benzyl as it was induced by the herbicide under both temperatures
(Figure 3). Increased UGT expression was also observed after glufosinate-ammonium and imazethapyr
application. Enzymes in the glycosyltransferase family have been reported to play a role in phase II
of xenobiotic detoxification, specifically herbicide metabolism, and are associated with abiotic stress
tolerance [55,69,102,103].

The study of adaptation mechanisms to environmental and herbicide stress in Echinochloa colona is
important since plants are constantly exposed to such stresses. Concurrent exposure to environmental
stress can facilitate the evolution of tolerance to new herbicides and different MOAs, as demonstrated
by Benedetti et al. [104] where observed that recurrent selection by a herbicide sublethal dose and
drought stress results in rapid reduction of herbicide sensitivity in junglerice. This research provides
information on the reduction of sensitivity to herbicides under high temperature and, thus, the
imminent acceleration of weed resistance evolution to herbicides under heat stress (Figure 4). However,
information is still needed on the genetic, biochemical or physiological mechanisms that endow
resistance. Moreover, it would be valuable to study the combination of different stress factors such as
herbicides and temperatures to understand responses to multiple stress factors.
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The increased expression of genes related to stress signaling and herbicide metabolism, appear to
be involved in response to mediate the negative effects by herbicide activity and heat stress, and can be
a facilitator of adaptation of E. colona (Figure 4). Research on E. colona populations that already evolved
resistance to these herbicides would be useful in providing further understanding of adaptation
mechanisms to environmental stresses.
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5. Conclusions

The joint effect of recurrent selection with a sublethal dose of herbicide and heat stress reduced
junglerice susceptibility, due to adaptive expression of metabolism- and protection-related genes in
E. colona with a transgenerational effect.

The significant upregulation of defense (antioxidant) genes (APX: Ascorbate peroxidase), herbicide
detoxification genes (CYP450 family: Cytochrome P450), stress acclimation genes (HSP: Heat shock
protein, TPP: Trehalose phosphate phosphatase and TPS: Trehalose phosphate synthase) and genes related to
herbicide conjugation (UGT: UDP Glucosyltransferase) may promote reduction in sensitivity of E. colona
to herbicides under climate change.
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