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Abstract: One-flower vetch (Vicia articulata) was widely cultivated in the Mediterranean Basin in
the past but is currently underutilized. Valuable germplasm collections are stored in genebanks,
which are poorly characterized. In an attempt to explore adaptation of landraces we performed a
multi-environment field testing, showing the availability of valuable resources for crop development,
with average yield across environments ranging from 651 to 1102 kg/ha. Environmental factors and
significant Genotype-by-Environment (G*E) interaction hampers selection of superior genotypes.
Heritability-Adjusted Genotype plus Genotype-by-Environment interaction (HA-GGE) biplot
performed here allowed to focus on the G and G*E interaction components relevant to cultivar
evaluation. Landraces Va-38 and Va-85 were identified as the highest yielding landraces, being
also the most stable over the environments. Two additional groups of landraces with relatively
high yield were also identified but showing little stability across environments, with landraces
Va-91 and Va-103 performing better in Córdoba, whereas Va-1, Va-2 and Va-66, did in Escacena.
Córdoba appeared as a useful environment for selection, being representative, discriminant, and
reproducible. Differences in precocity among landraces had little effect on yield in any of the studied
environments. Temperature was the climatic factor most influential on yield as shown by Non-Metric
Multidimensional Scaling (NMDS) analysis. High temperatures after flowering being the most
limiting factor for yield. Increased radiation during and after flowering were beneficial, with rain
having little effect.
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1. Introduction

The genus Vicia is a member of the legume tribe Vicieae along with Lathyrus, Lens, Pisum and
Vavilovia. It comprises approximately 190 species [1] that as a whole are well placed to help meet
the increased global demand for animal feed and to provide crops for a diversity of farming systems.
The most widely cultivated species are V. faba L. (faba bean), V. sativa L. (common vetch) and V. villosa
Roth (hairy vetch), but there are many other vetches that are cultivated as minor seed, forage or fodder
crops, including V. ervilia Willd. (bitter vetch), V. pannonica Crantz. (Hungarian vetch), V. narbonensis
L. (Narbon vetch) or V. benghalensis L. Among these, one-flower vetch (Vicia articulata Hornem., syn.
V. monanthos) has been widely cultivated for fodder or green manure or for seeds for fattening feed
for ruminants. It grows well in low fertile soils, is drought tolerant and frost resistant [2]. Seeds can
also be eaten alone or mixed with lentils by humans. In fact, it is known by farmers to be more rustic
and productive than lentil although a bit inferior in taste. It has a Mediterranean distribution and
was widely cultivated in the past, but currently it is underutilized and threatened by extinction [2,3].
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For instance, in Spain its cultivation has been reduced from 160,000 ha in 1960 to current virtual
disappearance [4].

There is therefore an urgent need to characterize existing germplasm preserved in genebanks [5,6]
and to submit them to breeding in order to exploit the potential of the species. In order to study the
adaptation of the crop to Mediterranean rain fed farming systems, landraces selected from previous
unpublished studies were submitted to multi-environmental testing. Genotype-by-Environment (G*E)
interactions complicates the prediction of the performance of the accessions, thus hampering proper
selection. Multi-environment trials are conducted yearly, and mean performance is often calculated as
an average of cultivar performance over years and locations, but comparisons of mean performance
are not sufficient for cultivar evaluation unless a due understanding of genotype by environment
interactions is added. HA-GGE biplot (Heritability Adjusted Genotype plus Genotype-by-Environment
Interaction) removes the statistical main effect of the environment and focuses on the genotype and
genotype by environment interaction components relevant to cultivar evaluation [7].

The objectives of this research were to evaluate the performance and stability of yield among
one-flowered vetch accessions.

2. Materials and Methods

2.1. Plant Material and Experimental Design

The one-flowered vetch population comprised 13 landraces selected from a previous field screening
of a larger collection [5 and Rodríguez-Conde, unpublished] that were grown at nine contrasting
location–year environments (Table 1). At each location, a randomized complete block design with
three replications was used. The experimental unit consisted of three parallel one m long rows per
accession separated 35 cm, with 10 plants per row. Sowing took place by middle December each
season, according to local practice. Weeds were controlled by hand weeding. Days to flowering (DF)
was estimated in three environments by weekly recording the date in which 50% of the plants of each
plot had at least one fully opened flower. The harvest of the plants took place by late May to early
June, depending on the environment.

2.2. Statistical Analysis

A combined ANOVA for randomized complete-block designs within each year-location
environment was carried out using SAS® 9.3 (SAS Institute Inc.). F ratios, used to test effects
for randomized complete block experiments combining location-year environments (Table 1), were
determined according to [8]. Prior to each ANOVA, tests for normality and equality of variance were
conducted for each dependent variable.

To determine stability and identify superior accessions across environments, the HA-GGE biplot
analyses was conducted [9–13], comprising seasons 2009 to 2013, since it takes into consideration any
heterogeneity among environments by giving weights to the test environments proportional to their
root square heritability. As the environments have different heritabilities (data not shown) for the
same trait, HA-GGE biplot is most appropriate for visual evaluation of the test environments and
genotypes [9]. Analyses were made with the SAS® 9.3 (SAS Institute Inc.) program developed by [14]
to graph GGE biplots.

The G*E two-way tables were first centered with the respective means for the environments,
multiplied by

√
H and then divided by the SD of the respective environment [9].

The general model for HA-GGE biplots is:

pi j =
(
yi j − µ j

)√
H j/s j =

∑t

k=1
λkαikγ jk + εi j (1)

where pij represents the G*E two-way table of GGE effects with i = 1, . . . ,m genotypes and j = 1, . . . ,e
environments, which is decomposed into k = 1 to t principal components (PC), with t ≤min(e, m − 1).
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yi j is the cell mean of genotype i in environment j; µj is the mean value in environment j.
√

H j is the
square root of the heritability in the environment j and sj is the standard deviation of the distribution
of genotype means within environment j. λk is the Eigenvalue of the principal component analysis
(PCA) axis k, αik and γjk are the genotype and environment principal component scores for axis k, t the
number of principal components retained in the model and εij is the error term.

The HA-GGE biplot shows the first two principal components (PC1 and PC2) derived from the
previous two-way table of yield to singular value decomposition [15,16].

Singular value partitioning is achieved by providing a scaling factor f to obtain alternative
accessions and environment scores. We chose the most straight forward variant called symmetric
scaling (f = 0.5) since it bears most of the properties associated to other scaling methods [7].

The target environment axis abscissa (TEAa) is represented by a straight line drawn through
the biplot origin and the average environment, which was defined by the mean ordinates of all
environments in the biplot. The main effects of genotypes (G) are represented by the projection of
genotypes onto this axis. These projections provide us with the contribution of each genotype to
G, so genotypes may be ranked along the TEA abscissa, with the arrow pointing to higher mean
yield. The TEA ordinate (TEAo) shows the contribution of each genotype to the interaction G*E, thus
giving information about the genotypic stability or instability (consistency or inconsistency across
environments). The best genotype would be that with the highest yield (higher positive projection on
TEAa) and the highest stability, i.e., projection on TEAo close to 0 [16]. Similarly, the ideal environment
would be the one showing a high projection value onto the TEA abscissa (more discriminating of
principal effects of genotypes) and a small absolute projection value onto TEAo (more representative
of all the tested environments) [16].

Climate data for each location [maximum, minimum and average temperature, maximum,
minimum and average humidity, accumulated radiation, evapotranspiration and accumulated rain
during pre-flowering, at flowering and post-flowering period, also during the growing season]
were obtained from the Agencia Estatal de Meteorología (AEMET) (https://datosclima.es/Aemet2013/

LocalizacionEstaciones.php). The influence of environmental factors on yield was studied by submitting
each climatic parameter to a Non-Metric Multidimensional Scaling (NMDS) ordination [17].

Table 1. Description of the environments (combination of location and season) of the trials for the
multi-environment study. Summary climatic data corresponding to each growing season are provided.

Environments Location Soil
Type

Soil
pH Latitude Longitude Altitude

(m.a.s.l)
Growing
Season

Average
Tmax (◦C)

Average
Tmin (◦C)

Rain
(mm)

CORD09 Córdoba
Spain Cambisol 8–8.5 37◦50′ N 4◦50′ W 90 2008–09 21.7 7.9 279

CORD10 Córdoba
Spain Cambisol 8–8.5 37◦50′ N 4◦50′ W 90 2009–10 21.3 9.4 626

CORD11 Córdoba
Spain Cambisol 8–8.5 37◦50′ N 4◦50′ W 90 2010–11 22.9 10.7 378

CORD12 Córdoba
Spain Cambisol 8–8.5 37◦50′ N 4◦50′ W 90 2011–12 22.5 7.6 145

CORD13 Córdoba
Spain Cambisol 8–8.5 37◦50′ N 4◦50′ W 90 2012–13 20.8 8.6 480

ESC11 Escacena
Spain Fluvisol 7 –7.5 37◦25′ N 6◦15′ W 88 2010–11 22.1 11.8 407

ESC12 Escacena
Spain Fluvisol 7–7.5 37◦25′ N 6◦15′ W 88 2011–12 21.9 10.1 124

ESC13 Escacena
Spain Fluvisol 7–7.5 37◦25′ N 6◦15′ W 88 2012–13 20.5 9.6 427

ESP3 Espiel,
Spain Fluvisol 7.5–8 38◦11′ N 5◦01′ W 548 2012–13 18.2 5.6 366

https://datosclima.es/Aemet2013/LocalizacionEstaciones.php
https://datosclima.es/Aemet2013/LocalizacionEstaciones.php
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3. Results

The combined analysis of variance for grain yield and flowering date revealed that all main effects
(environments (E), genotypes (G) and G*E interaction) were statistically significant (Tables 2 and 3).
Environment explained for 78% of the total variation (G + E + GE interaction sum of squares) in yield,
whereas G and G*E interaction accounted for 8% and 14%, respectively (Table 2). For flowering date,
E, G and G*E interaction accounted for 24%, 58% and 18%, respectively (Table 3). When fitting the
HA-GGE model, the first two PCs for yield and days to flowering explained 75% and 94%, respectively,
of total G + GE interaction, and (G + GE)/(E + G + GE) yielded a value of 22% and 75% (Figures 1
and 2). This fulfilled the requirements of [18], who established that for a biplot to be useful, the first
two PCs should be higher than 60% and (G + GE)/(E + G + GE) ratio should be higher than 10%.

Table 2. Analysis of variance for yield (kg/ha) of 13 genotypes of V. articulata in 9 environments (DF: degrees
of freedom; SS: sum of squares; MS: mean square; G*E: term of the genotype-by-environment interaction).

Source DF SS MS % Respect (E + G + GE)
SS

Environment (E) 8 72350709 9043838 *** 78
Replication 18 4149747 230541

Genotype (G) 12 6983148 581928 *** 8
G*E 96 13141006 136885 *** 14

Error 216 14693165 68024

Total 350 111317775

*** Significant at p < 0.0001 level of probability.

Table 3. Analysis of variance for flowering date of 13 genotypes of V. articulata in 3 environments
(DF: degrees of freedom; SS: sum of squares; MS: mean square; G*E: term of the genotype-by-
environment interaction).

Source DF SS MS % Respect (E + G+ GE)
SS

Environment (E) 2 1088 544 *** 24
Replication 6 67 11

Genotype (G) 12 2560 213 *** 58
G*E 24 787 33 *** 18

Error 72 281 4

Total 116 4783

*** Significant at p < 0.0001 level of probability.

3.1. Evaluation of Environments for Yield

The genotypic variability in each environment is represented by the length of its vector (line
connecting it with the origin). A short vector (environment close to the origin) would mean a
non-discriminating environment in which all genotypes perform similarly. These environments were
CORD09, ESC11 and ESP13. Conversely, CORD12 was the most discriminating based on their vector
length, followed by ESC12, COR11 and COR13. In addition to exhibiting a high level of discrimination,
an ideal test location should also be representative of the target growing region. The environments
whose vectors form the smallest angles with TEAa (CORD12, followed by ESP13, COR09 and COR11)
will be the most representative. Córdoba was therefore the most useful environment in which to select
for yield, as characterized by the acute angles with TEA that were indicative of representativeness of
the environment, and the long vectors that were indicative of its high level of discrimination capability.
There were also acute angles between the vectors that corresponded to the different seasons, indicating
that yields in this environment were very reproducible (Figure 1).
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Figure 1. HA-GGE biplot based on yield (kg/ha) of 13 selected one-flowered vetch accessions in 9
environments (combination season-location).

Figure 2. HA-GGE biplot based on flowering date of 13 selected one-flowered vetch accessions in 3
environments (combination season-location).
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3.2. Average Performance and Stability of Genotypes for Yield

Average yield across environments of landraces ranged from 651 to 1102 kg/ha, with and average
mean of 837 kg/ha (Table 4). In order to evaluate the accessions in terms of high yielding ability,
the “TEA” view of the biplot was examined. In this way, the best characteristics of ideal genotypes
should be high performance and stability. These characteristics may be inferred from the biplots since
projection of an accession over the average environment axe indicates its mean performance across all
environments, and its projection over the TEAo indicates its stability [16]. Figure 1 shows that Va-38
and Va-85 were the highest yielding landraces on average (high absolute primary scores, TEAa), that
were also relatively stable over the environments (small absolute secondary scores, TEAo) [16]. In
contrast, landraces Va-50, Va-57 and Va-63, yielded poorly at all environments. Landraces Va-91 and
Va-103, and Va-1, Va-2 and Va-66, formed two groups with similar principal effects (similar yield), but
of little stability across environments. Va-91 and Va-103 performed better in CORD10 and CORD13,
whereas Va-1, Va-2 and Va-66, did in ESC12 and ESC13.

Table 4. Mean grain yield (kg/ha) of 13 one-flowered vetch landraces grown at 9 location–
year environments.

Accession CORD
09

CORD
10

CORD
11

CORD
12

CORD
13

ESC
11

ESC
12

ESC
13

ESP
13 Mean

Va-1 1082 695 553 687 368 705 1483 630 1783 887
Va-2 1370 913 798 529 140 747 1849 599 1938 982

Va-38 1269 854 845 798 586 961 1434 524 2650 1102
Va-4 849 916 463 617 325 893 562 497 1725 761

Va-50 831 982 280 267 205 691 513 374 1609 639
Va-57 807 1218 375 196 264 567 487 295 1702 657
Va-63 1290 692 302 280 255 598 487 310 1706 658
Va-66 940 851 680 602 381 829 967 666 1802 857
Va-67 940 1184 267 333 295 596 749 443 1701 723
Va-75 871 857 447 276 225 542 726 290 1624 651
Va-85 1158 1360 823 680 526 984 1266 531 1906 1026
Va-91 1118 980 547 678 551 962 998 379 2569 976
Va-103 1147 1769 422 717 297 949 793 537 1979 957

Mean 1052 1021 523 512 336 771 947 467 1900 837
SE 52.2 55.5 40.5 36.9 25.6 53.0 74.6 27.1 88.0 29.9

3.3. HA-GGE Biplot for Days to Flowering

The earliest landrace was Va-2 (Table 5) with the longest negative projection on TEAa (Figure 2).
Va-50, Va-57, Va-63 and Va-103 were the latest ones. Concerning environments, Córdoba was the most
discriminant as shown by the longest projections on TEAa, whereas ESC11 was more representative as
shown by the smaller angle with TEAa. Pearson correlations between yield and flowering date with
genotype as a weighting variable revealed a not significant and low and negatives r values (from −0.15
to −0.49) for the three environments which yield and flowering date were registered, which suggests
a little association between both traits. This is in agreement with previous observations on different
environments and accessions (Rodriguez-Conde, personal communication).
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Table 5. Days to flowering of 13 one-flowered vetch genotypes grown at 3 location–year environments.

Accession CORD09 CORD11 ESC11 Mean

Va-1 116.0 120.7 114.7 117.1
Va-2 102.7 102.7 103.7 103.0
Va-38 111.7 121.7 111.0 114.8
Va-4 119.7 121.7 109.7 117.0
Va-50 126.7 121.3 118.3 122.1
Va-57 126.0 122.7 117.3 122.0
Va-63 126.3 121.7 112.0 120.0
Va-66 111.0 118.7 111.0 113.6
Va-67 111.7 120.3 112.0 114.7
Va-75 119.3 120.7 112.0 117.3
Va-85 111.3 122.0 112.0 115.1
Va-91 119.3 122.0 113.0 118.1

Va-103 119.3 122.7 115.7 119.2

Mean 117.0 119.9 112.5 116.5
SE 1.132 0.837 0.716 0.594

3.4. NMDS Analysis

Biplot from NMDS analysis gave a stress value of 0.019, indicative of an excellent fit [19]. This
allowed a nice separation of the environments (Figure 3) where the highest yields were achieved
(CORD09, CORD10, ESC12 and ESP13), to the right, from those giving lower yields, to the left.
Temperature arises as the most influential parameter on yield in these highest yielding environments,
as shown by their vectors closer to x axis, to the left side. Coefficients of correlation among yield and
climatic parameters revealed the same results, with negative effect of Tmin at flowering (R = −0.62), of
Tmax at flowering (R = −0.68) and postflowering (R = −0.46). Radiation during and after flowering
has a small positive influence in yield (R = 0.28). However, rain showed little influence (R = 0.01 at
pre-flowering, R = −0.10 at flowering, R = −0.14 at postflowering).

Figure 3. Non metric multidimensional scaling (NMDS) analysis of climate variables including:
maximum temperature (Tmax), minimum temperature (Tmin), average temperature (TAve), maximum
humidity (Hmax), minimum humidity (Hmin), average humidity (HAve), accumulate Radiation (Ra),
Evapotranspiration (ETo) and rain during different growing stages [pre-flowering (Pre), flowering
(Flow), post-flowering (Post) and complete growing season] characterizing the nine environments,
which are the combination of three localities: Córdoba (CORD), Escacena (ESC), and Espiel (ESP) and
4 years 2009 (09) to 2013 (13), used for phenotyping.
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4. Discussion

One-flowered vetch was widely cultivated in the past, being currently underutilized with little
effort made on breeding and no cultivar registered. Current interest on revalorization of legume crops
put one-flower vetch on focus [20]. In spite of this long term neglect on the crop, valuable landraces
exist that might allow cultivation in some areas and can be the bases of breeding of superior cultivars.
Previous studies [2,5] have shown a large genetic diversity in morphological and agronomic traits in
the species. Germplasm preserved of the underutilized V. articulata appears as valuable resources for
crop development, reinforcing the need to characterize the adaptability and yield potential of the crop.
Our studies showed the potential of the crop in the region, with average yield across environments
ranging from 651 to 1102 kg/ha. Multi-environmental field testing showed that environmental factors
have a major impact on performance, with a significant G*E interaction, what hampers selection of
superior genotypes. GGE biplot performed here allowed to remove the statistical main effect of the
environment and to focus on the G and G*E interaction components relevant to cultivar evaluation.
Significant genotypic effects showed landraces Va-38 and Va-85 as the highest yielding landraces,
being also the most stable over the environments (small absolute secondary scores, TEAo). In contrast
two additional groups relatively high yielding landraces showed little stability across environments,
with landraces Va-91 and Va-103 performing better in Córdoba, whereas Va-1, Va-2 and Va-66, did in
Escacena. Córdoba appeared as a useful environment to select for yield, being representative (acute
angles with TEA), discriminant (long vectors), and reproducible (acute angles between the vectors
corresponding to different seasons).

Significant differences in precocity were observed among landraces, but this had little effect on
yield in any of the studied environment. This is in agreement with previous observations on different
environments and accessions (Rodriguez-Conde, personal communication). Temperature was the
climatic factor most influential on yield as shown by NMDS analysis (Figure 3). High temperatures
after flowering being the most limiting factor for yield. Increased radiation during and after flowering
were beneficial, with rain having little effect.

This study shows the HA-GGE biplot as an excellent tool for the visualization of the accessions by
trait data and hence to identify the material with interesting traits. Classical breeding would likely
yield excellent results in this species by simple selection directly from adapted landraces as a first, most
immediate stage to make superior cultivars available to farmers in the short term. This can also serve
as parents to start a crossing program for future.

In addition to yield and adaptation, quality is an important trait to consider in future. V. articulata
straw is similar to other legumes, showing better nutritional quality than cereal straws, making
them interesting sources of roughage for incorporation into ruminant diets [21]. V. articulata seeds
are high in proteins with a balanced amino acid composition [22], however, as other vetches, they
have L-canavanine, that reduces its value to feed non-ruminants. This is removed by postharvest
processing techniques such as soaking, germination or alkaline heat, making seeds safe in diets. Also,
levels of L-canavanine could be reduced by breeding, as variation in L-canavanine content exists in
germplasm collections [6]. All this, reinforce the need to characterize existing germplasm and to submit
it to breeding.
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