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Abstract: The middle and lower reaches of the Yangtze River (MLYR) plain represent the second-largest
wheat producing area in China; the winter wheat-rice system is one of the main planting systems
in this region. The use of the agricultural production system simulator (APSIM)-wheat model to
simulate wheat production potential and evaluate the impact of future climate change on wheat
production in this region is of great importance. In this study, the adaptability of the APSIM-wheat
model in the MLYR was evaluated based on observational data collected in field experiments and daily
meteorological data from experimental stations in Wuhan, Jingmen, and Xiangyang in Hubei province.
The results showed significant positive relationships between model-predicted wheat growth duration
from sowing to anthesis and maturity and the observed values, with coefficients of determination (R2)
in ranges of 0.90–0.97 and 0.93–0.96, respectively. The normalized root-mean-square error (NRMSE)
of the simulated growth durations and measured values were lower than 1.6%, and the refined
index of agreement (dr-values) was in the range of 0.74–0.87. The percent mean absolute relative
error (PMARE) was cited here as a new index, with a value below 1.4%, indicating that the model’s
rating was excellent. The model’s performance in terms of grain yield and above-ground biomass
simulation was also acceptable, although it was not as good as the growth periods simulation. The R2

value was higher than 0.75 and 0.72 for the simulation of grain yield and biomass, respectively.
The indices NRMSE and PMARE were lower than 19.8% and 19.9%, and the dr-value was higher
than 0.71. According to our results, APSIM-wheat was an effective and accurate model for simulating
the phenology and yield production processes of wheat in the MLYR, and the results also provided
a theoretical basis and technical support for further research on the yield potential of wheat-rice
rotation planting systems with clarification of the key factors limiting the yield gap in this region.

Keywords: the middle and lower reaches of the Yangtze River plain; winter wheat; APSIM-wheat
model; calibration and validation; adaptability

1. Introduction

In China, more than 50% of the population is mainly fed by wheat, and with less and less arable
land being available, further improvement in wheat production per area is crucial to ensure China’s
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food security [1,2]. The middle and lower reaches of the Yangtze River (MLYR) plain represent the
second largest wheat producing area in China, and the wheat-rice rotation system is one of the main
planting systems used in this region [3]. The rice soil in the alluvial plain of the MLYR has a high
organic matter content, sufficient fertility, and optimum thermal momentum, solar radiation, and water,
which is conducive to the growth of wheat [3,4]. According to data from the National Bureau of
Statistics, the sown area and total output of wheat in this region are 6.385 × 106 ha and 3.307 × 107 t,
respectively, accounting for approximately 26.3% and 25.2% of the total planted area and a total output
of wheat in China, respectively, in 2018 [5]. In addition, with the continuing shortage of water resources
in the north plain of China, the importance of wheat production is becoming increasingly prominent in
the MLYR plain.

Much research has been completed by agricultural scientists to continuously improve the grain
yield of winter wheat in the MLYR plain in recent years [6–8]. It has been reported that the average
wheat yield increased from 3.2 to 4.9 t ha−1 from 1985 to 2018, and it has reached more than 9.0 t ha−1

in high-yield experiments [5,9]. The yield potential, yield gap, ways to further improve the wheat
grain yield, and the influence of climate change on wheat production in this region remain unknown.
Therefore, it is important to develop crop models to simulate the growth and yield formation process
of wheat in this region to predict the current grain yield potential as well as future wheat yield trends
and to provide breeding suggestions and cultivation guidance to further improve the wheat yield in
this region. It is well known that cultivars and crop management, such as cropping systems, fertilizer
and irrigation regimes, sowing date, often vary widely due to the differences in climate conditions and
soil type among regions. Thus, the first step, which is the most important task when experimenting
with models, is the testing of their performance under new circumstances to identify their scope of
validity and limitations [10,11].

The agricultural production system simulator (APSIM) was developed by Agricultural Production
System Research Unit (APSRU), a collaborative group made up of the Commonwealth Scientific
and Industrial Research Organization (CSIRO) and Queensland State Government agencies [10,12].
APSIM-wheat was developed to simulate biophysical processes in farming systems, in particular,
where there is interest in the economic and ecological outcomes of management practice in the face of
climatic risks [12]. At present, it has been well verified and applied in many countries and regions
around the world, such as in the Mediterranean climate zone of Australia [13,14], the temperate
continental climate zone of the United States [15], and the tropical humid climate zone of some
southeast Asian countries [16].

Since the early 2000s, the research and application of the APSIM-wheat model in China have
gradually increased, mainly in the Northeast, Northern, and Northwest of China, and also in the
Southwest of China, and these studies have shown that the APSIM-wheat model has a wide range of
adaptability in the above regions [17–19]. However, the climate conditions, soil types, cropping systems,
and wheat cultivars of the MLYR are quite different from the above regions. In the MLYR, there is
abundant precipitation and high average temperature, with average values higher than 500 mm and
12.0 ◦C, respectively, during the wheat growing season, and wheat-rice continuous is the main wheat
cropping system. Based on the successful practice of the APSIM-wheat model, mainly in winter wheat
planting zones around the world, especially in China, this study was conducted in Hubei province,
an area with the typical climatic features and use of wheat-rice continuous cropping system (wheat
was planted after rice harvest) of MLYR. The APSIM-wheat model was calibrated and validated for the
first time in this region using data on winter wheat grain yield development in field experiments over
many years, as well as meteorological data collected during these periods. The aim of the study was to
evaluate the utility and adaptability of the APSIM-wheat model in this region, provide a theoretical
basis and technical support for further research on the yield potential of the winter wheat-rice planting
system in the MLYR, and clarify the key limiting factors in the yield gap.
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2. Materials and Methods

2.1. Experimental Site

Hubei province (29◦01′–33◦6′N, 108◦21′–116◦07′E) is located in the central part of China, and its
environment is representative of the typical conditions in the MLYR plain. The area exhibits a subtropical
monsoon humid climate with annual average sunshine hours of 1754–1910 h, an annual average
accumulated temperature (≥0 ◦C) of 5266-8372 ◦C d, abundant precipitation in the wheat-growing
season, and annual average precipitation of more than 1000 mm. These are superior agricultural
production conditions and are conducive to achieving a good crop yield. In this paper, three winter
wheat production regions were selected (Figure 1), namely, Wuhan (WH), Jingmen (JM), and Xiangyang
(XY), where the winter wheat growth areas account for over 70% of the total wheat planting area in
Hubei province.

Figure 1. Locations of the experimental sites (black solid dots) that were used to calibrate and validate
the agricultural production system simulator (APSIM)-wheat model. Note: The experimental sites were
Guyi town in Xiangzhou county, Zhangjiaji town in Xiangzhou county, Zaoyang county, and Yicheng
county in Xiangyang; Zhongxiang county, Qujialing county, and Shayang county in Jingmen; Wuchang
district and Hongshan district in Wuhan.

2.2. Data Source

In terms of weather data, records of daily maximum and minimum temperatures, sunshine hours
(or daily solar radiation), and precipitation were available from 1999 to 2016 at each experimental
weather station and the National Meteorological Information Center (CMDC, http://data.cma.cn/en).
As actual solar radiation measurements were not available for most of the stations, the daily solar
radiation was estimated from the sunshine hours using the Angstrom formula [20].

For experimental data, information on winter wheat phenology aspects (such as sowing, emergence,
jointing, anthesis, maturity dates, cultivar type, yield, and biomass) and management practices (such as
planting density and fertilizer) was obtained from each experimental site (previous field experiment or
local agricultural technology extension center) and from the literature (listed in Table 1). Management
details of each experimental site can be found in Supplementary Materials (Tables S1 and S2).
Crop management practices at each experiment site were generally the same as, or better than, the local

http://data.cma.cn/en
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traditional practices [21]. The wheat varieties planted at each site are also listed in Table 1. These were
widely used in each province during the planting years.

Regarding soil data, the soil bulk density (BD), saturated volumetric water content (SAT), drained
upper limit (DUL), 15-bar lower limit (LL15), soil organic carbon (SOC), and pH value (pH) in different
soil layers were obtained from the China Soil Scientific Database (CSSD, http://www.soil.csdb.cn),
the dissertation of Sun [22] and our previous measurements.

Table 1. Wheat varieties and sources of experimental data for agricultural production system simulator
(APSIM)-wheat model calibration and validation in Hubei province.

Region Cultivar Dataset

Calibration Validation

Experimental
Year Data Source Experimental

Year Data Source

Wuhan Zhengmai 9023 1999–2000 Zhang et al. [23] 2013–2014 Xu et al. [24]

2008–2009 ATEC of Hubei province ‡
2014–2015,
2015–2016 Unpublished data

Emai596 2009–2010 Dong et al. [25] 2009–2010 Dong et al. [25]
Emai170 2012–2013 Liu et al. [26] 2013–2014 Liu et al. [26]

2015–2016 Unpublished data § 2015–2016 Unpublished data
Jingmen Zhengmai 9023 1999–2000 Zhang et al. [23] 2000–2001 Zhang et al. [23]

2010–2011 ATEC of Jingmen 2013–2014 Guan et al. [27]
Emai596 2010–2011 ATEC of Jingmen 2012–2013 Ruan et al. [28]

– † – 2015–2016 Unpublished data
Emai170 – – 2015–2016 Unpublished data
Emai18 2008–2009 ATEC of Jingmen 2002–2003 Guan et al. [29]

– – 2015–2016 Unpublished data
Xiangyang Zhengmai 9023 2001–2002 ATEC of Xiangyang 1999–2000 Zhang et al. [23]

2010–2011 ATEC of Xiangyang 2011–2012 Ruan et al. [28]
– – 2013–2014 Xu et al. [24]
– – 2015–2016 Unpublished data

Emai596 2013–2014 Wang et al. [30] 2013–2014 Wang et al. [30]
– – 2015–2016 Unpublished data

Emai170 2012–2013 ATEC of Xiangyang 2015–2016 Unpublished data
Emai18 2007–2008 Xiong et al. [31] 2002–2003 Ming et al. [32]

– – 2007–2008 Xiong et al. [31]
– – 2010–2011 ATEC of Xiangyang

Note: † – means no data. ‡ ATEC means agricultural technology extension center, which is an agricultural department
of the Bureau of Agriculture and Rural Affairs. § Unpublished data came from our field experiments conducted
during the 2014–2015 and 2015–2016 winter wheat seasons in Wuhan, Jingmen, and Xiangyang. The management
details of each type of experimental data in terms of calibration and validation can be found in the Supplementary
Materials (Tables S1 and S2).

2.3. APSIM-Wheat Model

The APSIM-wheat model used in this study includes the crop-wheat, soil, surface organic matter
(OM), and manager modules. The model operates on a “daily” time step and simulates daily crop
development, biomass production, soil moisture, and nitrogen dynamics as affected by the climate and
management measures.

Crop ontogeny aspects, such as daily biomass and yield production, are simulated by the
relationships among crop growth, temperature, and photoperiod [33]. Crop biomass accumulation
depends on the solar radiation interception (RI) and radiation use efficiency (RUE), taking full account
of the effects of water and nitrogen constraints. RI and RUE related to the leaf area in this model,
and the leaf area is calculated by the increase in the leaf dry weight and the maximum specific leaf
area (SLAmax), which is related to the leaf area index (LAI), so a function (SLAmax = hSLA (LAI)) is
defined by the parameters x_lai and y_sla_max in the APSIM-wheat model [12]. Crop development is
primarily based on thermal time, whereas leaf and stem growth rates are calculated depending on
phenological stages. The soil water module includes the lower limit (LL15), the drained upper limit
(DUL), and the saturated (SAT) volumetric water contents of a sequence of soil layers. Further detailed

http://www.soil.csdb.cn
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descriptions of the APSIM-wheat model structure and processes were described by Keating et al. [12]
and are available at the following website: http://www.apsim.info.

2.4. Calibration and Validation of the APSIM-Wheat Model

The data for the winter wheat growth period, leaf area index, above-ground biomass at anthesis
and maturity, grain yield, yield components, winter wheat management at all stages, soil water,
and nutrients content at a soil depth of 0–240 cm with 15 cm per layer were collected from the Wuhan,
Jingmen, and Xiangyang experiment regions from 1999 to 2016. The database was divided into
two parts (Table 1): one was used to calibrate the genetic parameters of the four wheat varieties
(Zhengmai9023, Emai596, Emai18, and Emai170), and the other one was used to validate the utility
and adaptability of the calibrated model.

In this study, the crop variety parameters for calibration, such as sensitivity to vernalization,
sensitivity to the photoperiod, the thermal time required from grain filling to maturity, the number of
grains per gram of stem, the potential grain filling rate, and the maximum specific leaf area, are shown
in Table 2. A trial-and-error method was used to identify the optimal parameters of the three varieties.
The growth periods from sowing to anthesis and sowing to maturity were mainly calibrated by the
sensitivity to vernalization, the sensitivity to the photoperiod, and the thermal time required from
grain filling to maturity. The grain yield and above-ground biomass were mainly calibrated via the
number of grains per gram of stem, the potential grain filling rate. A maximum specific leaf area was
used to adjust the leaf area index (LAI) during the growing season.

Table 2. Description of genetic coefficients of wheat varieties in the APSIM-wheat model.

Corp Module Parameter Type Genetic Parameters Description

APSIM-wheat Phenology control
parameters vern_sens Sensitivity to vernalization

photop_sens Sensitivity to photoperiod

tt_startgf_to_mat The thermal time required from grain filling to
maturity (◦C d)

Yield control
parameters grain_per_gram_stem Numbers of grain per gram stem

(kernel (g stem)−1)
potential_grain_filling_Rate Potential grain filling rate (g grain−1 d−1)

Leaf area control
parameters sla-max Maximum specific leaf area of ∆LAI † (mm−2 g−1)

Note: †. ∆LAI means delta leaf area index.

2.5. Evaluation of the Model’s Performance

The coefficient of determination (R2), root mean square error (RMSE), normalized root mean square
error (NRMSE), Willmott’s refined index of agreement (dr-value) [34], and percent mean absolute
relative error (PMARE) [35] were used to evaluate the utility and adaptability of the calibrated model.
R2 can reflect the consistency between simulated and observed values—the closer to 1, the better the
performance is. The RMSE and NRMSE reflect the relative error and absolute error between simulated
and observed values—the smaller the value, the better the performance is. The dr-value (in the range
of −1 to 1) indicates the sum of the magnitudes of the differences between the model-predicted and
observed deviations of the observed mean relative to the sum of the magnitudes of the perfect-model
and the observed deviations of the observed mean [34]. The PMARE directly indicates the strengths
or weaknesses of the simulation and thus helps to decide whether to accept or reject the model.
The suggested performance rating for model evaluation based on the PMARE is listed in Table 3 [35].

http://www.apsim.info
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Table 3. Suggested performance rating for model evaluation based on the percent mean absolute
relative error (PMARE) [35].

PMARE Value (%) Model Rating

0–5 Excellent
5–10 Very good
10–15 Good
15–20 Fair
20–25 Moderate
>25 Unsatisfactory

The equations are listed below:

RMSE =

√√
1
n

n∑
i=1

(Pi −Oi)
2 (1)

NRMSE(%) =
RMSE

O
× 100% (2)

dr =


1−

∑n
i=1 Abs(Pi−Oi)

c×
∑n

i=1 Abs(Oi−O)
, when

n∑
i=1

Abs(Pi −Oi) ≤ c×
n∑

i=1
Abs(Oi −O)

c×
∑n

i=1 Abs(Oi−O)∑n
i=1 Abs(Pi−Oi)

− 1, when
n∑

i=1
Abs(Pi −Oi) > c×

n∑
i=1

Abs(Oi −O)
(3)

PMARE(%) =
100
n

n∑
i=1

Abs(Pi −Oi)

Oi
(4)

where Pi and Oi are the predicted (or simulated) and the observed value, respectively; O is the mean of
the observed values; n is the number of observed values.

2.6. Statistical Analysis of the Data

The weather (including daily maximum and minimum temperatures, sunshine hours (or daily
solar radiation), and precipitation) and crop management (such as sowing date, irrigation, nitrogen
application, and so on) data were compiled in Excel (Microsoft Office Professional Plus 2010, Microsoft
Corporation, WA, USA) and then used to calibrate the model and simulate the phenology, grain yield,
and above-ground biomass of each variety at the three experimental sites. Regression analyses between
simulated and measured values were performed using, t 12.5 software (Systat Software, Inc, San Jose,
CA, USA).

3. Results

3.1. Genetic Parameters of Each Variety for the APSIM-Wheat Model

A “trial-and-error” method was used to determine the genetic parameters of Zhengmai9023,
Emai596, Emai18, and Emai170 for the APSIM-wheat model (Table 4). The sensitivity to vernalization
and the photoperiod ranged from 2.4 to 3.5 and 2.5 to 3.6, respectively, with the values from
Zhengmai 9023 being the highest. The thermal time required from grain-filling to maturity of
Zhengmai 9023 was 650 ◦C d, which was higher than that of the other varieties, and the value from
Emai596 was the lowest, accumulating only 520 ◦C d. The number of grains per spike was over 28
for all varieties, and the potential grain filling rate reached to 0.0031 g grain−1 d−1. The maximum
specific leaf area ranged from 21,000 to 25,000 mm2 g−1 when ∆LAI (x_lai = 0), and from 18,000 to
23,000 mm2 g−1 when x_lai = 5.
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Table 4. Genetic parameters, sensitivity to vernalization (STV), sensitivity to photoperiod (STP), thermal
time required from grain-filling to maturity (TTRGM), numbers of grain per stem (NGS), potential
grain filling rate (PGFR), and maximum specific leaf area for ∆LAI (MSLA) for the model simulation of
the four wheat varieties in Hubei province.

Variety STV STP
TTRGM

(◦C d) NGS
PGFR

(g Grain−1 d−1)

MSLA
(mm2 g−1)

x-lai = 0 x-lai = 5

Zhengmai9023 3.5 3.6 650 30.5 0.0018 21,000 18,000
Emai596 2.5 2.8 520 28.5 0.0031 25,000 23,000
Emai18 2.4 2.5 610 38.5 0.0028 24,000 23,000

Emai170 3.0 3.1 620 39.6 0.0027 23,000 20,000

3.2. Performance of the Calibrated APSIM-Wheat Model

Wheat growth duration, grain yield, and above-ground biomass data were used to validate the
performance of the calibrated APSIM-wheat model. Relative data came from the “validation part”
shown in Table 1. The data from the “calibration part” were not included because they were used to
calibrate the model, but they can be found in the Supplementary Materials (Figure S1 and Table S3).

3.2.1. Wheat Growth Duration

The simulated wheat growth duration in Wuhan, Jingmen, and Xiangyang was significantly
positively correlated with the measured values (Figure 2 and Table 5), with the coefficient of
determination (R2) for the duration from sowing to anthesis being over 0.90. The NRMSE values
between the simulated and observed values of the experimental sites in Wuhan, Jingmen, and Xiangyang
were low at 1.2%, 1.3%, and 1.6%, respectively, and the dr-values were high at 0.81, 0.78, and 0.79,
respectively. The R2 values between the simulated and observed durations from sowing to maturity
ranged from 0.93 to 0.96, with the NRMSE values being 1.1%, 1.0%, and 1.3%, and dr-values being 0.87,
0.76, and 0.74, in Wuhan, Jingmen, and Xiangyang regions, respectively. The PMARE values ranged
from 0.8 to 1.4, in the range of an excellent model rating. According to the comparison between the
simulated results and the measured values, the mean difference in wheat growth duration at the three
test regions was within three days (Table 6). This showed that the APSIM-wheat model provided an
excellent simulation performance during the determination of the growth duration of winter wheat in
the middle and lower reaches of the Yangtze River plain of China.

Table 5. The fitted equation for the linear relationships between the model-simulated and observed
wheat growth duration and reliability measures: coefficient of determination (R2), normalized root
mean square error (NRMSE), refined index of agreement (dr-values) and percent mean absolute relative
error (PMARE).

Growth
Duration Region

Linear
Regression
Equation

F–Value p–Value R2 NRMSE
(%) dr-Values PMARE

(%)

Sowing to
anthesis

WH y = 1.21x − 35.4 139.67 <0.0001 0.93 1.2 0.81 1.1
JM y = 1.02x − 1.1 172.5 <0.0001 0.97 1.3 0.78 1.1
XY y = 0.74x + 43.6 142.8 <0.0001 0.90 1.6 0.79 1.4

Sowing to
maturity

WH y = 1.08x − 17.1 144.4 <0.0001 0.94 1.1 0.87 0.8
JM y = 0.90x + 22.4 75.59 <0.0001 0.93 1.0 0.76 0.8
XY y = 0.70x + 63.1 359.7 <0.0001 0.96 1.3 0.74 1.3

Note: F-values and p-values represent the fitted lines.
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Table 6. The range of the APSIM-wheat simulated and observed values for growth duration from
sowing to anthesis (STA) and maturity (STM), grain yield (GY), and above-ground biomass (AGB) in
the Wuhan (WH), Jingmen (JM), and Xiangyang (XY) regions in Hubei province.

Model Traits
WH JM XY

Observed
(Mean)

Simulated
(Mean)

Observed
(Mean)

Simulated
(Mean)

Observed
(Mean)

Observed
(Mean)

STA (d) 158–181
(164.9)

161–179
(165.4)

166–181
(174.4)

163–178
(171.8)

165–182
(170.4)

166–186
(170.4)

STM (d) 190–216
(200.0)

193–218
(200.5)

203–216
(211.4)

202–215
(208.9)

200–216
(207.4)

198–220
(207.3)

GY (kg ha−1)
3637–9328

(5593)
4935–7550

(5372)
1283–6563

(4520)
1303–6199

(4726)
1789–7936

(5796)
1525–8021

(5240)

AGB (kg ha−1)
7688–20,730

(11,444)
8180–17,471

(11,854)
2895–13,775

(9861)
4829–13,896

(11,185)
3370–19,520

(12,211)
4930–18,104

(12,237)

Figure 2. Relationships between simulated and observed growth durations from sowing to anthesis (A)
and sowing to maturity (B) of winter wheat at Wuhan (WH), Jingmen (JM), and Xiangyang (XY)regions
in Hubei province. Note: n means the number of paired data points, some points overlap, so the actual
number of points in some graphs differs from the value of n. R2 is presented for the fitted line.

3.2.2. Grain Yield and Above-Ground Biomass

The crop grain yield and above-ground biomass were the key indices used to evaluate the utility
of the suggested model. Significant positive relationships between the simulated and observed values
of wheat grain yield and above-ground biomass at three experimental regions in Wuhan, Jingmen,
and Xiangyang were observed with the R2 values of 0.75–0.78 for the grain yield 0.72–0.87 for the
above-ground biomass (Figure 3 and Table 7). The NRMSE values for the simulated and observed
values of grain yield were 13.0%, 18.1%, and 17.1%, and the dr-values were 0.73, 0.78, and 0.71 in the
above experimental regions. The NRMSE values for the simulated biomass and the observed values
were 13.5%, 17.7%, and 19.8%, and the dr-values were 0.80, 0.71, and 0.72 in the above experimental
regions. Thus, the NRMSE values for the wheat grain yield and above-ground biomass in the three
trial regions were all less than 20%, and the dr-values were all above 0.71, and the mean differences
between the simulated and observed wheat grain yield and above-ground biomass were lower than
556 and 1323 kg ha−1, respectively (Table 6). Meanwhile, the PMARE values ranged from 10.6% to
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19.9% in most of the model equations performed, which were in the range of either good or fair
(Table 3). This indicated that the APSIM-wheat model could simulate the grain yield and biomass of
winter wheat in the middle and lower reaches of the Yangtze River plain well and could effectively
and accurately simulate the wheat yield formation process in this region.

Figure 3. Relationships between the simulated and observed grain yield (A) and above-ground
biomass (B) of winter wheat in the Wuhan (WH), Jingmen (JM), and Xiangyang (XY) regions in the
Hubei province. Note: n means the number of paired data points. Some points overlap, so the actual
number of points in some graphs differs from the value of n. R2 is presented for the fitted line.

Table 7. The fitted equations for the linear relationships between the model-simulated and observed
wheat grain yield and above-ground biomass and reliability measures: coefficient of determination
(R2), normalized root mean square error (NRMSE), refined index of agreement (dr-values), and percent
mean absolute relative error (PMARE).

Model
Attribute Region

Linear
Regression
Equation

F-Value p-Value R2 NRMSE
(%) dr-Values PMARE

(%)

Yield
WH y = 0.97x + 295.2 29.4 0.0003 0.75 13.0 0.73 11.9
JM y = 0.93x + 122.2 20.3 0.0041 0.77 18.1 0.78 13.6
XY y = 0.89x + 1022.7 55.9 <0.0001 0.78 17.1 0.71 14.6

Above-ground
biomass

WH y = 1.25x − 3316.8 65.1 <0.0001 0.87 13.5 0.80 10.6
JM y = 1.02x − 1600.5 40.9 0.0007 0.87 17.7 0.71 19.9
XY y = 0.98x + 560.0 41.0 <0.0001 0.72 19.8 0.72 18.7

Note: F-values and p-values represent the fitted lines.

4. Discussion

The APSIM model simulates the multi-parameter interactions of soil, crops, meteorology, etc.,
but it takes soil as the center and fully considers the impacts of intercropping and rotation on the
soil. It has been well applied in different planting systems in Australia, America, The Netherlands,
New Zealand, Germany, and other parts of the world [13–16]. Seyoum et al. used the APSIM model to
examine G× E×M interactions for maize improvement in Ethiopia and found that the model accurately
predicted plant-available soil water, days-to-flowering, days to maturity, the leaf area index, biomass,
and the yield of maize [36]. Makowski et al. concluded that the APSIM-wheat model could predict
phenological stages, like anthesis and maturity, at values close to the observed values [37]. In China,
the APSIM-wheat model has been used in the Northeast, Northern, Northwest, and Southwest regions
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of China to simulate crop growth processes and evaluate the effect of climate change on crop production.
This should indicate that the APSIM-wheat model could be used to reproduce the observed crop
growth, yield, potential yield, and water use in the study areas [38,39]. The MLYR plain is located
in the middle of China and is the second-largest wheat producing area. Wheat production in this
region is risky because of the high climatic variability in recent years. Therefore, effective and accurate
models are urgently needed to study the wheat growth, development, and yield in response to climate
variability in this region.

The APSIM-wheat model was used for the first time and evaluated winter wheat in wheat-rice
continuous cropping systems in the MLYR plain in this study. Accurate phenology is the priority
when calibrating crop models [40]. The phenology of wheat has a strong influence on the development
and grain yield of the crop [41]. Simulation outcomes from the APSIM-wheat model in our study
showed that this model could be used as a suitable tool for the selection of appropriate cultivars and
to investigate the effect of climate variability on wheat growth and yield [11]. Li et al. found a good
agreement between values simulated by the APSIM-wheat model and the observed values for the
flowering and maturity dates, yield, and biomass in the North plain of China, with R2 values in the
range of 0.72–0.86, the d-values of 0.90–1.00, and RMSE values of 1.10–3.95 d, respectively, for the
observed growth periods. The simulated yields were close to the observed yields, with R2 > 0.79,
d-values > 0.90, and NRMSE < 13.4%, respectively [39]. We used the same genetic parameters of
Zhengmai9023, which were obtained by Li et al. [39] in the North plain of China to validate the
APSIM-wheat performance in Xiangyang (to represent MLYR). The poor performance of APSIM-wheat
was observed for the simulation of the growth to maturity duration (with 187 d and 216 d for the
simulated and observed values, respectively) and grain yield (with 2965 and 7936 for the simulated and
observed values, respectively). This indicated that the genetic parameters of Zhengmai9023 from the
North plain China could not be used in the model to simulate yield production in the MLYR. Therefore,
it was important to calibrate and validate the APSIM-wheat model before it was adopted in a new
environment or region. In this study, the calibrated APSIM-wheat model was shown to predict the
phenological stages well in the MLYR plain of China. For instance, the predicted values for the sowing
date to anthesis and sowing to maturity were close to the values of observed data. The R2 values were
all over 0.90, and the NRMSE values were all under 1.6% (Figure 2 and Table 5). The results of the
simulations conducted with this model showed that the yield and biomass values were also close to
the observed values (Figure 3, Tables 6 and 7), with R2 > 0.72, dr-values > 0.71, and NRMSE < 19.8%,
respectively. These results showed that process-based models had good potential to simulate crop
biomass and yield production in the MLYR [42].

The use of logical, consistent, and generally accepted indicators is important when discussing the
evaluation of the model procedure. The indicators should appropriately quantify the objectives of the
model evaluation and indicate its utility. Fox recommended that the mean error, mean absolute error,
variance of the distribution of difference, and root mean square error (R) or its square (R2) should
be calculated and reported when evaluating the performance of models [43]. Willmott commented
that the correlation between model-predicted and observed data, commonly described by Pearson’s
product-moment correlation coefficient, that is R and R2, is an insufficient and often misleading
measure of accuracy [34]. Ali et al. also reported that the difference-based (R, R2, RMSE, NRMSE),
efficiency-based (Nash and Sutcliffe coefficient, model efficiency of Loague and Green, Legates and
McCabe’s index) measures were found ambiguous, inconsistent, and not logical in many cases [35].
Thus, in addition to R2 and NRMSE, two new indices (dr-value and PMARE value) were cited and
calculated in this study. The dr-value is intended to be a descriptive measure, and it is both a relative
and bounded measure that can be widely applied in order to make cross-comparisons between
models [34]. It was shown that the dr-values of the model-predicted wheat growth periods versus the
measured values ranged from 0.74 to 0.87, with a mean value of 0.79, indicating the good performance
of the model in terms of predicting the wheat growth period. Ali et al. also observed that PMARE
always followed logical behavior and no ambiguous result [34]. The PMARE value could be used to
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evaluate model performance. For the growth periods of anthesis and maturity, the PMARE values
indicated an excellent rating in this study (Tables 3 and 4). In addition, the model‘s performance for
grain yield (PMARE < 14.6%) and biomass (PMARE < 19.9%) produced values that were acceptable
(Tables 3 and 7) [35], although they were not as good as the growth period simulation.

Further analysis indicated significant positive relationships between the indicators PMARE and
NRMSE, with the R’2 of 0.96 for the simulation values. Significant negative relationships were observed
between PMARE and R2 and between NRMSE and R2, with the R’2 of 0.67 and 0.76, respectively.
The index dr-value had no clear consistent correlation with the three other parameters, and this result
was consistent with Willmott et al. [34] (Figure S2).

Quantitative predicting of the phenological period is of great significance for accurately simulating
crop growth and productivity formation [44]. There are 11 phases in APSIM-wheat model, and the
timing of phases after germination is determined by the accumulation of thermal time, which is
adjusted by vernalization, photoperiod, and other factors, such as nitrogen, water. The length of
each phase is determined by the thermal time target, and the next phenological stage occurs when an
adjusted thermal time reaches the target thermal time. In the APSIM-wheat model (7.5 R3008 version),
soil, water, nitrogen, and phosphorus stresses have no effect on phenological development, so the
adjusted thermal time is determined by daily thermal time, vernalization, and photoperiod factors [45].
Thus, we decided to calibrate vernalization and photoperiod to predict these phases in this study,
the same as some previous studies [39,46]. As mentioned above, the next phase will begin once an
adjusted thermal time reaches the target thermal time. The target thermal time is a site-cultivar-special
parameter, and we did not calibrate tt_end_of_juvenile and tt_floral_initiation in this study and only
calibrated vernalization and photoperiod-related parameters for days so that anthesis would increase
the chances of a less robust calibration and hence a lot of uncertainty in the model implementation,
which would be explored in our next step.

Leaves are important organs for intercepting solar radiation and then producing dry matter for
the whole plant. Simulating leaf area index (LAI) is one of the important output parameters for a crop
growth simulation model [47,48]. In the APSIM-wheat model, the daily increase in leaf area is the
minimum between stressed LAI and the carbon-limited LAI. The stressed LAI is determined by leaf
number, leaf area, plant population, and environments, such as nitrogen, soil, water, and phosphorus
stress factors. Leaf area related to carbon production is calculated by the increase in dry weight of
leaf and the maximum special leaf area (sla-max); the sla-max is the maximum leaf area that can
be expanded per gram of biomass, which regulates leaf area index and further regulates radiation
interception, generating biomass with RUE [45]. In this study, we calibrated the sla-max to adjust
LAI for wheat. The validation results showed that the simulated LAIs were close to observed values,
the R2 was in the range of 0.85–0.98, NRMSE being from 6.9% to 12.5%. The slopes of the trend in
LAI-observed over LAI-simulated for jointing, anthesis, and the whole data were 1.10, 0.93, and 0.96,
respectively (Table S4 and Figure S3). This result indicated it was justifiable by using the values of
sla-max in Table 4 to calibrate LAI. We also simulated LAIs at jointing and anthesis with the default
values of sla-max in the APSIM-wheat model (Table S4 and Figure S3), and the results showed that the
LAIs at jointing and anthesis were overestimated (slopes of a trend in LAI-observed over LAI-simulated
were in the range of 0.37–0.48). In addition, the NRMSE was in the range of 28.6–36.5%, even though
the p-values for the fitted lines were below 0.01, indicating a poor performance of APSIM-wheat on
LAI with the default values of sla-max. Anyway, considering the calculation equation for LAI, it would
be better to collect more data, including leaf number and leaf area, to improve the performance of the
APSIM-wheat further in the next step.

A major source of uncertainty in our analysis may derive from the trial sites and cultivars chosen to
calibrate the model [38]. In this study, only Hubei province was selected to test the performance of the
APSIM-wheat model in the MLYR plain of China. Although this province has the typical subtropical
climate conditions of this region, it still has its limitations in representing the varied topography
and cropping systems of the region. Meanwhile, four representative cultivars, which are the main
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cultivars planted in Hubei province, were chosen as the experimental data to calibrate the model.
More than 340 cultivars were released and introduced into the national seed market in China from 1984
to 2010 [39], and approximately 40% were planted in the MLYR plain. Another source of uncertainty
may derive from the data from wheat trials coming from the literature and local agricultural technical
departments. The data from the field experiment generally ignored the effects of diseases, insect
pests, and weeds. This might have influenced the performance of the APSIM-wheat simulations.
Therefore, in future research, we would expand the selection range of trial sites and wheat cultivars to
further optimize the combination of model parameters and to improve the accuracy and reliability of
the model. Then, it would be possible to use the validated model to simulate the yield potential in this
region, and the researchers might be able to clarify the potential yield, yield gap, and key limiting
factors across the MLYR and develop or optimize wheat production management to further improve
grain yield. Furthermore, this model could be used to explore the wheat yield performance under
conditions of future climate change, which would help breeders to select and breed varieties that
could adjust to climate change. It would also help policymakers to develop methods to optimize the
distribution of crops and varieties to ensure national food security.

5. Conclusions

The APSIM-wheat model was used to predict the wheat potential grain yield, yield gap, and yield
production response to climate variability in the middle and lower reaches of the Yangtze River
plain of China. The utility and adaptability of the model were evaluated and discussed in this study.
Significant positive relationships were observed between the simulated and observed wheat growth
durations, grain yield, and above-ground biomass. Meanwhile, some logical, consistent, and generally
accepted indicators—the coefficients of determination, normalized root-mean-square error, refined
index of agreement, and percent mean absolute relative error—were used to evaluate the performance
of this model, and the results indicated that the APSIM-wheat model had an excellent performance for
determining wheat growth periods and an acceptable performance for determining grain yield and
above-ground biomass, although its performance was not as good as the growth period simulation.
According to our results, using the APSIM-wheat model was an effective and accurate way to simulate
the phenology and yield production process of wheat in the MLYR. The results also provided a
theoretical basis and technical support for further research on the yield potential of a wheat-rice
planting system and to clarify the key limiting factors related to the yield gap in this region.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/7/981/s1,
Figure S1: Relationships between simulated and observed growth duration from sowing to anthesis (A) and
to maturity (B), grain yield (C), and above-ground biomass (D) of winter wheat with calibration dataset in
Hubei province, Figure S2: Relationships between indices percent mean absolute relative error (PMARE),
determination coefficients (R2), normalized root-mean-square error (NRMSE), and index of agreement (dr-value)
for all simulations, Figure S3: Relationships between simulated and observed LAI at jointing and anthesis
with sla-max values from Table 4 (a) and default sla-max in the APSIM-wheat model (b), Table S1: Details of
nitrogen application rate and plant density of each experimental site for APSIM-wheat model calibration in
Hubei province, Table S2: Details of nitrogen application rate and plant density of each experimental site for
APSIM-wheat model validation in Hubei province, Table S3: The fitted equation for the linear relationships
between model-simulated and observed growth duration, grain yield, and biomass with calibration dataset and
reliability measures: coefficient of determination (R2), normalized root mean square error (NRMSE), refined index
of agreement (dr), and percent mean absolute relative error (PMARE), Table S4: The fitted equation for the linear
relationships between the model-simulated and observed LAI at jointing and anthesis and reliability measures:
coefficient of determination (R2), normalized root mean square error (NRMSE). Cultivars are Zhengmai9023
and Emai596, data came from field experiment during 2015-2016 and 2016-2017 wheat seasons at Xiangyang
and Wuhan.

Author Contributions: Conceptualization, P.Z., S.P., J.M.; Data Collection, P.Z., Y.Z., F.L.; Formal Analysis, P.Z.,
X.L., N.D.; Software, P.Z., X.L., N.D., J.M.; Supervision, S.P., J.M.; Validation, J.M.; Writing-original draft, P.Z.;
Writing-review and editing, J.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of China
(2016YFD0300206, 2018YFD0301302), the National Natural Science Foundation of China (31601251), and the
Fundamental Research Funds for the Central Universities (2662017QD038, 2662019QD020).

http://www.mdpi.com/2073-4395/10/7/981/s1


Agronomy 2020, 10, 981 13 of 15

Acknowledgments: We thank all the authors involved in this research for their experimental data literacies.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, X.; Chen, F.; Lin, X.; Liu, Z.; Zhang, H.-L.; Zhao, J.; Li, K.; Ye, Q.; Li, Y.; Lv, S.; et al. Potential benefits of
climate change for crop productivity in China. Agric. For. Meteorol. 2015, 208, 76–84. [CrossRef]

2. Qin, X.; Zhang, F.; Liu, C.; Yu, H.; Cao, B.; Tian, S.; Liao, Y.; Siddique, K.H. Wheat yield improvements in
China: Past trends and future directions. Field Crop. Res. 2015, 177, 117–124. [CrossRef]

3. Li, H.; Liu, L.; Wang, Z.; Yang, J.; Zhang, J. Agronomic and physiological performance of high-yielding wheat
and rice in the lower reaches of Yangtze River of China. Field Crop. Res. 2012, 133, 119–129. [CrossRef]

4. Yi, Q.; He, P.; Zhang, X.Z.; Yang, L.; Xiong, G.Y. Optimizing Fertilizer Nitrogen for Winter Wheat Production
in Yangtze River Region in China. J. Plant Nutr. 2015, 38, 1639–1655. [CrossRef]

5. National Bureau of Statistics of China (NBSC). Agriculture, National Data; National Bureau of Statistics of
China: Beijing, China, 2019. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm (accessed
on 15 February 2020).

6. Tian, Z.; Jing, Q.; Dai, T.; Jiang, D.; Cao, W. Effects of genetic improvements on grain yield and agronomic
traits of winter wheat in the Yangtze River Basin of China. Field Crop. Res. 2011, 124, 417–425. [CrossRef]

7. Shi, Z.; Li, D.; Jing, Q.; Cai, J.; Jiang, N.; Cao, W.; Dai, T. Effects of nitrogen applications on soil nitrogen
balance and nitrogen utilization of winter wheat in a rice–wheat rotation. Field Crop. Res. 2012, 127, 241–247.
[CrossRef]

8. Fan, Y.; Tian, M.; Jing, Q.; Tian, Z.; Han, H.; Jiang, N.; Cao, W.; Dai, T. Winter night warming improves
pre-anthesis crop growth and post-anthesis photosynthesis involved in grain yield of winter wheat
(Triticum aestivum L.). Field Crop. Res. 2015, 178, 100–108. [CrossRef]

9. Ding, J.F.; Cheng, Y.M.; Huang, Z.J.; Li, C.Y.; Guo, W.S.; Zhu, X.K. Analysis of post-flowering material
production and senescence characteristics of different nitrogen efficiency groups in rice stubble wheat.
J. Integr. Agric. 2015, 48, 1063–1073.

10. McCown, R.; Hammer, G.; Hargreaves, J.; Holzworth, D.; Freebairn, D. APSIM: A novel software system
for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996,
50, 255–271. [CrossRef]

11. Ahmed, M.; Akram, M.N.; Asim, M.; Aslam, M.; Hassan, F.-U.; Higgins, S.; Stöckle, C.O.; Hoogenboom, G.
Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions:
Models evaluation and application. Comput. Electron. Agric. 2016, 123, 384–401. [CrossRef]

12. Keating, B.; Carberry, P.; Hammer, G.; Probert, M.; Robertson, M.; Holzworth, D.; Huth, N.; Hargreaves, J.;
Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation.
Eur. J. Agron. 2003, 18, 267–288. [CrossRef]

13. Asseng, S.; Fillery, I.R.P.; Dunin, F.X.; Keating, B.A.; Meinke, H. Potential deep drainage under wheat crops in
a Mediterranean climate. I. Temporal and spatial variability. Aust. J. Agric. Res. 2001, 52, 45–56. [CrossRef]

14. Hammer, G.; Van Oosterom, E.; McLean, G.; Chapman, S.C.; Broad, I.; Harland, P.; Muchow, R.C. Adapting
APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 2010,
61, 2185–2202. [CrossRef]

15. Yu, Q.; Li, L.; Braunack, M.; Eamus, D.; Xu, S.; Chen, C.; Wang, E.; Liu, J.; Nielsen, D. Year patterns of climate
impact on wheat yields. Int. J. Clim. 2013, 34, 518–528. [CrossRef]

16. Nelson, R.A.; Dimes, J.P.; Paningbatan, E.P.; Silburn, D.M. Erosion/productivity modelling of maize farming
in the Philippine uplands: Part I: Parameterising the agricultural production systems simulator. Agric. Syst.
1998, 58, 29–33. [CrossRef]

17. Xiao, D.; Bai, H.; Liu, D.L. Impact of Future Climate Change on Wheat Production: A Simulated Case for
China’s Wheat System. Sustainability 2018, 10, 1277. [CrossRef]

18. Sun, S.; Yang, X.; Lin, X.; Sassenrath, G.F.; Li, K. Winter Wheat Yield Gaps and Patterns in China. Agron. J.
2018, 110, 319–330. [CrossRef]

19. Wu, L.; Feng, L.; Li, Y.; Wang, J.; Wu, L. A Yield-Related Agricultural Drought Index Reveals Spatio-Temporal
Characteristics of Droughts in Southwestern China. Sustainability 2019, 11, 714. [CrossRef]

http://dx.doi.org/10.1016/j.agrformet.2015.04.024
http://dx.doi.org/10.1016/j.fcr.2015.03.013
http://dx.doi.org/10.1016/j.fcr.2012.04.005
http://dx.doi.org/10.1080/01904167.2015.1061547
http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm
http://dx.doi.org/10.1016/j.fcr.2011.07.012
http://dx.doi.org/10.1016/j.fcr.2011.11.025
http://dx.doi.org/10.1016/j.fcr.2015.04.001
http://dx.doi.org/10.1016/0308-521X(94)00055-V
http://dx.doi.org/10.1016/j.compag.2016.03.015
http://dx.doi.org/10.1016/S1161-0301(02)00108-9
http://dx.doi.org/10.1071/AR99186
http://dx.doi.org/10.1093/jxb/erq095
http://dx.doi.org/10.1002/joc.3704
http://dx.doi.org/10.1016/S0308-521X(98)00043-2
http://dx.doi.org/10.3390/su10041277
http://dx.doi.org/10.2134/agronj2017.07.0417
http://dx.doi.org/10.3390/su11030714


Agronomy 2020, 10, 981 14 of 15

20. Jones, H. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge
University Press: Cambridge, UK, 1992.

21. Tao, F.; Yokozawa, M.; Xu, Y.; Hayashi, Y.; Zhang, Z. Climate changes and trends in phenology and yields of
field crops in China, 1981–2000. Agric. For. Meteorol. 2006, 138, 82–92. [CrossRef]

22. Sun, S. Study on Yield Potential and Resource Utilization Efficiency of Winter Wheat in Different Regions of
China. Ph.D. Thesis, China Agricultural University, Beijing, China, 2018.

23. Zhang, Y.Q.; Huang, R.H.; Zhuang, Z.Y.; Gao, C.B. High-yield population structure and cultivation techniques
of Zhengmai 9023. Hubei Agric. Sci. 2005, 3, 33–34.

24. Xu, F.C.; Li, M.F.; Dong, J.; Qin, D.D. Studies on planting performance of wheat varieties in different ecological
areas in Hubei province. Mod. Agric. Sci. Technol. 2014, 24, 69–70.

25. Dong, J.; Li, M.; Xu, F.; Ge, S.T.; Wang, X.Z.; Li, L.F. Effects of planting density sowing time and on population
traits and grain yield of new wheat cultivar Emai596. Hubei Agric. Sci. 2010, 49, 1563–1566.

26. Liu, Y.K.; Yan, J.; Zhang, Y.; Gao, C. Breeding and cultivation techniques of new wheat variety Emai170.
Hubei Agric. Sci. 2015, 24, 6191–6192.

27. Guan, S.H.; Yang, W.B.; Zou, J.L.; Li, H.B.; Fu, X.Q.; Li, Q. An analysis of the benefits of wheat “3414” fertilizer
in Zhongxiang City. China Agric. Technol. Ext. 2015, 3, 51–53.

28. Ruan, J.Z.; Wang, W.J.; Ren, S.Z.; Shi, Y.D.; Kuang, H.Q.; Liu, H.W.; Sun, F.S.; Xu, Y.Z.; Guo, G.L.; Zhu, Z.W.;
et al. Studies on main technical measures for wheat yielding above 7500 kg/hm2 in highland area in Northern
Hubei provinceI. Analysis on the causes of wheat high yield in highland area in Northern Hubei province.
Hubei Agric. Sci. 2013, 23, 5690–5692.

29. Guan, W.; Li, M.F.; Ge, S. Characteristics and cultivation techniques of middle gluten wheat variety Emai18.
Hubei Agric. Sci. 2005, 5, 33–34.

30. Wang, P.; Zhang, G.; Chen, B.; Peng, C.; Zhu, Z.; Gao, C.; Zhu, W. Research on fertilizer demand of wheat
variety Emai596. Hubei Agric. Sci. 2016, 55, 303–305, 313.

31. Xiong, Y.S.; Yuan, J.F.; Hao, F.X.; Ruan, J.Z.; Zhao, S.; Wang, C.; Peng, C.; Xu, X. Yield change and accumulation
regular pattern of nitrogen nutrient for Emai18 under different level of nitrogen. Hubei Agric. Sci. 2009,
48, 2391–2394.

32. Ming, C.F. High yield cultivation technique for wheat variety Emai18. China Agric. Technol. Ext. 2005, 3, 27.
33. Birch, C.; Hammer, G.; Rickert, K.G. Improved methods for predicting individual leaf area and leaf senescence

in maize (Zea mays). Aust. J. Agric. Res. 1998, 49, 249. [CrossRef]
34. Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Clim. 2011,

32, 2088–2094. [CrossRef]
35. Ali, H.; Abustan, I. A new novel index for evaluating model performance. J. Nat. Resour. Dev. 2014, 4, 1–9.

[CrossRef]
36. Seyoum, S.; Rachaputi, R.; Chauhan, Y.; Prasanna, B.; Fekybelu, S. Application of the APSIM model to exploit

G × E ×M interactions for maize improvement in Ethiopia. Field Crop. Res. 2018, 217, 113–124. [CrossRef]
37. Makowski, D.; Naud, C.; Jeuffroy, M.-H.; Barbottin, A.; Monod, H. Global sensitivity analysis for calculating

the contribution of genetic parameters to the variance of crop model prediction. Reliab. Eng. Syst. Saf. 2006,
91, 1142–1147. [CrossRef]

38. Chen, C.; Wang, E.; Yu, Q. Modeling Wheat and Maize Productivity as Affected by Climate Variation and
Irrigation Supply in North China Plain. Agron. J. 2010, 102, 1037–1049. [CrossRef]

39. Li, K.; Yang, X.; Liu, Z.; Zhang, T.; Lu, S.; Liu, Y. Low yield gap of winter wheat in the North China Plain.
Eur. J. Agron. 2014, 59, 1–12. [CrossRef]

40. Archontoulis, S.V.; Miguez, F.; Moore, K.J. A methodology and an optimization tool to calibrate phenology
of short-day species included in the APSIM PLANT model: Application to soybean. Environ. Model. Softw.
2014, 62, 465–477. [CrossRef]
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