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Abstract: Genomic prediction has enabled plant breeders to estimate breeding values of unobserved
genotypes and environments. The use of genomic prediction will be extremely valuable for
compositional traits for which phenotyping is labor-intensive and destructive for most accurate
results. We studied the potential of Bayesian multi-output regressor stacking (BMORS) model in
improving prediction performance over single trait single environment (STSE) models using a grain
sorghum diversity panel (GSDP) and a biparental recombinant inbred lines (RILs) population. A total
of five highly correlated grain composition traits—amylose, fat, gross energy, protein and starch,
with genomic heritability ranging from 0.24 to 0.59 in the GSDP and 0.69 to 0.83 in the RILs were
studied. Average prediction accuracies from the STSE model were within a range of 0.4 to 0.6 for all
traits across both populations except amylose (0.25) in the GSDP. Prediction accuracy for BMORS
increased by 41% and 32% on average over STSE in the GSDP and RILs, respectively. Prediction of
whole environments by training with remaining environments in BMORS resulted in moderate
to high prediction accuracy. Our results show regression stacking methods such as BMORS have
potential to accurately predict unobserved individuals and environments, and implementation of
such models can accelerate genetic gain.

Keywords: genomics; genomic selection; genomic prediction; marker-assisted selection; whole genome
regression; grain quality; near infra-red spectroscopy; cereal crop; sorghum; multi-trait

1. Introduction

Cereal grains provide more than half of the total human caloric consumption globally and amount
to over 80% in some of the poorest nations of the world [1]. Sorghum [Sorghum bicolor (L.) Moench],
a drought-tolerant cereal crop, is a dietary staple for over half a billion people of semi-arid tropics which
is inhabited by some of the most food insecure and malnourished populations [2]. In industrialized
countries, such as the United States and Australia, grain sorghum is primarily grown for animal
feed. But in recent years the uses of sorghum grain have expanded to baking, malting, brewing,
and biofortification [3–5]. Therefore, genetic improvement of sorghum grain composition is crucial to
mitigate the global malnutrition crisis, to increase efficiency of feed grains used in animal production,
and to serve evolving niche markets for gluten-free grains.

In the last two decades, the use of genome-wide markers in prediction of genetic merit of
individuals has revolutionized plant and animal breeding. Genomic prediction (GP) uses statistical
models to estimate marker effects in a training population with phenotypic and genotypic data
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which is then used to predict breeding values of individuals solely from genetic markers [6,7].
Training population size, genetic relatedness between individuals in training and testing population,
marker density, span of linkage disequilibrium and genetic architecture of traits are some of the factors
that can affect the predictive ability of the models [8–10]. Genomic prediction models are routinely
studied and applied by breeding programs around the world in several crops. Novel statistical
methods that are capable of incorporating pedigree, genomic, and environmental covariates into
statistical-genetic prediction models have emerged as a result of extensive computational research [11].

One of the main advantages of GP is that breeders can use phenotypic values from some lines in
some environments to make predictions of new lines and environments. Genomic best linear unbiased
prediction (GBLUP) proposed by VanRaden [12] is probably the most widely used genomic prediction
model in both plant and animal breeding. Since then GBLUP model has been extended to include G × E
interactions resulting in improved prediction accuracy of unobserved lines in environments [13,14].
Burgueño et al. [13] found an increase in prediction ability of unobserved wheat genotypes by about
20% in multi-environment GBLUP model compared to single environment model. Also an extension
of the GBLUP model, Jarquín et al. [14] introduced a reaction norm model which introduces the main
and interaction effects of markers and environmental covariates by using high-dimensional random
variance-covariance structures of markers and environmental covariates. While most of the genomic
prediction studies have been on individual traits, breeding programs use selection indices based on
several traits to make breeding decisions. To address those challenges, expanded genomic prediction
models that perform joint analysis of multiple traits have been studied using empirical and simulated
data [15,16]. Subsequent improvement in prediction accuracy from multi-trait model over single-trait
model depends on trait heritability and correlation between the traits involved [15,17].

Data generated in breeding programs span multiple environment and are recorded for multiple
traits for each individual. While multi-environment models and multi-trait models are implemented
separately, a single model to account for complexity of variance-covariance structure in a combined
multi-trait multi-environment (MTME) model was lacking until Montesinos-López et al. [18] developed
a Bayesian whole genome prediction model to incorporate and analyze multiple traits and multiple
environments simultaneously. Montesinos-López et al. [18] also developed a computationally efficient
Markov Chain Monte Carlo (MCMC) method that produces a full conditional distribution of the
parameters leading to an exact Gibbs sampling for the posterior distribution. Another MTME
model that employs a completely different method was proposed by Montesinos-López et al. [19].
This method, called the Bayesian multi-output regression stacking (BMORS), is a Bayesian version
of multi-target regressor stacking (MTRS) originally proposed by Spyromitros-Xioufis et al. [20,21].
This method consists of training in two stages: first training multiple learning algorithms for the same
dataset and then subsequently combining the predictions to obtain the final predictions.

Genomic prediction for grain quality traits has previously been reported in crops such as
wheat [22–24], rye [25], maize [26], and soybean [27]. Hayes et al. [28] and Battenfield et al. [23]
used near-infrared derived phenotypes in genomic prediction of protein content and end-use quality
in wheat. Multi-trait genomic prediction models can simultaneously improve grain yield and protein
content despite being negatively correlated [24,29]. In sorghum, grain macronutrients have shown
to be inter-correlated among one another [30], which suggests the multi-trait models may increase
predictive ability of individual grain quality traits. The ability to assess genetic merit of unobserved
selection candidates across environments is promising for reducing evaluation cost and generation
interval in the sorghum breeding pipeline where parental lines of commercial hybrids are currently
selected on the basis of extensive progeny testing [31]. In order to extend capacities to performance
index selection for multiple environments, we need to study and effectively implement MTME genomic
prediction models in our breeding programs. In this study, we report the first implementation of
genomic prediction for grain composition in sorghum, and the objective was to assess potential for
improvement in prediction accuracy of multi-trait regressor stacking model over single trait model for
five grain composition traits: amylose, fat, gross energy, protein and starch.
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2. Results

2.1. Phenotypic Variation

A single calibration curve for near infra-red spectroscopy (NIRS) was used for the two populations
studied. Table 1 outlines the summary statistics of NIRS predictions and phenotypic distribution and
heritability of the grain composition traits. The cross validation accuracy (R2) of the NIRS calibration
curve was moderately high to high, except for fat which had a moderate R2 value (0.41). We had a total
of three environments (three years in one location) for the GSDP and four environments (two years in
two locations) for the RILs. Traits were normally distributed except amylose in two 2014 environments
in the RILs which had bimodal distribution (Figures S1 and S2). All traits showed significant variation
in distribution across the environments, except starch in GSDP.

Table 1. Summary statistics of near infra-red spectroscopy (NIRS) calibration and phenotypic
distribution. R2 is the prediction accuracy and SECV is the standard error of cross validation for
the NIRS calibration curve. Mean represents the phenotypic mean of the trait with its standard
deviation (SD). h2 is the estimate of genomic heritability.

Trait NIRS GSDP RILs
R2 SECV Mean ± SD h2 Mean ± SD h2

Amylose 0.60 2.24 13.87 ± 2.98 0.24 11.49 ± 4.32 0.77
Fat 0.41 0.53 2.53 ± 0.57 0.54 3.07 ± 0.67 0.76
Gross energy 0.71 25.80 4108.33 ± 55.15 0.59 4124.56 ± 41.74 0.69
Protein 0.96 0.27 12.02 ± 1.45 0.39 11.43 ± 1.03 0.83
Starch 0.89 0.75 68.30 ± 2.44 0.44 68.37 ± 1.87 0.79

The genomic heritabilities of all traits except gross energy were significantly higher (p < 0.05) in
the RILs than in the GSDP (Table 1). Trait heritabilities were high in the RILs, with protein and gross
energy having the highest and lowest heritabilities, respectively. In the GSDP, genomic heritability
was moderately high for fat and gross energy, moderate for protein and starch, and low for amylose.
The poor genomic heritability (0.24) of amylose in the GSDP was expected because only a very small
proportion (1%) of accessions have low amylose as a result of waxy gene (Mendelian trait).

Figure 1 shows correlation between the adjusted phenotypic means for trait and environment
combination. Starch was negatively correlated (p < 0.001) with all other traits in both populations
except for amylose in the RILs. Fat, protein and gross energy were significantly positively (p < 0.001)
correlated to each other across environments in both populations. The strongest positive correlation
was between gross energy and fat, whereas the strongest negative correlations were found between
starch gross energy and starch protein. Moderate (0.4) to high (0.73) positive correlation was observed
between years for all traits except for amylose (r = 0.08) between 2014 and 2017 in GSDP (Figure 1).
We conducted a principal component analysis (PCA) of correlation matrix for the traits in each
environment. In both populations, the first component separated amylose and starch from the other
three traits, whereas, the second component separated amylose from starch and gross energy from
protein and fat (Figure S3). The first component explained 78.8% and 75.9% of variation, and second
component explained 6.3% and 9.8% of variation in the GSDP and RILs, respectively. The third
principal component in the RILs separated proteins from fat and explained about 7.6% of the variation.
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Figure 1. Correlation between traits across year and location combination for the two populations.
Ams: amylose, GE: gross energy, Prt: protein, Sta: starch, SC: South Carolina, TX: Texas, and numbers
in x and y-axes represent the year.

2.2. Prediction Performance in Single and Multiple Environment

We first implemented GBLUP prediction model for single-trait single-environment (STSE).
Prediction accuracies of the STSE model varied across environments in both populations (Figure 2).
The environments 2014 in the GSDP and TX2014 in the RILs had highest average prediction accuracy
but were not always the best predicted environment for all traits. While poorly predicted for amylose,
the environments 2017 in the GSDP and TX2015 in the RILs had higher prediction accuracy for starch
compared to all or most environments. Despite variation across environments and populations,
the average prediction accuracies from the STSE were within the range of 0.4 to 0.6 for all traits
except amylose (0.25) in the GSDP. The average prediction accuracy of the STSE model in the GSDP
was positively correlated (r = 0.86) with the genomic heritability of the traits. In the RILs, there was
a positive correlation (r = 0.77) between average prediction accuracy and genomic heritability for
amylose, fat and gross energy, but the traits (protein and starch) with the highest heritabilities had
relatively lower average prediction accuracies.

Figure 2. Prediction accuracy for single-trait single-environment (STSE) model. The y-axis shows
prediction accuracy calculated as Pearson’s correlation between observed values and predicted values
of phenotypes. Legend represents the environment/years. SC: South Carolina, TX: Texas, GSDP:
Grain sorghum diversity panel, RILs: recombinant inbred lines. Pale blue dots represent the mean of
prediction accuracy.
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We did not see substantial improvement in multi-environment (BME) model over the STSE
prediction accuracies (Figure S4). In the GSDP, the multi-environment models resulted in a decline in
average prediction accuracy compared to the STSE model for fat (21%), amylose (10%) and protein
(4%), however, no significant change was observed for gross energy and starch (Table 2, Figure S5).
The prediction accuracy in the RILs increased by an average of 3% in the BME compared to the STSE,
however, the overall trend of prediction accuracy for traits and environments remained unchanged
(Table 3, Figure S5). The environment SC2014 showed consistent increase in accuracy for BME over
STSE model across all traits with about 10% increase for protein (Table 3). Amylose in TX2015
environment had the single greatest increase (12%) in average prediction accuracy in the BME among
all trait-environment combinations for the RILs (Table 3).

Table 2. Percent change in mean prediction accuracy (r) over the single trait single environment
(STSE) model in the diversity panel (GSDP). BME: Bayesian multi-environment, and BMORS:
Bayesian multi-output regressor stacking. Values were rounded to the nearest whole number.

Trait 2013 2014 2017
BME BMORS BME BMORS BME BMORS

Amylose −11 66 −5 11 −13 −13
Fat −24 47 −12 47 −27 58
Gross energy 3 54 −2 40 1 57
Protein −3 56 −1 55 −8 52
Starch 4 37 −2 38 1 17
Average −6 52 −4 38 −9 34

Table 3. Percent change in mean prediction accuracy (r) over the single trait single environment
(STSE) model in the recombinant inbred lines (RILs). BME: Bayesian multi-environment, BMORS:
Bayesian multi-output regressor stacking, SC: South Carolina, and TX: Texas. Values were rounded to
the nearest whole number.

Trait SC2014 SC2015 TX2014 TX2015
BME BMORS BME BMORS BME BMORS BME BMORS

Amylose 2 28 0 28 −1 25 12 43
Fat 5 33 1 15 2 18 2 20
Gross energy 7 28 −3 27 1 18 3 17
Protein 10 51 1 23 5 60 −4 33
Starch 5 36 −4 40 7 54 4 37
Average 6 35 −1 27 3 35 3 30

2.3. Bayesian Multi-Output Regression Stacking

We tested two different prediction schemes in the BMORS prediction model using the two
functions BMORS() and BMORS_Env() as described in Montesinos-López et al. [19]. While the
BMORS() function was used for a five-fold CV as described in the methods section, the BMORS_Env()
was used to assess the prediction performance of whole environments while using the remaining
environments as training. So in BMORS_Env, an environment was left out during training and
correlation between the predicted values (obtained from training with remaining environments) and
observed values for the test environment was measured as prediction accuracy for that environment in
BMORS_Env model.

2.3.1. Five-Fold CV

The prediction accuracy from five-fold CV in BMORS increased by 41% and 32% on average over
the STSE model in GSDP and RILs, respectively. Figure 3 shows the prediction accuracy of BMORS
for each trait and environment combination across the two populations. While the percent change in
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accuracy varied across environments, the BMORS model nonetheless had higher average prediction
accuracy than the STSE and BME models for all traits (Figure S4). The increase in average accuracy
in BMORS over STSE ranged from 11% (amylose, 2014) to 66% (amylose, 2013) in the GSDP with
exception of amylose in 2017 (13% decrease), and 15% (fat, SC2015) to 60% (protein, TX2014) in the
RILs (Tables 2 and 3). The increase in average prediction accuracy was higher (35%) for both locations
in 2014 for the RILs, whereas, the year 2013 in the GSDP increased the most. Among the traits, protein
(54%) had the greatest average increase in prediction accuracy in the GSDP, whereas in the RILs,
protein and starch (42%) both showed the greatest increase.

Figure 3. Prediction accuracy of Bayesian multi-output regressor stacking (BMORS) model using
five-fold cross validation. Legend represents the years/environment. The y-axis shows prediction
accuracy calculated as Pearson’s correlation between observed values and predicted values of
phenotypes. SC: South Carolina, TX: Texas, GSDP: Grain sorghum diversity panel, and RILs:
Recombinant inbred lines. Pale blue dots show mean of the prediction accuracy.

2.3.2. Prediction of Whole Environment

Predicting a whole environment using the BMORS model usually yielded higher accuracy than
the mean prediction accuracy from the STSE or BME model where only portions of each environment
was tested instead of whole environment as in BMORS_Env model (Figures 2 and 4, Figure S5, Table 4).
This shows that BMORS model can be reliably used in predicting unobserved environment with the
same accuracy as from STSE or BME models from training within the environments. The distribution
of prediction accuracy across trait and environment combination were, however, similar to the results
from the STSE model. In the GSDP, little variation in prediction accuracies was observed across
environments for gross energy, starch and protein, whereas, amylose and fat showed greater variability
in prediction accuracy between environments. In the RILs, prediction accuracy for all traits except
protein had high variability across the environments (Table 4).

In order to assess predictability by location or year in the RILs, we tested one location or year by
training the BMORS model using the other location or year, respectively (Table 4). The Texas location
had higher accuracy of prediction for fat (+0.11) and gross energy (+0.1) compared to South Carolina,
but rest of the traits had similar prediction accuracy (difference < 0.02). Prediction accuracy of whole
years varied across traits, amylose (+0.09) and fat(+0.04) were higher in 2014, protein was higher (+0.05)
in 2015, and starch and gross energy were similar.
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Figure 4. Prediction accuracy of whole environment predicted using the Bayesian multi-output
regressor stacking (BMORS_Env) in the diversity panel (GSDP). The y-axis shows prediction
accuracy calculated as Pearson’s correlation between observed values and predicted values of
phenotypes. Values on top of the bar represent the height of the bar.

Table 4. Prediction accuracy of the test environments predicted using the Bayesian multi-output
regressor stacking (BMORS_Env) in the recombinant inbred lines (RILs). SC: South Carolina, TX,
Texas. Prediction accuracy was calculated as Pearson’s correlation between observed values and
predicted values of phenotypes.

Trait Year × Location Location Year
SC2014 SC2015 TX2014 TX2015 SC TX 2014 2015

Amylose 0.79 0.80 0.88 0.60 0.76 0.74 0.74 0.65
Fat 0.69 0.49 0.78 0.74 0.60 0.71 0.64 0.60
Gross energy 0.56 0.49 0.62 0.66 0.48 0.58 0.56 0.56
Protein 0.65 0.66 0.66 0.70 0.59 0.58 0.61 0.66
Starch 0.64 0.52 0.68 0.60 0.55 0.56 0.56 0.55

3. Discussion

Phenotyping for grain compositional traits is—(1) challenging and labor-intensive, (2) destructive
for most accurate results, and (3) only performed after plants reach physiological maturity and are
harvested. The use of genomic prediction for compositional traits will be extremely valuable because
it increases selection intensity and decreases generational interval by overcoming the phenotyping
challenges. Moreover, these traits are complex and quantitatively inherited so will benefit from
genomic prediction’s ability to account for many small effect QTLs in estimating breeding values.

3.1. Trait Architecture and Prediction Accuracy

While the accuracy of NIRS calibration for traits in this study ranged from moderate to high,
there was prediction error associated with NIRS prediction. However, it is unclear if and what effects
NIRS prediction error had on genomic prediction. No direct correlation was observed between the
genomic prediction accuracy and NIRS statistics for the traits studied. The trait with the lowest NIRS
R2, fat, was predicted as well as or better than starch, protein and gross energy, which had NIRS
R2 > 0.7. Despite varying strength of correlations between traits across the two populations studied,
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the nature of relationship was similar for a given pair of traits, which is also in agreement with previous
studies [30,32,33]. The strong negative relationship of starch and amylose to protein, fat and gross
energy was further elucidated by the PCA analysis of phenotypic correlation matrix (Figure S3). Since
starch, protein and fat were measured on a percent dry matter basis, the strong correlation between
them is expected.

Genetic relatedness and trait architecture are known to affect the accuracy of genomic
prediction [8,34]. The genetic relatedness between individuals and heritability of the traits were higher
in the RILs than in GSDP (Figure S6, Table 1). Those factors could be contributing to higher average
prediction accuracy in the RILs. However, the average prediction accuracies for gross energy and
starch were comparable between GSDP and RILs (Figure S4). Prediction accuracy in the GSDP could
have been boosted by greater genetic diversity despite lower genetic relatedness [35]. Heffner et al. [22]
observed a prediction accuracy of 0.5–0.6 for wheat flour protein in two biparental populations.
Guo et al. [26] reported prediction accuracies of 0.44 and 0.8 for protein and amylose in rice diversity
panel. Similar results were observed in our STSE models for protein content (Figure 2). Whereas,
lower prediction accuracy of amylose in our diversity panel is probably due to the lack of sufficient
low-amylose lines with the waxy gene [30]. While genomic prediction study for starch, fat and gross
energy has not been reported in sorghum, these traits are nutritionally one of the most important traits
for any cereal grain. The moderate to high prediction accuracy observed suggests implementation of
genomic selection can improve genetic gain for these grain quality traits.

3.2. Multi-Trait Regressor Stacking

One of the daunting tasks of genomic prediction is estimating the effects of unobserved individuals
and environments. As multiple traits are analyzed across several environments, the ability to
combine information from multiple traits and environments can be crucial in increasing accuracy of
prediction [13,15,16]. When the correlations among traits are high, prediction accuracies of complex
traits can be increased by using multivariate model that takes this correlation into account [15,18].
We fit a Bayesian multi-environment (BME) model (2) that takes the genotype × environment effects
into consideration. In the GSDP, where environments were three years at the same location, the BME
model showed a slight decline (7%) in average prediction accuracy which was mostly due to the two
traits, amylose and fat (Table 2). The RILs showed slight increase (2–3%) in prediction accuracy of traits
when averaged over the environments, but there was variability across the environments (Table 3).

We implemented two functions [BMORS() and BMORS_Env()] which are not only used to evaluate
prediction accuracy but are also computationally efficient [19]. The BMORS model (3) performs
two-stage training by stacking the multi-environment models from all the traits. The five-fold cross
validation conducted for BMORS was similar to the CV1 strategy of Montesinos-López et al. [18].
The use of multi-trait models has been consistently shown to increase prediction accuracy over
single-trait models across different crops and traits [15–17,36]. The multi-target regressor stacking
increased average prediction accuracy by 41% and 32% in the GSDP and RILs, respectively, as compared
to the STSE prediction accuracy. Average prediction accuracy of all traits improved in BMORS over
STSE and BME across both the populations (Figure S4). Consistent improvement in accuracy of BMORS
is a result of the ability to use not only correlation between traits but also between environment in
the model training [18,19]. The ability to accurately estimate genetic merit of lines in unobserved
environments is of tremendous value in plant breeding. Our results show potential of BMORS_Env()
function for predicting the whole environment. Testing a whole environment by training BMORS
model using all other environments resulted in higher prediction accuracy for that trait-environment
combination than using STSE or BME model. Prediction accuracy of all environments were 0.5 or
higher with exception of amylose in GSDP, the reason for which we have discussed above (Figure 4,
Table 4).
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3.3. Application for Breeding

Grain quality traits such as starch and protein content have been under selection since the
inception of phenotypic selection in modern breeding practices. More recently, total energy supplement
of grain has gained attention for increasing feed efficiency in animal production, and a need exists for
increasing total calories for human nutrition in the wake of global malnutrition crisis. Despite high
correlations among these traits, the genetic variation underlying starch, protein and fat can be
decoupled. Boyles et al. [30] showed major and minor effect QTLs underlying the three traits are
distributed across the genome and are segregating in biparental populations. However, in practice,
selection would be conducted simultaneously for these traits using a selection index rather than for
individual traits. Velazco et al. [31] observed an increase in predictive ability by using a multi-trait
model for grain yield and stay green in sorghum, and argue that such an exercise would allow for using
selection index for implementation of genomic selection for correlated traits. Increased prediction
accuracy, improved selection index, and estimation of precise genetic, environmental and residual
co-variances makes multi-trait multi-environment models preferable over univariate models [18].
The multi-trait regression stacking model we tested shows large scale improvement in model prediction
and can be used in tandem with Bayesian multi-trait multi-environment (BMTME) model for parameter
estimation and assessing prediction accuracy. The ability to estimate genetic effects and breeding
values of unobserved environments will be of great advantage to predict performance in diverse
environments and for implementation of selection theory.

4. Materials and Methods

4.1. Plant Material

4.1.1. Grain Sorghum Diversity Panel

A grain sorghum diversity panel (GSDP) of 389 diverse sorghum accessions was planted in
randomized complete block design with two replications in 2013, 2014, and 2017 field seasons at the
Clemson University Pee Dee Research and Education Center in Florence, SC. The GSDP included a
total of 332 accessions from the original United States sorghum association panel (SAP) developed
by Casa et al. [37]. The details on experimental field design and agronomic practices are described
in Boyles et al. [38] and Sapkota et al. [35]. Briefly, the experiments were planted in a two row
plots each 6.1 m long, separated by row spacing of 0.762 m with an approximate planting density of
130,000 plants ha−1. Fields were irrigated only when signs of drought stress was seen across the field.

4.1.2. Recombinant Inbred Population

A biparental population of 191 recombinant inbred lines (RILs) segregating for grain quality traits
was studied along with the GSDP. The parents of the RIL population were BTx642, a yellow-pericarp
drought tolerant line, and BTxARG-1, a white pericarp waxy endosperm (low amylose) line.
The population was planted in two replicated plots in randomized complete block design across
two years (2014 and 2015) in Blackville, SC and College Station, TX. Field design and agronomic
practices have previously been described in detail in Boyles et al. [30].

4.2. Phenotyping

The primary panicle of three plants selected from each plot were harvested at physiological
maturity. The plants from beginning and end of the row were excluded to account for border effect.
Panicles were air dried to a constant moisture (10–12%) and threshed. A 25 g subsample of cleaned
and homogenized grain ground to 1-mm particle size with a CT 193 Cyclotec Sample Mill (FOSS North
America) was used in near-infrared spectroscopy (NIRS) for compositional analysis.

Grain composition traits such as total fat, gross energy, crude protein, and starch content can be
measured using NIRS. Previous studies have shown high NIRS predictability of the traits used in
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feed analysis [39,40]. We used a DA 7250TM NIR analyzer (Perten Instruments). The ground sample
was packed in a gradually rotating Teflon dish positioned under the instrument’s light source and
predicted phenotypic values was generated based on calibration curve for spectral measurements.
The calibration curve was built using wet chemistry values from a subset of samples. The wet chemistry
was performed by Dairyland Laboratories, Inc. (Arcadia, WI, USA) and the Quality Assurance
Laboratory at Murphy-Brown, LLC (Warsaw, NC, USA). The details on the prediction curves and wet
chemistry can be found in Boyles et al. [30].

4.3. Genotypic Data

Genotyping-by-sequencing (GBS) was used for genetic characterization of the GSDP and
RILs populations [30,38,41]. Sequenced reads were aligned to the BTx623 v3.1 reference assembly
(phytozome) using Burrows-Wheeler aligner [42]. SNP calling, imputation and filtering was done
using TASSEL 5.0 pipeline [43]. The TASSEL plugin FILLIN for GSDP and FSFHap for RILs population
were used to impute for missing genotypes. Following imputation SNPs with minor allele frequency
(MAF) < 0.01, and sites missing in more than 10% and 30% of the genotypes in GSDP and RILs,
respectively, were filtered. The number of genotypes studied for each population represent those with
at least 70% of SNP sites. The genotype matrix with 224,007 SNPs from GSDP and 56,142 SNPs from
RILs population was used for whole genome regression.

4.4. Statistical Analysis

The statistical software environment ‘R’ was used for model building and analysis [44].
The phenotypic values of the traits were adjusted for random effects of replications within environment
using ‘lme4’ package in R [45]. Principal component analysis was done using the R package
‘factoextra’ [46]. Marker-based estimates of narrow sense (genomic) heritabilities were calculated using
the SNP genotype matrix and phenotypic values using the R package ‘heritability’ [47]. A matrix with
dummy variables ‘1’ and ‘0’ representing combinations of environmental variables (replication and year
for GSDP, and replication, year and location for RILs) was used as co-variate in heritability estimation.

4.4.1. Single-Trait Single-Environment (STSE) Model:

The following genomic best linear unbiased prediction (GBLUP) model was used to assess
prediction performance of an individual trait from a single environment:

yj = µ + gj + ej, (1)

where yj is a vector of adjusted phenotypic mean of the jth line (j = 1, 2, ..., J). µ is the overall mean which
is assigned a flat prior, gj is a vector of random genomic effect of the jth line, with g = (g1, ..., gj)

T ∼
N(0, Gσ2

1 ), σ2
1 is a genomic variance, G is the genomic relationship matrix in the order J × J and is

calculated [12] as G = ZZT

2 ∑ pjqj
, where qj and pj denote major and minor allele frequency of jth line

respectively, and Z is the design matrix for markers of order J × p (p is total number of markers).
Further, ej is residual error assigned the normal distribution e ∼ N(0, Iσ2

e ) where I is identity matrix
and σ2

e is the residual variance with a scaled-inverse Chi-square density.

4.4.2. Bayesian Multi-Environment (BME) GBLUP Model

Considering genotype × environment interaction can contribute to substantial amount of
phenotypic variance in complex traits, we fit the following univariate linear mixed model to account
for environmental effects in prediction performance:

yij = Ei + gj + gEij + eij, (2)

www.phytozome.net
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where yj is a vector of adjusted phenotypic mean of the jth line in the ith environment (i = 1, 2, ..., I,
j = 1, 2, ..., J). Ei represents the effect of ith environment and gj represents the genomic effect of the jth
line as described in Equation (1). The term gEij represents random interaction between the genomic
effect of jth line and the ith environment with gE = (gE11, ..., gEI J)T ∼ N(0, σ2

2 II ⊗ G), where σ2
2 is an

interaction variance, and eij is a random residual associated with the jth line in the ith environment
distributed as N(0, σ2

e ) where σ2
e is the residual variance.

4.4.3. Bayesian Multi-Output Regressor Stacking (BMORS)

BMORS is the Bayesian version of multi-trait (or multi-target) regressor stacking method [48].
The multi-target regressor stacking (MTRS) was proposed by Spyromitros-Xioufis et al. [20,21] based on
multi-labeled classification approach of Godbole and Sarawagi [49]. In BMORS or MTRS, the training
is done in two stages. First, L univariate models are implemented using the multi-environment GBLUP
model given in Equation (2), then instead of using these models for prediction, MTRS performs the
second stage of training using a second set of L meta-models for each of the L traits. The following
model is used to implement each meta-model:

yij = β1Ẑ1ij + β2Ẑ2ij + ... + βLẐLij + eij, (3)

where the covariates Ẑ1ij, Ẑ2ij, ..., ẐLij represent the scaled prediction from the first stage training with
the GBLUP model for L traits, and β1, ..., βL are the regression coefficients for each covariate in the
model. The scaling of each prediction was performed by subtracting its mean (µlij) and dividing by its
corresponding standard deviation (σlij), that is, Ẑlij = (ŷlij − µlij)σ

−1
lij , for each l = 1, ..., L. The scaled

predictions of its response variables yielded by the first-stage models as predictor information by
the BMORS model. Simply put, the multi-trait regression stacking model is based on the idea that a
second stage model is able to correct the predictions of a first-stage model using information about the
predictions of other first-stage models [20,21].

4.4.4. Performance of Prediction Model:

All prediction models were fit using Bayesian approach in statistical program ‘R’. The STSE
model (1) was fit using the R package ‘BGLR’ [50], BME model (2) and BMORS model (3) were fit
using the R package ‘BMTME’ [19]. A minimum of 20,000 iterations with 10,000 burn-in steps was
used for each Bayesian run.

The evaluation of prediction performance of models was done using a five-fold cross validation
(CV), which means 80% of the samples were used as training set and testing was done on the remaining
20% for each cross-validation fold. The individuals were randomly assigned into five mutually
exclusive folds. Four folds were used to train prediction models and to predict the genomic estimated
breeding values (GEBVs) of the individuals in fifth fold (validation/test set). The accuracy of prediction
for each fold was calculated as Pearson’s correlation coefficient (r) between predicted values and
adjusted phenotypic means for the individuals in validation set. Each cross validation run, therefore,
resulted in five estimates of prediction accuracy. The same set of individuals were assigned to training
and validation across different traits and models tested by using set.seed() function in R. In order to
avoid bias due to sampling, we performed 10 different cross-validation runs to calculate the mean and
dispersion of the prediction accuracies.

5. Conclusions

Phenotyping of grain compositional traits using near-infrared spectroscopy is labor-intensive,
generally destructive, and time limiting. Therefore, the use of genomic selection for these traits will
be extremely valuable. This study establishes the potential to improve genomics-assisted selection of
grain composition traits by using multi-trait multi-environment model. The phenotypic measurements
obtained from NIRS prediction were amenable to genomic selection as shown by moderate to high
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prediction accuracy for single trait prediction. While multi-environment model alone did not lead to
much improvement over single environment model, stacking of regression from multiple traits showed
substantial improvement in prediction accuracy. The prediction accuracy increased by 32% and 41% in
the RILs and GSDP, respectively, when using the Bayesian multi-output regressor stacking (BMORS)
model compared to a single trait single environment model. The ability to predict line performance
in an unobserved environment is of great importance to breeding programs, and results show high
accuracy for predicting whole environments using BMORS.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/9/1221/
s1. The supplementary file contains six figures: Figure S1. Phenotypic distribution of grain composition traits in
the RILs. In the x-axes, SC: South Carolina, TX: Texas, numbers represent years. Values are percentage dry basis
for protein, fat and starch; gross energy is in KCal/lb; and amylose is in percent of starch. Figure S2. Phenotypic
distribution of grain composition traits in the GSDP. Numbers in x-axes represent years. Values are percentage
dry basis for protein, fat and starch; gross energy is in Cal/g; and amylose is in percent of starch. Figure S3.
PCA analysis of correlation matrix between traits. a. GSDP, and b. RILs. Ams: amylose, GE: gross energy, Prt:
protein, Sta: starch, SC: South Carolina, TX: Texas. The numbers in the text represent years of the environment.
Figure S4. Overall prediction accuracy of traits across all the environment for the three prediction methods in the
two populations. The y-axis shows prediction accuracy calculated as Pearson’s correlation between observed
values and predicted values of phenotypes. Legend represents the environment/years. SC: South Carolina, TX:
Texas, GSDP: Grain sorghum diversity panel, RILs: recombinant inbred lines. Figure S5. Prediction accuracy
using five-fold CV in Bayesian multi-environment (BME) model. a. GSDP, and b. RILs. Legend represents the
environment/years. SC: South Carolina, TX: Texas. Pale blue dots represent the mean of prediction accuracy.
Figure S6. Heatmap for genomic relationship matrix calculated using vanRaden (2008). a. GSDP, b. RILs.
Trees show hierarchical clustering using Euclidean distance.
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