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Abstract: In this study, the crop environment resource synthesis maize (CERES-Maize) model was
used to explore the effects of declining sunshine hours (SSH), decreasing daily maximum temperature
(Tmax), and cultivar replacements on growth processes and yields of maize in Northern China,
a principal region of maize production. SSH were found to decrease at 189 of 246 meteorological
stations in the northern provinces of China over the period of 1994–2012, and a decrease in Tmax

was also seen at many of these stations. The most significant decrease in these two climate variables
occurred during June to September, a period for summer maize growth. For this study, seven crop
field stations in the ShaanXi province, in the Guanzhong Plain, were selected, all of which showed a
downward trend in SSH and Tmax over the period of 1994–2012. The CERES-Maize model was first
calibrated and validated against yield observations for these stations over the same period, and the
yield simulations matched very well with observations. The model was then driven by the detrended
SSH and Tmax data, and the simulations were compared with those with a trend in these two input
variables. The decline in SSH was found to reduce the maize yield by 8% on average over these
stations due mostly to limited root growth, and the decline for shorter SSH reduced the yield more
than that for longer SSH. Meanwhile, the decrease in higher Tmax increased the yield by extending
the growth period, while the decrease in lower Tmax reduced the yield by lowering the thermal time.
In addition, the observed yield showed a significant upward trend, and our modeling results indicate
that this increase can be attributed mainly to the frequent cultivar replacements over our study period.
The replaced cultivars usually had a longer growth period than the prior ones, which compensated
for the yield loss due to fewer SSH. Net maize production decreased with the combined effects of the
declines in SSH and Tmax on yields. This study quantifies the contribution of changes in climate and
cultivars to maize growth processes and yields and provides strong insights into maize production
under a complex dynamic climate system.
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1. Introduction

Agricultural production is significantly affected by climate change [1–8]. Global average
temperatures have risen by 0.13 ◦C/decade since 1950. This temperature increase could shorten
crop growth periods, leading to a profound impact on crop yields [9,10]. Research also indicates
that daily maximum temperature (Tmax) has shown a downward trend in some regions [11–14],
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which generates uncertainties in predicting crop growth periods. Meanwhile, increased temperatures
enhance surface evaporation, often resulting in greater cloud cover and thus, weaker incoming solar
radiation [15,16]. The latter is also related to increased pollutant loads in the atmosphere [17–19].
The decline in solar radiation could weaken crop photosynthesis and affect production. Therefore,
building a link between climate variables and crop growth processes could provide better understanding
and prediction of agricultural production.

Solar radiation is an essential variable for crop growth, and it is often represented by sunshine
hours (SSH) in agriculture studies. Decreasing solar radiation is found to be a dominant phenomenon
in many regions of the world along with increasing temperatures [17,19–27]. Many studies have
shown that declining SSH reduces crop yield by weakening photosynthesis [10,26,28–30]. However,
these studies do not provide details as to how and to what extent SSH decline affects crop yield.

Temperature is a variable used to calculate the thermal time that determines crop growth
stages. Many studies show that a temperature increase can reduce yields by shortening grain-filling
time [2,3,9,31–43]. However, it is still uncertain whether a temperature increase would decrease or
increase the yield for different crops [44–46]. Research has also found a decrease in daily temperature in
some regions, a cooling resulting mostly from a lowered Tmax, which is associated with the weakened
solar radiation caused by more aerosols in the atmosphere [11–14]. The cooling climate could also affect
crop growth processes by extending the growth period [47–49], but its significance to crop growth and
yield needs to be further investigated.

Cultivar replacement is an important measure to adapt to climate change and improve crop
production [10,50,51]. Crop cultivar replacement could compensate for yield loss due to climate
change [52–54]. In addition, the effects of cultivar replacement on crop growth under a warming
climate have been investigated by many researchers [2,4,10,50,51,55,56]. How these effects change in a
cooling climate with reduced solar radiation is not very well understood and is explored in this study.

Due to its rapid economic development and increasing population, China is experiencing
unprecedented climate change and higher levels of atmospheric aerosols than ever before [57,58].
The latter reduces incoming solar radiation and shortens SSH [59], possibly also lowering the
temperature in some regions [60]. Maize is the number one crop in terms of growing area and total
yield among all the crops in China [61], and it was selected in this study to examine the effects of
changes in climate and cultivars on growth and yield using a crop model.

Based on the facts mentioned above, we aimed to quantify the contribution of cultivar replacement
and declines in SSH and Tmax to maize growth and yield in a selected region of China using the crop
environment resource synthesis maize (CERES-Maize) model [62,63]. Our results showed that cultivar
replacement was a dominant factor increasing the maize yield in our study region. We also analyzed
the trends of SSH and Tmax for the period of 1994–2012 and separated the effect of SSH on maize
growth and yield from that of Tmax by comparing the differences between the model simulations with
the original and detrended SSH and Tmax. We found that the SSH decline showed a negative effect
on maize growth, while the Tmax reduction produced both negative and positive effects on maize
growth. This study provides an improved understanding of maize growth processes under a complex
dynamic climate system and provides clues for better prediction of maize yield under different climate
change conditions.

2. Materials and Methods

2.1. Data

Total maize area accounts for more than half of the total crop area in Northern China, and the
production of maize in this area accounts for more than 60% of the nation’s total [61]. Therefore,
this area plays a vital role in securing food production in China. However, it has also experienced a
more serious downward trend in SSH than other areas in China [22]. We compared the number of
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stations with decreasing SSH among the main provinces planted in maize in Northern China during
the period 1994–2012 (Table 1). SSH is mostly decreasing in ShaanXi Province, at 18 of 19 stations.

Table 1. Total number of meteorological stations in each province in Northern China and the number
of meteorological stations with a decrease in sunshine hours (SSH).

Province Total Number of Stations Number of Stations with SSH Decrease

ShaanXi 19 18
ShanXi 27 24

ShanDong 23 20
HeNan 19 16
HeBei 20 15

NeiMengGu 45 33
LiaoNing 33 23

JiLin 29 20
HeiLongJiang 31 20

The study area focuses on ShaanXi Province in Northern China, which is located in an arid and
semiarid region with a temperate monsoon climate. The SSH data were from 19 meteorological stations
in the ShaanXi Province (Figure 1), and maize phenology dates, yield, and management data were
collected from the National Meteorological Information Centre of China. Soil data were obtained from
the Chinese soil database (website: http://vdb3.soil.csdb.cn/).

1 
 

 

Figure 1. Location, topography, and distribution of meteorological stations in the study area.

2.2. Model and Input Data

We explored the effects of SSH decline on maize and its yield using the CERES-Maize model [62].
The model is one of the most widely used crop models in the world, and it is embedded in the
Agricultural Technology Transfer Decision Support System (DSSAT) [63]. It can simulate maize growth
and development processes in daily time steps, and it can reflect the response of maize to many factors,
such as genetic, environmental, and management characteristics. The potential growth of maize
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each day in the model depends on the photosynthetically active radiation intercepted by the maize
canopy, and the actual biomass production is then calculated considering temperature stress, soil water
deficits, and nitrogen deficiencies [62,64,65]. Weather data, field management information, and soil
and crop parameters are needed to run the CERES-Maize model. Weather input variables are daily
minimum and maximum air temperature (◦C), daily sum of solar radiation (MJ/m2), and daily sum of
precipitation (mm). Crop management information includes tillage, planting date, planting density,
planting depth, irrigation date and volume, application of fertilizer, etc. Crop genetic parameters are
given in three genetic files: cultivar, ecotype, and species, and these parameters control crop growth
and development. Users are only allowed to adjust cultivar parameters (Table 2). Soil input variables
include soil particle composition, physical and chemical properties, and hydrodynamic characteristics
in each layer [62,64].

Table 2. Genetic coefficient parameters and their ranges in the CERES-Maize model.

Parameter Definition Unit Range

P1 Thermal time from seedling emergence to the end of the juvenile phase ◦C d 100–400
P2 Photoperiod sensitivity coefficient 0–4
P5 Thermal time from silking to physiological maturity ◦C d 600–1000
G2 Maximum possible number of kernels per plant 500–1000
G3 Kernel filling rate during the linear grain-filling stage under optimum conditions mg/d 5–12

PHINT Interval in thermal time (degree days) between successive leaf tip appearances ◦C d 30–75

In the model, solar radiation is estimated with daily SSH by the Angstrom empirical formula [66],
which performs well in calculations of solar radiation with SSH in our study region (Figure 2):

Rs = Rmax

(
as + bs

n
N

)
(1)

where Rs is total solar radiation (MJ/m2); Rmax is astronomical radiation (MJ/m2); as and bs are the
empirical coefficients associated with atmospheric quality (an as value of 0.25 and a bs value of 0.50
are recommended by the Food and Agriculture Organization) [67]; n is actual day SSH (h); and N is
maximum SSH (h).
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2.3. Model Calibration and Validation

For this study, we calibrated six cultivar parameters with the CERES-Maize model using GLUE,
a software package attached to the model (Table 2). Our observed data show that every maize cultivar
used in the experiments was planted at least two years at each station. We performed model calibration
and validation with our field data for each cultivar, and the data for the last year were always retained
for validation and the earlier years were used for calibration. Detailed information for model validation
and calibration is shown in Table 3.

Table 3. Detailed information for model calibration and validation.

Site Cultivar Name Calibration Data Validation Data

DaLi HuDan1 1994–1995 1996
HuDan2 1998 1997
HuDan3 1999, 2000 2001
HuDan4 2002–2004 2005
JunDan 2006, 2007 2008

JunDan20 2009–2011 2012

FengXiang HuDan 1994–1996 1997
ShanDan 1998, 1999 2000
DengHai1 2001–2004 2005
ZhengDan 2006 2007

ZhengDan518 2008 2009
ShanYu782 2010–2011 2012

LinTong HuDan 1994, 1995 1996
ZhangYu 1997–1999 2000

GaoNong1 2001–2004 2005
HuDan4 2006–2011 2012

ShangLuo HuDan 1994–1999 2000
ShenDan10 2001–2006 2007
DengHui11 2008 2009
ZhengDa12 2010, 2011 2012

WeiNan DanYu13 1994–1999 2000
HuDan4 2001–2004 2005

JiYu9 2006 2009
ZhengDan958 2007, 2008, 2010, 2011 2012

WuGong ShanDan9 1994–1996 1997
ShanDan902 1998, 1999 2000
YeDan19–1 2001, 2002 2003

ZhengDan958 2004–2007 2008
ZhongKe11 2009 2010
ZhangYu9 2011 2012

XianYang XiDan2 1994, 1995 2002
YeDan12 1996, 1997 1998

GaoNong2 1999, 2000 2006
Shan911 2001, 2003, 2004 2005

ZhengDan958 2007, 2010 2011
JunDan20 2008, 2009 2012

In this study, the absolute relative error (ARE) between the simulation and observation were used
to evaluate the accuracy of the model output

ARE =
|Si −Oi|

Oi
× 100% (2)

where Si is the i-th simulated value and Oi is the i-th observed value.
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2.4. Methodology

2.4.1. The Mann–Kendall Trend Test

We examined the significance of the trends with the Mann–Kendall trend test [68,69] in which the
correlation was calculated between the ranks of a time series and their time order. For the n time series
values X = {x1, x2, . . . , xn}, the statistic S is computed as follows:

S =
n−1∑
i=1

 n∑
j=i+1

sgn
(
x j − xi

) (3)

where,

sgn
(
x j − xi

)
= sgn

(
R j −Ri

)
=


1

0

−1

xi < x j

xi = x j

xi > x j

(4)

where Ri and Rj are the ranks of observations xi and xj of the time series, respectively. If the null
hypothesis H0 (i.e., there is no trend in the data set) is true, then S is approximately normally
distributed with:

µ = 0 (5)

σ = n(n− 1)(2n + 5)/18 (6)

The Z-statistic is therefore:

Z =


(S− 1)/

√
σ

0

(S + 1)/
√
σ

S > 0

S = 0

S < 0

(7)

A positive (negative) value of S indicates an upward (a downward) trend. The trend test was
conducted for SSH, maximum and minimum temperatures, average temperature, and summer maize
growth period.

2.4.2. Model Settings

CERES-Maize was run with historical climate data (1994–2012) to quantify the effects of changes
in SSH, temperature, and cultivars on maize growth periods and yields in the ShaanXi Province.
These effects were examined with five sets of simulations. The first set (original) was the control
simulations, and the second (SSH) and third sets (Tmax) were conducted with detrended SSH and Tmax.
The fourth set (cultivar) was run with the cultivars for 1994 for all stations throughout the 19-year
simulation period (Table 4). The last set (climate) was conducted with both detrended SSH and Tmax.
Actual field management information including planting, irrigation, and fertilization were applied to
all these runs.

Table 4. Model runs performed in this study.

Name SSH Temperature Cultivar

Original Actual Actual Actual
SSH Detrended Actual Actual

Tmax Actual Detrended Actual
Cultivar Actual Actual Unchanged
Climate Detrended Detrended Actual

Note: SSH represents sunshine hours and Tmax is the daily maximum temperature.
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3. Results

3.1. Long-Term Trend and Seasonal Change in SSH

The time-series of the annual average SSH for the 19-year period (1994–2012) using the data from
the 19 meteorological stations is shown in Figure 3a. A general trend of −0.2 h/decade (minus sign
indicates a downward trend) in SSH is observed for the 19-year period. The maximum trend was
−0.5 h/decade at the HuaShan station, and the minimum trend was −0.1 h/decade at the HengShan
station. There was a slightly increasing trend at the DingBian station.
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trend of daily sunshine hours of the maize growth period in ShaanXi Province during 1994–2012
averaged for 19 meteorological stations.

To understand the seasonal variations in SSH at these stations, we used the SSH data for two
periods, 1994–2003 and 2003–2012, for our analysis. Averaged monthly SSH for these periods was
computed, with results shown in Figure 4. The figure clearly shows that averaged monthly SSH for
the period 2003–2012 was consistently lower than for 1994–2003 (Figure 3b), with the exception of
December, where a very minor increase was seen in the later period. The most remarkable decline,
with a value of 0.9 h, occurred from June through September, a maize growth period.

The time-series of the averaged SSH of the maize growth period is presented in Figure 3c. The SSH
at all 19 stations shows a trend with a value of −0.7 h/decade for the averaged data for the summer
maize growth period over the 19-year period. The maximum trend was −1.3 h/decade at the ShiQuan
station, and the minimum trend was −0.1 h/decade at the WuQi station.
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3.2. Trends of Weather Variables over the Maize Growing Period

Daily maximum and minimum temperatures and precipitation, the other three forcing variables
for CERES-Maize, may also have effects on maize growth. However, we focused only on maximum
and minimum temperatures and excluded precipitation in this study, since our study cases all used
full irrigation. Figure 4 shows the time-series of the averaged Tmax over the maize growth period for
the 19 stations (light gray lines), which all show a declining trend over time. The lowest Tmax was for
the HuaShan station where the elevation was 2064.9 m. The averages from these stations decreased by
a trend of −0.5 ◦C/decade (dark thick line). The maximum and minimum trends were −1.1 ◦C/decade
and −0.04 ◦C/decade, which appeared at the YuLin and WuQi stations, respectively. The trends of
minimum temperature for all stations were insignificant (figure not shown).

We selected seven crop experiment stations in the Guanzhong Plain for our study, including DaLi,
FengXiang, LinTong, ShangLuo, WeiNan, WuGong, and XianYang stations, due to the availability of
detailed long-term observations and field management data for 19 years (1994–2012). Table 5 shows the
trends of SSH, maximum and minimum temperature, and precipitation at the seven selected stations
for the maize growth period over the study period. For our selected stations, the trend of SSH was
from −0.9 to −1.3 h/decade for the period of 1994–2012, all with a p-value of less than 0.05. The trends
of Tmax for the seven stations ranged between −0.1 and −1.1 ◦C/decade, but those for DaLi and WeiNan
did not pass the 95% significance test. The minimum temperature was essentially unchanged at all
stations, and the change in average temperature was caused by the change in Tmax. The trend of
precipitation varied among the seven crop stations (7.7–17 mm/year), while the mean precipitation
over the study period ranged from 350 to 450 mm at these stations.

3.3. Analysis of Trends in the Maize Growth Period

For this study, we examined the trends in the phenology and growth period of maize at our
selected seven stations. Table 6 shows that the trends that pass the significance test for the phenology
and length of each developmental phase were quite randomly distributed. However, the lengths
of the entire growth period for all seven stations show an upward trend, all of which passed the
significance test. The maximum trend of 14.9 days/decade appeared at ShangLuo, while the minimum
trend of 4.8 days/decade was seen at WeiNan.
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Table 5. Trends of weather variables during the maize growing period at seven stations over the
period 1994–2012.

DaLi FengXiang LinTong ShangLuo WeiNan WuGong XianYang

SSH Average (hour) 6.2 5.5 5.5 5.8 6.5 5.3 5.3
Trend

(hour/decade) −1.2 ** −1.0 ** −1.0 ** −0.9 ** −1.3 * −1.3 ** −1.3 **

Tmax Average (◦C) 28.3 27.6 27.4 28.2 28.5 29.5 29.5
Trend

(◦C/decade) −0.1 −0.8 * −0.8 * −0.7 * −0.8 −1.1 * −1.1 *

Tmin Average (◦C) 17.3 17.5 17.4 17.8 18.6 19.5 19.5
Trend

(◦C/decade) 0.0 0.4 0.3 0.0 −0.2 −0.4 −0.4

Tave Average (◦C) 22.2 22.1 22.1 22.2 23.1 24.0 24.0
Trend

(◦C/decade) 0.0 −0.3 −0.3 −0.5 * −0.6 * −0.8 ** −0.8 **

PRE Average (mm) 447 398 402 417 356 366 366
Trend

(mm/year) 8.4 10.8 ** 8.5 11.8 * 7.7 17.0 ** 17.0 **

Note: SSH represents daily sunshine hours, Tmax, Tmin, and Tave represent daily maximum, minimum, and average
temperature, respectively, and PRE represents total precipitation during the growth period. Asterisks in the table
indicate significance at ** p < 0.01 and * p < 0.05 with the Mann–Kendall test, with values shown in bold.

Table 6. Averages and trends of observed planting, flowering, and maturity dates, and the duration of
the vegetative period (planting to flowering), reproductive period (flowering to maturity), and the
whole period (planting to maturity) of maize at the seven stations over the period 1994–2012. Trends
are given in days per decade.

DaLi FengXiang LinTong ShangLuo WeiNan WuGong XianYang

Planting date Average (Day of year) 159 164 162 161 162 163 166
Trend (days/decade) −2.3 2.5 −5.2 * −2.4 0.7 0.3 −2.7

Flowering date Average (Day of year) 220 232 220 222 219 222 227
Trend (days/decade) 0.5 5.6 ** −2.9 3.3 1.4 5.1 ** 1.3

Maturity date Average (Day of year) 259 275 269 276 263 268 271
Trend (days/decade) 4.3 9.8 ** 6.7 12.5 ** 5.6 * 7.0 * 5.2

Vegetative period Average (days) 61 67 59 61 57 59 62
Trend (days/decade) 2.8 3.4 * 2.4 5.7 ** 0.7 4.8 ** 1.1

Reproductive period Average (days) 39 43 49 54 44 47 44
Trend (days/decade) 5.5 ** 4.2 9.5 ** 9.2 4.1 * 1.6 3.9 *

Entire growth period Average (days) 99 110 108 115 101 106 107
Trend (days/decade) 6.5 ** 7.3 * 11.9 ** 14.9 ** 4.8 ** 6.7 ** 4.9 *

Note: Asterisks in the table indicate significance at ** p < 0.01 and * p < 0.05 with the Mann–Kendall test, with values
shown in bold.

3.4. Results of Model Calibration and Validation

The cultivar parameter and yield results are shown in the Table 7. These parameters are compatible
with the cultivar description (website: http://www.chinaseed114.com/seed/26/). The simulations with
our calibrated cultivar parameters are shown in Figure 5. The simulations of flowering and maturity
date were very close to the corresponding observations, and their coefficients for all seven stations
were above 0.9 (Figure 5a). The simulations of yield were very close to the corresponding observations
in each year at each station, except for DaLi and LinTong stations in 1994 (Figure 5b). Due to a serious
pest outbreak at DaLi and LinTong in that year, the record was not detailed enough. Such a pest effect
was not included in our simulations with CERES-Maize. Thus, a large gap between observations and
simulations is seen for those two stations in 1994 (Figure 5b insect pest points). Furthermore, we also
evaluated the soil water content simulations. Figure 5c shows the soil water content simulations
compared against observations, and the coefficients for the seven stations range from 0.64 to 0.85, all of
which pass the 99% significance level.

http://www.chinaseed114.com/seed/26/


Agronomy 2020, 10, 1862 10 of 21

Table 7. The yield results of model calibration and validation.

Cultivar Name
Cultivar Coefficients Calibration

ARE (%)
Validation
ARE (%)P1 P2 P5 G2 G3 PHINT

HuDan1 260 0.157 669.9 874.8 7.951 69.12 13 4.6
HuDan2 227.8 0.11 662.8 813.8 7.09 65.06 2.6 37.8
HuDan3 227.8 0.11 662.8 813.8 9.79 65.06 7.3 14.2
HuDan4 227.8 0.11 662.8 813.8 9.79 65.06 11.1 5.8
JunDan 262.8 0.835 706.6 802.6 10.44 68.18 5.6 3.8

JunDan20 353.2 0.157 765.1 874.8 11.65 69.12 8.4 5.9
HuDan 180 0.557 479.9 874.8 7.951 69.12 8.8 6

ShanDan 227.8 0.11 470.9 813.8 7.09 65.06 8.7 20.7
DengHai1 262.8 0.51 470.9 700.8 6.09 65.06 9.1 3.5
ZhengDan 227.8 0.51 460.8 873.8 7.951 65.06 10.2 0.5

ZhengDan518 222.8 0.51 470.8 813.8 7.951 65.06 10.4 9.8
ShanYu782 227.8 0.11 512.8 873.8 7.09 65.06 7.4 8.4
ZhangYu 150 0.11 456.8 813.8 7.09 65.06 6.9 2.3

GaoNong1 180 0.11 556.8 813.8 7.09 65.06 3.3 6.2
ShenDan10 227.8 0.11 662.8 713.8 6.09 65.06 8.9 17
DengHui11 200.8 0.11 662.8 813.8 6.2 65.06 4.1 3.9
ZhengDa12 200 0.157 622.9 813.8 6.7 65.06 8.8 2.3

DanYu13 247.8 0.11 722.8 513.8 7.49 65.06 7.3 9.5
JiYu9 247.8 0.11 770.9 813.8 9.79 65.06 7.9 1.8

ZhengDan958 227.8 0.11 662.8 813.8 9.79 65.06 3.9 7.9
ShanDan9 227.8 0.11 622.8 813.8 6.09 65.06 9.4 1.7

ShanDan902 227.8 0.11 762.8 813.8 8.09 65.06 1.1 12
YeDan19−1 227.8 0.11 662.8 813.8 6.09 65.06 6.4 0.1
ZhongKe11 227.8 0.11 662.8 813.8 9.79 65.06 4.1 5.4
ZhangYu9 227.8 0.157 649.9 874.8 7.951 69.12 3.2 4.5

XiDan2 227.8 0.11 662.8 513.8 6.09 65.06 24.2 2.8
YeDan12 227.8 0.11 662.8 813.8 7.09 65.06 2.1 4.6

GaoNong2 247.8 0.51 622.8 813.8 6.79 65.06 5.9 32.7
Shan911 247.8 0.11 622.8 813.8 7.99 65.06 8.2 4.1

Average 7.5 8.3

Note: some data were not included in calculating absolute relative error (ARE) due to a serious pest outbreak in
those years and very large errors.

3.5. The Cultivars and Cultivar Parameter Change

Cultivar replacement is a way to adapt to changes in environmental conditions such as climate
change, and increase crop yield [50,51,55,56,70,71], as shown in Table 6. Our optimized cultivar
parameters show significant changes, which are consistent with the cultivar observations. Figure 6
indicates that three cultivar parameters (P1, P5, and G3) had significant upward trends over our study
period, corresponding to extended growth periods and heavier kernel weight. The latter led directly
to a yield increase. The other three cultivar parameters (P2, G2, and PHINT) did not show similar
changes over the same period, implying that these parameters were insensitive to cultivar selection.
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3.6. Maize Yield Affected by Climate and Cultivar

To further understand how a decline in SSH and Tmax affect maize yield, we removed the trends of
SSH and Tmax over the maize growth stage for the seven crop stations, respectively. Figure 7 shows the
averaged SSH and Tmax over those stations with and without the trend. In this figure, we can see that
the averaged SSH changed from about seven hours to about five hours for the maize growth stage over
the period of 1994–2012, while Tmax decreased by about 1 ◦C over the same period. Without the trends,
the averaged SSH fluctuated around 7.1 h, and the averaged Tmax varies around the 28.1 degree level.

For this study, we performed our simulations again with the new SSH and Tmax data without the
long-term trend to simulate maize yield for our seven selected stations. We also conducted a simulation
using only the cultivar for 1994 throughout the whole 19-year simulation period. By comparing
these new simulations with our original modeling results, we quantified the contributions of cultivar
selection and the reduction in temperature and SSH to the yield increase (Figure 8). In Figure 8, we can
see that the cultivar changes and decline in Tmax increased the maize yield quite significantly over our
study period, while the decline in SSH reduced the maize yield over the same period. The changes
in annual yield due to changes in temperature, cultivar, and SSH were 25, 81, and −51 kg/ha/year,
respectively. Compared with that for 1994, the averaged yield for 2012 increased by 498 and 1747 kg/ha
due to the respective changes in temperature and cultivar and decreased by 857 kg/ha due to the
SSH reduction. The averaged yield increased by 5% and 25% due to the temperature changes and
cultivar replacement, respectively, and decreased by 8% due to the SSH reduction at these stations
during 1994–2012.
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Figure 8. Mean change in yield due to sunshine hour decrease, maximum temperature decrease,
and cultivar change.

We used a representative cultivar in each year to simulate maize yield for all 19 stations across
the study area. Figure 9 shows the simulated yields averaged over those stations for the period of
1994–2012 against observations. The trend of observed yield was 988 kg/ha per decade, while the trend
of the simulated total yield was 882 kg/ha per decade, indicating that the model accurately reproduced
the observations. Climate change (the SSH and Tmax reductions) had a negative contribution to the
total yield. The Tmax and SSH trends together accounted for a downward yield trend of −201 kg/ha per
decade, reducing the trend of the total simulated yield by 28%. The cultivar replacement accounted
for a yield trend of 588 kg/ha per decade, contributing to 67% of the total simulated trend (Figure 9).
Therefore, although cultivar replacement is a dominant factor increasing the maize yield in our study
region, the negative effects of climate change could not be neglected.
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Figure 9. Contribution of different factors to the total yield against observations in the study region for
the period of 1994–2012 (the left axis). The baseline yield is that for 1994 (2651 kg/ha). The right axis
represents the yield change in terms of the baseline yield. The stacked and error bars on the far right
side show the contribution of each factor to the total yield as of 2012.
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In this study, different climate change trends affected the maize yield differently across all our
study stations. The yield reduction ranged from 67 to 1674 kg/ha due to SSH varying from 4.9 to
7.9 h, with a similar downward trend for all stations (Figure 10a). Generally, the larger yield reduction
corresponded to shorter daily SSH and vice versa. For shorter SSH, solar radiation may be a limiting
factor in photosynthesis, and even a small decrease in SSH could have a remarkably adverse effect on
the maize yield (Figure 10a). For longer SSH, solar radiation might not restrict photosynthesis. Thus,
the effect of a small decrease in SSH on the yield is sometimes minor.
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As aforementioned, the Tmax reduction increased the mean maize yield over the 19 study stations
for the period of 1994–2012. However, our detailed analysis indicated that the yield decreased over
six stations due to the Tmax reduction (Figure 10b), where Tmax was equal to or lower than 27.3 ◦C.
When Tmax was above this temperature, the yield increased due to the reduction in Tmax over the rest
of the 13 stations. No matter which situation occurred, the reduction in Tmax decreased the thermal
time, tending to lower the yield. Hence, the increase or decrease in the final yield was determined by
temperature stress. For lower Tmax (≤27.3 ◦C), the daily mean temperature was unable to reach the
lower boundary of the temperature triggering heat stress (33.0 ◦C in CERES-Maize), and a decrease in
Tmax did not have an impact on the yield. Thus, we see a reduction in the final yield. Meanwhile,
for higher Tmax (>27.4 ◦C), the daily mean temperature often surpassed the heat stress threshold
temperature, lowering the yield. A decrease in Tmax tended to alleviate the heat stress, increasing
the yield. In this study, we can see that the alleviation of heat stress played a more important role in
affecting the maize yield than the reduction in thermal time, and both were caused by the decrease in
Tmax. Therefore, an increase in yield was seen for the reduction in the higher Tmax. The generic criterion
to distinguish between a lower and a higher Tmax still needs to be determined with a larger dataset.

Moreover, we explored the reasons for the yield changes caused by the above three variables.
Figure 11a shows the difference in the maximum leaf area index, kernel weight, aboveground biomass,
and root biomass between the original and detrended simulations. We can see that kernel weight had
the largest increase under the Tmax decline and cultivar replacement, while root biomass declined the
most due to the SSH reduction. The decrease in Tmax more significantly prolonged the reproductive
period than the vegetative period (Figure 11b), leading to an increase in kernel weight. Since the grain
number (G2) did not show a meaningful change, the yield increases were due mostly to the kernel
weight increase. When compared with the prior cultivars, the replaced cultivars usually had a longer
growth period and kernel weight. Yield increase with cultivar replacement accounted for 30% due to a
longer growth period and 70% due to heavier kernel weight based on our two additional tests (fixed
phenology or kernel weight parameters, data and figure not shown).
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Figure 11. (a) Change in the percentage of maximum leaf area index, unit kernel weight, aboveground
biomass, and root biomass under temperature, cultivar, and sunshine hour runs compared with the
original run. (b) Change in the duration of the vegetative period (planting to flowering), reproductive
period (flowering to maturity), and the whole period (planting to maturity) of maize under temperature,
cultivar, and sunshine hour runs compared with the original run.

To further understand how declining SSH reduces root biomass and yield, the annual and seasonal
time series of the root biomass and aboveground biomass are included in Figure 12. We can see that the
difference in root biomass between the simulations with and without the SSH trend was remarkably
larger than that in aboveground biomass. Starting from 10 days after planting, the difference in
root biomass dramatically decreased, while the aboveground biomass difference had a much gentler
decrease at both seasonal and long-term scales. As we know, maize develops its roots in the early
seedling stage, and the growth of maize roots is very sensitive to the external environment during this
period [72,73], when less photosynthesis leads to a decrease in root mass, beginning with less sunshine.
Decreased root mass in the early growth stage greatly hinders the development of aboveground
biomass during the later growth period due to weaker water and nutrient absorption.
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3.7. Causes of SSH Trends

It is believed that the downward trend of SSH is largely caused by the increases in cloud cover and
manmade aerosols [74,75]. In this study as illustrated in Figure 4, the decline in SSH was highest during
the summer while it is lowest during the winter. In the meanwhile, the manmade aerosol emission
was strongest during the winter and weakest during the summer [76–79]. Therefore, we believe that
the increase in cloud cover was most likely a strong reason for the SSH decline.

To further understand the reason for the decrease in SSH, we analyzed precipitation and rainy
days for the summer maize growth period (June to September) over 1994–2012 (Figure 13). There is a
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general rising trend of 85.5 mm/decade and 4.5 day/decade in precipitation and rainy days, respectively,
during the summer maize growth period. The average monthly rainy days for the same two periods
(1994–2003 and 2003–2012) was computed, with results shown in Figure 14. The difference in rainy
days between these two periods is very similar to that in SSH. The increase in rainy days was also
highest from June to September, as reflected in SSH (Figures 3 and 14). The increase in precipitation
and rainy days led to a decrease in sunny days and a decrease in SSH. Essentially, the connection
between SSH and rainy days resulted from cloud cover. This strongly suggests that the increase in
precipitation and rainy days was the main reason for the decrease in SSH.
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3.8. Effects of Precipitation on the Yield

Studies show that precipitation affects crop production under full irrigation treatments [80,81].
This could occur when precipitation significantly changes solar radiation, and air moisture or water
stress occurs between irrigation events. In this study, we examined the effect of precipitation on maize
yield with observations. Figure 15a shows the precipitation amount against maize yield for the 19 study
stations where precipitation ranged remarkably from 252 to 583 mm. Our results indicate that the
change in precipitation did not have a significant impact on maize yield. Furthermore, we produced
the yield difference between the simulations with the original and detrended precipitation for the
WuGong station (one of the 19 stations), with an upward precipitation trend of 18 mm/year (Figure 15b).
Therefore, in our study region with remarkable precipitation changes, we did not see a significant
effect of precipitation on maize yield.
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4. Conclusions

A decline in SSH was observed across most of the meteorological stations in Northern China.
We found this decline to be highest in the warm season, when summer maize grows. A downward
trend of −0.068 h/day for SSH was observed over the seven selected crop stations in central China for
the summer maize growth period of 1994–2012. A downward trend of −0.5 ◦C/decade in Tmax was
observed for the same period, which is likely associated with the decline in SSH. The CERES-Maize
model was first calibrated and validated against observed yields, and the simulations agreed very well
with observations. The model was then used to quantify the effects of the declines in SSH and Tmax on
the maize growth period and yields, which were examined with and without the trends of these two
climate forcing variables. CERES-Maize was also used to examine how cultivar replacements affected
maize yields by comparing the results with and without cultivar replacement. Our modeling results
indicated that the decline in SSH reduced the maize yield by 8% on average over our study stations
by limiting root growth, and the decline for shorter SSH played a more important role in affecting
the yield than that for longer SSH. In the meantime, the decrease in higher Tmax increased the yield
where the extended growth period generated a dominant effect, while the decrease in lower Tmax

reduced the yield where the lowered thermal time was most important. In addition, the observed
yield showed a significant upward trend, which can be attributed mainly to the frequent cultivar
replacements over the study period based on our modeling results. When compared with the prior
cultivars, the replaced cultivars usually had a longer growth period, prolonging grain-filling time.
Net maize production increased with the combined effects of cultivar replacements and the declines in
SSH and Tmax on yields.
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Temperature increases have become more significant on a global scale since the beginning of
this century [82]. In this dynamic climate system, the feedback resulting from temperature increase
is very complex. In some regions, the temperature shows a downward trend over certain seasons,
which may be related to the reduced solar radiation due to greater cloud cover and higher aerosol loads
as discussed above. These complex changes in the climate system probably have different effects on
crop growth and yields. This study explored the issue at a relatively small spatial scale. Further studies
should focus on a much larger scale or even a global scale, and on different crops.
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