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Abstract: Polarimetric decomposition extracts scattering features that are indicative of the physical
characteristics of the target. In this study, three polarimetric decomposition methods were tested
for soil moisture estimation over agricultural fields using machine learning algorithms. Features
extracted from model-based Freeman–Durden, Eigenvalue and Eigenvector based H/A/α, and Van
Zyl decompositions were used as inputs in random forest and neural network regression algorithms.
These algorithms were applied to retrieve soil moisture over soybean, wheat, and corn fields. A
time series of polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data
acquired during the Soil Moisture Active Passive Experiment 2012 (SMAPVEX12) field campaign
was used for the training and validation of the algorithms. Three feature selection methods were
tested to determine the best input features for the machine learning algorithms. The most accurate
soil moisture estimates were derived from the random forest regression algorithm for soybeans, with
a correlation of determination (R2) of 0.86, root mean square error (RMSE) of 0.041 m3 m−3 and mean
absolute error (MAE) of 0.030 m3 m−3. Feature selection also impacted results. Some features like
anisotropy, Horizontal transmit and Horizontal receive (HH), and surface roughness parameters
(correlation length and RMS-H) had a direct effect on all algorithm performance enhancement as
these parameters have a direct impact on the backscattered signal.

Keywords: soil moisture; agriculture; random forest; neural network; SMAPVEX12; UAVSAR;
polarimetric decomposition

1. Introduction

Water is critical for all ecosystems and the availability of the right amount of water at
the right time is crucial in agricultural production [1]. A growing global population and
shrinking acreages of arable land places pressure on the agricultural sector to increase per
acre productivity. In addition, a changing climate is creating uncertainty and necessitates
efficient use of water for crop production. As such, data on soil water reserves can help
direct cropping decisions with respect to what and when to seed, and decisions on the
management of water for crop production.

Soil moisture refers to the volume of water that exists in soil pores at any given point
in time. Soil moisture at the surface is the most dynamic over time, and the amount of
water in the top few centimeters can impact seeding decisions, germination, and flood risk.
As a result, surface moisture availability can have a direct effect on crop productivity [2].
Given the importance of soil moisture status, a number of field campaigns have been
conducted over the last two decades to assist in developing a remote sensing capacity for
surface soil moisture mapping. These experiments include the collection of ground soil
moisture measurements, as well as aircraft and satellite-based data, in campaigns such
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as SMEX02 (Soil Moisture Experiments 2002), SMEX03 (Soil Moisture Experiments 2003),
SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012), and SMAPVEX16
(Soil Moisture Active Passive Validation Experiment 2016) [3–7]. Considering the dynamics
of surface soil moisture in time and space, characterizing the status of soil water over large
areas is exceedingly difficult using ground measures exclusively [8]. As such, researchers
have turned their attention towards developing remote sensing monitoring of soil moisture
at regional, national, and even international scales.

Both Synthetic Aperture Radar (SAR) and optical remote sensing sensors provide
opportunities for soil moisture monitoring [9]. Some studies have evaluated methods for
estimating soil moisture over bare agricultural areas devoid of significant crop cover, using
empirical, semi-empirical, and theoretical models [10–16]. A crop canopy complicates
efforts to estimate soil moisture, as vegetation acts as both a scatterer and attenuator of
active microwave signals [17,18].

Polarimetric target decomposition can separate and allocate the amount of microwave
scattering attributable to the type (surface/single bounce, volume/multiple bounce, double
bounce) and characteristics (randomness of elements) of target scattering. These measures
have physical meaning with respect to target conditions [19]. Decompositions have the
potential to extend soil moisture retrieval from bare to cropped conditions if models
exploit the separation of scattering from surface and volume target components. Target
decomposition techniques using different matrices, including the scattering matrix [S]
and the second-order coherency [T] and the covariance [C] matrices, provide scattering
descriptors that are interpretable with respect to the target’s physical features [20,21].
Coherent decomposition techniques are appropriate for fully polarized targets. For partially
polarized targets such as soils, incoherent decompositions can be a better choice due to
random scattering in different orientations [22]. Each element of coherency and covariance
matrices is a unique descriptor for a specific type of backscattered signal [19,23].

Several studies have investigated the potential of model-based and Eigenvector/Eigenvalue
based decompositions for soil moisture retrieval. For example, Wang et al., 2016 [24] pro-
posed a simplified version of the Cloude-Pottier model-based decomposition for modeling
and removing the volume scattering component over various vegetation canopies at differ-
ent crop growth stages. In this study, only the pixels with a dominant surface scattering
component were used for soil moisture retrieval to minimize the contributions of di-
hedral and volume scattering components. Airborne L-Band UAVSAR data were used
and the researchers removed the contribution of volume scattering to total backscatter
and applied a correction for the effects of Bragg scattering. To evaluate the performance
of the proposed method, the scattering component was examined before and after the
volume scattering removal. Soil moisture was estimated with a root mean square er-
ror (RMSE) of 0,06–0,12 m3 m−3.This methodology was not applicable for regions with
dominant dihedral scattering [24], and as a result, Wang et al., 2017 [25] investigated
model-based polarimetric decompositions including those proposed by Freeman–Durden
1998, Hajnsek et al., 2009 [26], and An et al., 2010 [27]. The volume scattering compo-
nent was removed leaving only the surface and dihedral scattering components. Com-
parisons among these different decomposition algorithms were reported using RMSE
and correlation coefficients (R). For corn reported accuracy metrics were R = 0.78 and
RMSE = 0.059 m3 m−3 and for wheat R = 0.61 and RMSE = 0.15 m3 m−3 using the Freeman–
Durden decomposition. Over canola fields the Hajnesk decomposition was the most
accurate with R = 0.54 and RMSE = 0.72 m3 m−3, and the An et al. decomposition provided
the highest accuracies for soybean fields with R = 0.45 and RMSE = 0.071 m3 m−3 [25]. In
another study, Ozerdem et al., 2107 [27] used the Freeman–Durden model-based decom-
position and H/A/α Eigenvalue/Eigenvector decomposition for feature extraction from
RADARSAT-2 data. The algorithms were tested on bare soils, soils with low vegetation
cover, and soils with dense vegetation cover. The presence of vegetation cover reduced
the accuracy of predictions. The best results were reported for the combination of dense
vegetation cover and bare agricultural areas with R = 0.95 and RMSE = 0.041 m3 m−3. The
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least accurate results were obtained for the combination of low vegetation cover and bare
soils with R = 0.63 and RMSE = 0.098 m3 m−3 [27].

The relationship between predictors and input observations are not always linear and
machine learning techniques can model complicated non-linear relationships [28]. Some
machine learning techniques, such as neural network and random forest algorithms, have
been widely and successfully used for soil moisture estimation. In this regard, El Hajj et al.,
2017 [29] trained and evaluated a neural network algorithm using a synthetic database
created using the Modified Integral Equation Model and Water Cloud Model for estimating
soil moisture. They derived soil moisture estimation accuracies of RMSE = 0.05 m3 m−3

using their neural network algorithm [29]. Istvan et al., 2018 used a random forest to
capture the non-linear relationship between ground measured soil moisture and remotely
sensed variables. A R2 = 0.86 and RMSE = 0.032 m3 m−3 confirmed the good performance
of this algorithm [30].

The main objective of this study is to explore the capacity to the prediction of different
scattering mechanisms extracted from Freeman–Durden, Van Zyl, and H/A/α decomposi-
tions [20,31,32] to soil moisture in corn, wheat, and soybean fields. Three feature selection
algorithms including trial and error, backward, and forward feature selection algorithms
are tested and compared to determine the most useful features. The selected features are
used to train machine learning algorithms including random forest regression and neural
network algorithms for soil moisture estimation. This study determines the polarimetric
features most helpful for soil moisture retrieval.

2. Materials and Methods
2.1. Study Site

This study uses data collected during the Soil Moisture Active Passive Experiment
2012 (SMAPVEX12). The SMAPVEX12 study area extends 12.8 km× 70 km and is located in
a predominately annually cropped region of Manitoba, Canada (98◦00′23” W, 49◦40′48” N)
(Figure 1). The soil textures vary significantly across this site, leading to large variances
in surface soil moisture. Texture changes from heavy clay to fine loamy sands from east
to west. This region of Canada has been the focus of extensive microwave soil moisture
research given the importance of agriculture in this region of Canada and the variance in
soil moisture within small geography [25,33,34]. In 2012, the crop breakdown within the
SMAPVEX12 site included cereals (23.4% of the total crop acreage), canola (16.0%), corn
(9.1%), soybeans (18.5%), and perennial cover (14.6%) [7].

2.2. UAVSAR Dataset

The airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is
a mission-based, fully polarimetric L-band SAR sensor. UAVSAR data are available in
several processing levels, including single-look complex (SLC), multi-look complex (MLC),
ground-range detected (GRD), and compressed stoke matrix (DAT). The details of the
UAVSAR system and its data are provided in Table 1. In this study, we considered the
GRD product of flight line #31606 as this provided full coverage of all sampled agricultural
fields with a 25◦ to 65◦ incidence angle [25]. The time-series of the UAVSAR dataset
was acquired during the SMAPVEX12 project. The simultaneous UAVSAR flight with
ground soil moisture sampling during SMAPVEX12 are listed in Table 2. The open source
PolSARpro v.5 software developed by ESA (ESA, Paris, France) was used to generate the
coherency matrix [T] and covariance matrix [C]. A boxcar filter with a 7 × 7 kernel size
was applied for noise reduction. This site has minimal topographic variance and as such,
no topographic correction was applied.
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Figure 1. The Soil Moisture Active Passive Experiment (SMAPVEX12) study area is located in southwestern Manitoba
(Canada). The locations of corn, soybean, and wheat fields sampled during SMAPVEX12 are indicated.

Table 1. Airborne UAVSAR sensor characteristics.

Full Name Unmanned Aerial Vehicle Synthetic Aperture Radar

Polarization Quad polarimetric (HH, VV, VH, HV)

Frequency L-band, 1.26 GHz

Dataset distributor National Aeronautics and Space Administration (NASA)
NASA Jet Propulsion Laboratory (JPL)

Spatial resolution
(range × azimuth)

2.2 m × 0.6 m (SLC i)
6.7 m × 7.2 m (MLC ii)
6.2 m × 6.2 m (GRD iii)
6.74 m × 7.2 m (DAT iv)

i Single look complex; ii multi-looked cross product; iii ground range detected; iv Compressed stokes matrix product.
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Table 2. UAVSAR flight dates simultaneously with soil moisture measurement over SMAPVEX12.

17 June 22 June 23 June 25 June 27 June 29 June 3 July

5 July 8 July 10 July 13 July 14 July 17 July

2.3. Ground Measurements

The SMAPVEX12 field campaign is fully described in [7], with an overview presented
here. This campaign was executed over 6 weeks (6 June to 17 July 2012) with the intent
to capture soil moisture conditions immediately following crop emergence to the period
of peak biomass accumulation. Soil moisture measures were collected for 55 agricultural
fields including 19 soybeans, 16 wheat, 8 corn, 7 canola, 4 pasture, and 1 forage field.
Crews measured surface soil moisture (0–5.7 cm), coincident with the airborne flights,
using handheld coaxial impedance-based dielectric reflectometry probes. In each of the
55 sample fields, soil moisture was measured at 16 sampling points, with three replicate
measures at each point. These 16 points were located in two parallel rows designed to
capture moisture conditions in an 800 m × 300 m area. In this study we considered
the ground measured soil moisture data for soybeans, corn, and wheat fields. Each soil
moisture measurement point in each field was used as an input to the retrieval algorithms.
At these soil moisture sample points, the SAR extracted value was calculated as the average
of 3 × 3 pixels around each point which covers the 18.2 m × 18.2 m region on the ground
surface.

Surface roughness has a significant impact on the scattering characteristics (specular
or diffuse) and as such, the magnitude of the incident microwave signal that scatters back
to the sensor. It is important to consider the effects of soil roughness on the received total
backscattered signal. Roughness changes due to tillage applications, and weathering effects.
During SMAPVEX12, surface roughness parameters root means square height (RMS-H) and
correlation length were measured using a 1 m length profilometer with 0.5 cm pin spacing
at non-flight days as surface roughness parameters are less time-sensitive features. The
RMS-H and correlation length equation demonstrated in Equations (1) and (2), respectively.
In these equations, N refers to the number of pins in the profilometer, zi is height in location
i from the ground in cm and z refers to the average of surface height in cm. ρ(x′) is known
as autocorrelation function and x′ refers to the degree of similarity between two distinct
points in a specified distance. Two sites were dedicated to roughness measurement in each
field. The roughness profilometers were located parallel to the UAVSAR look direction and
digital images were acquired at a 118 cm distance from the profiler. If crop coverage was
a hindrance to the profiler, the vegetation coverage was flattened before photo shooting.
A 3 m profile was constructed by collecting three end-to-end profiles, replicated twice in
each field. Profiles were collected at the beginning of the field campaign and re-collected
if field crews noted significant changes in soil surface roughness in the course of the six
week campaign.

S =

√
∑N

i=1(zi
2 − z2)

N − 1
, (1)

ρ
(
x′
)
=

∑
N+1−j
i=1 zizj+i−1

∑N
i=1 zi

2
. (2)

The wheat biomass samples were gathered in a 0.5 m2 area. Soybeans and corn
biomass samples were also gathered for ten plants in each field (each field consisted of two
parallel rows with eight sample points in each row). This information provides valuable
concepts over crop development stage impacts on SAR backscatter signal.

Valuable information was provided about the planting and harvest date of soybeans,
wheat, and corn crops during SMAPVEX12 and also crop development at a different time
interval during soil moisture data gathering by [35] (Table 3).
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Table 3. Planting date, harvest date, and crop development stage of soybeans, wheat, and corn crops [35].

Soybeans Wheat Corn

Planting Date 9–18 May 17–18 April 30 April–14 May
Harvest Date 5–20 September 1–20 August 1–12 October

Crop Development stage during SMAPVEX12
Start (7–13 June) Leaf development Leaf development Leaf development

Mid (28 June–4 July) Formation of side shoots Flowering and anthesis Stem elongation

End (12–18 July) Flowering Development of fruit;
ripening

Inflorescence emergence and
heading; flowering and

anthesis

2.4. Polarimetric Decompositions

Quad polarimetric SAR sensors transmit alternate pulses of horizontal (H) and vertical
(V) waveforms and record the intensity of both V and H polarized scattering and the phase
difference between these two orthogonal polarizations [36]. A fully polarimetric system
captures a complete picture of the scattering characteristics of a target and as such, is
a powerful tool for target discrimination [19]. Polarimetric decomposition techniques
can be applied to these complex data and may offer advantages in the retrieval of soil
moisture estimates in the presence of vegetation cover. In this study, the potential of three
decomposition models is assessed including the Freeman–Durden, Van Zyl, and H/A/α
decompositions.

Model-based and eigenvalue-eigenvector decompositions, which are known as inco-
herent target decomposition approaches, are appropriate methods in the case of partially
polarized target analysis to separate second-ordered coherency [T] and covariance [C]
matrices. These matrices are derived from the scattering matrix (Equation (3)) and are used
to extract polarimetric features.

[S] =
[

SHH SHV
SVH SVV

]
. (3)

Most natural features backscatter the SAR signals that are distributed which leads to
backscatter of the collided signal to various directions. These targets are considered partially
polarized. The distribution of scattering elements associated with these natural targets
creates opportunities for single (surface) scattering events, dihedral (double bounce) events,
and multiple (volume) scattering. The complex backscattering elements (intensity and
phase) of the scattering matrix are demonstrated in Equation (3). SHH represents the radar
signal transmitted in horizontal polarization and received in horizontal polarization. SHV
and SVH represent signals transmitted in either H or V, but with the orthogonal polarization
on receive. SVV quantifies the complex polarimetric signal transmitted and received in
vertical polarization [37]. Four different descriptors, including Pauli and lexicographic
vectors and covariance and coherency matrices, are extracted from the scattering matrix [S].

The coherency matrix [T] is constructed from the multiplication of the Pauli vector
and its transpose conjugate [37]. On the other side, the covariance matrix is the result of
the multiplication of the lexicographic vector and its transpose conjugate [38].

2.5. Freeman—Durden Decomposition

The model-based three component Freeman–Durden decomposition extracts the
volume, dihedral (double), and single bounce scattering submatrices from the second order
covariance matrix [C] [24].

[C3] = [C3]volume + [C3]double + [C3]single; (4)
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[C3]volume = fv

 1 0 1
3

0 2
3 0

1
3 0 1

 Pv =
8 fv

3
; (5)

[C3]double = fd

 |α|2 0 α
0 0 0
α∗ 0 1

 Pd = fd

(
1 + |α|2

)
; (6)

[C3]single = fd

 |β|2 0 α
0 0 0
α∗ 0 1

 Ps = fs

(
1 + |β|2

)
. (7)

The [C] matrix is composed of three [C] submatrices (Equations (5) to (7)) which refer
to single bounce scattering, dihedral scattering, and volume scattering mechanisms of
coherency matrix. The fv, fd, and fs represent the scattering amplitudes of volume, dihedral,
and single bounce scattering component, respectively. Pv, Pd, and Ps refer to volume,
dihedral, and single bounce scattering powers, respectively. The α and β coefficients are
the normalized difference of the Fresnel coefficients and the normalized difference of Bragg
scattering between two HH and VV polarizations.

Freeman–Durden is an appropriate decomposition technique for vegetation-covered
soils and has been evaluated for soil moisture retrieval [25,27,39].

2.6. Van Zyl Decomposition

The Van Zyl decomposition is an eigenvector-eigenvalue approach, which is known as
a non-negative eigenvalue decomposition (NNED) [33]. Van Zyl et al., 2011 proposed this
decomposition to evaluate the volume backscattering portion from vegetated regions [21].
In this approach, the covariance matrix is modified to remove negative eigenvalues. The
radar cross section (RCS) is the ratio of the intensity of energy scattered from a target in
the direction of the radar to the intensity of energy intercepted by a target. For natural
distributed targets the RCS should have a non-negative value. Van Zyl et al. applied the
Freeman–Durden and Yamaguchi decompositions to a SAR image of a heavily forested
region in Germany. The outcome confirmed the existence of some pixels with negative
power responses after the contribution of volume scattering was subtracted from the
covariance matrix. The negative values do not have physical meaning with respect to
these distributed targets. Van Zyl et al., 2011 proposed a modification to the covariance
matrix (Equation (6)) to remove these negative values. The [Cmodel ] is the covariance
matrix predicted by other models and the [Cremainder] is a term representing a parameter
not included in the [Cmodel ] covariance matrix. The eigenvalues should be non-negative in
order for coefficient a in Equation (8) to have physical meaning.

〈[C]〉 = a[Cmodel ] + [Cremainder]. (8)

The [Cremainder] matrix is symmetric, as provided in Equation (9), to limit the values
of the a coefficient. The eigenvalues of this matrix are described by Equation (10). The
ξ, ς, ρ, and η parameters pertain to shape, statistical angular distribution, and size of the
targets [32].

[Cremainder] =

 ξ 0 ρ
0 η 0
ρ∗ 0 ς

− a

 ξa 0 ρa
0 ηa 0

ρ∗a 0 ςa

, (9)

λ1 = 1
2{Y + X}

λ2 = 1
2{Y− X}

λ1 = η − aηa

X =
√

Y2 − 4(ξ − aξa)(ς− aςa) + 4|ρ− aρa|2.
Y = ξ + ς− aξa − aςa

(10)



Agronomy 2021, 11, 145 8 of 25

2.7. H/A/α Decomposition

Cloude and Pottier proposed an eigenvalue-eigenvector approach, known as H/A/α,
as an incoherent target decomposition [20]. The coherency matrix, from which the H/A/α
decomposition is extracted, is a positive Hermitian matrix that consists of three orthogonal
eigenvectors and eigenvalues, equal to or greater than zero (Equation (11)). In this equation,
[U] elements are considered as orthogonal eigenvectors, and λ parameters refer to real and
non-negative eigenvalues. Pi in Equation (12) expresses each scattering portion [19].

〈[T]〉 = [U3][Σ][U3]
−1, (11)

Pi =
λi

∑3
k=1 λk

. (12)

Three physical features can be extracted directly from this matrix, including entropy
(H), alpha (α), and anisotropy (A) parameters that range from zero to one. The α parameter
extracted from Equation (13) indicates the predominant scattering mechanisms. α equal or
near zero is considered as surface scattering, α equal or near π

2 is indicative of dihedral scat-
tering, and α near or equal π

4 is associated with volume scattering. The entropy parameter
characterizes the degree of randomness of scattering within a target (Equation (14)). For
targets with more predictable scattering, entropy approaches zero (H = 0). However, when
scattering elements have a degree of random distribution, scattering is less predictable and
entropy as a metric of randomness approaches one (H = 1). The third parameter can be
extracted from the H/A/α parameter and is known as anisotropy (Equation (15)), which is
interpretable when entropy is greater than 0.7. A defines the relationship and importance
of the secondary and tertiary scattering components, λ2 and λ3.

Pi =
λi

∑3
k=1 λk

, (13)

H = −∑3
i=1 Pi log3(Pi), (14)

A =
λ2 − λ3

λ2 + λ3
f or H > 0.7. (15)

Table 4 lists all the polarimetric features of the Freeman–Durden, Van Zyl, and H/A/α
decompositions. The polarimetric and non-polarimetric features and soil parameters used
in this study for the soil moisture modeling are also listed in Table 5.

Table 4. Various polarimetric feature elements from different polarimetric decomposition methods.

Decomposition Method Elements

Freeman–Durden Surface scattering, dihedral scattering, and volume scattering

Van Zyl Surface scattering, dihedral scattering, and volume scattering

H/A/α Entropy, alpha, and anisotropy

2.8. Machine Learning Algorithms

Theoretical, empirical, and semi-empirical scattering models have been evaluated
to retrieve soil moisture estimates from SAR data. Semi-empirical models include some
elements of scattering theory but are simplified and require parameterization typically
using field observational data. These parameterizations lead to limitations in terms of
regions of validity with respect to SAR configurations (incidence angles, polarizations, and
frequencies) and target conditions (soil moisture and surface roughness ranges). How-
ever, these models are much easier to invert and are thus more applicable to operational
implementation. In addition to the complexity of theoretical scattering models, and the lim-
itations in the applicability of semi-empirical models across wide-ranging conditions, these
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models do not easily capture the non-linearity between natural targets and SAR features.
Machine learning approaches are more appropriate to model these non-linear relationships
between output and input parameters [40,41]. In this study, because of the different ranges
of feature values, a normalization process was implemented. As a result, the range of each
feature was allocated between zero to one. Next, the dataset was randomly divided into
training and testing subsets. Sample data were randomly selected for algorithm training
(75% of the whole dataset) and independent validation (25% of the whole dataset). All
accuracy metrics were calculated and demonstrated as results of this study on the unseen
dataset (test set) for each algorithm.

Table 5. The features used as input for soil moisture modeling.

1. Surface scattering Freeman (FD Surface) 11. Surface scattering/dihedral scattering (Sur/Di)

2. Dihedral scattering Freeman (FD Dihedral) 12. RMS-H

3. Volume scattering Freeman (FD Volume) 13. Correlation Length

4. Surface scattering Van Zyl (VZ Surface) 14. VH

5. Dihedral scattering Van Zyl (VZ Dihedral) 15. HH

6.Volume scattering Van Zyl (VZ Volume) 16. VV

7. Entropy H/A/α 17. HH/VV

8. Alpha H/A/α 18. VH/VV

9. Anisotropy H/A/α 19. VH/HH

10. Surface scattering/(Surface + Dihedral + Volume) scattering (Sur/(Sur + Di + Vol))

2.8.1. Random Forest

Random forest (RF) is a robust machine learning algorithm that has been applied
to both regression and classification problems and can address non-linear relationships
between the target and input features [42,43]. As a supervised algorithm, RF requires
sample training data. This algorithm creates the forest using a series of individual decision
trees, each tree with a random subset of features [44]. Each tree accesses a random sub-
dataset of training samples and predicts the target values. In the case of regression problems,
each tree has a vote, and the prediction value is the average prediction of all decision
trees. This algorithm can determine the relative importance of each input feature which is
important in understanding the contribution of each feature to the RF output.

RF has been used as an ensemble learning approach to estimate soil moisture [45–49].
However, the use of polarimetric features as inputs to RF prediction of soil moisture is
limited. This study investigates the ability of RF to estimate surface soil moisture from
fully polarimetric SAR features. Due to the random operation of choosing features for each
of the trees and to avoid overfitting issue, the algorithm was trained 50 times, then the
average of all iterations was calculated on train and tested separately, and the results on
the test set were considered as the absolute accuracy (Table 6). The train and test datasets
were divided once and stayed fixed for all iterations. The RF was implemented using the
python programming language using scikit-learn library.

2.8.2. Neural Network

Neural network (NN) regression has also been assessed for its ability to estimate soil
moisture [29,50,51]. Neural networks are constructed from several neurons that make
mathematical decisions to deal with complex issues. The simplest neural network has an
input, hidden, and output layer. As the complexity of the problem increases, the complexity
of the NN model also increases as more hidden layers are used. In this study, we use a
feed-forward multi-layer perceptron (MLP) neural network [52]. We used the rectified
linear units (ReLU) activation function. ReLU is an often-used activation function because
it is less computationally expensive in comparison to other activation functions like Tanh
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and Sigmoid. The ReLU activation function is used as the non-linear function for hidden
layers and as with other regression problems, a linear function was considered for the
output layer.

Table 6. The selected features from trial and error, FFS and BFS feature selection methods for each crop independently.

Feature
Feature Selection Method

Trial and Error FFS BFS

SB WH CO SB WH CO SB WH CO

FD Surface • • • •
FD Dihedral • • • •
FD Volume • •
VZ Surface • • • •

VZ Dihedral • •
VZ Volume • • •

Alpha • • • • • • •
Anisotropy • • • • • • • •

Entropy • • • • •
RMS-H • • • • • • • • •

Correlation Length • • • • • • • • •
HH • • • •
VH • • •
VV • • •

HH/VV • • • • •
VV/VH • • •
HV/HH •
Sur/Di • • •

Sur/(Sur + Di + Vol) • •
Total Features 9 10 9 5 5 5 13 13 12

SB = soybeans; WH = wheat; CO = corn; FFS = Forward Feature Selection; BFS = Backward Feature Selection.

To determine the best values for the weight parameters, the loss function provides the
opportunity to specify the appropriate weights. There are different statistical parameters
available in the regression context for loss value estimation such as root mean squared
error (RMSE), mean absolute error (MAE), and mean bias error (MBE), which specify the
goodness of weight parameters. Lower loss values indicate better weight parameters. In
Equations (16) to (18) yi refers to actual observation, ŷi refers to model estimated values,
and yi is the mean value of all y in the range 1 to N. N is the number of sample points.
The R-squared, RMSE, MAE, and MBE parameters are used as metrics of model accuracy
(Equations (16) to (19)).

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2, (16)

MAE =
1
N ∑N

i=1|yi − ŷi|, (17)

R2 = 1−
1
N ∑N

i=1(yi − ŷi)
2

1
N ∑N

i=1(yi − yi)
2 , (18)

MBE =
1
N ∑N

i=1(ŷi − yi). (19)
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Figure 2 demonstrates the flowchart of this study as explained earlier.

Figure 2. Workflow describing the application of Synthetic Aperture Radar (SAR) decompositions,
polarimetric feature selection, selection of training and testing data, and application of machine
learning algorithms for soil moisture retrieval.

In this study, all accuracy metrics including R-squared, RMSE, and MAE parameters
were calculated and demonstrated in the results section on the test set subcategory to
evaluate the performance of the trained algorithm on an unseen dataset. All accuracy
parameters evaluated in Python Programming Language using scikit-learn library.

2.9. Feature Selection

Feature selection helps to order features in terms of their importance in algorithm
performance and with respect to their performance in predictions [53,54]. Feature selection
helps to prune inputs to prevent overfitting and reduces training time. In some cases,
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the presence of irrelevant features can negatively impact results and reduce the final
accuracy [55]. In real world regression problems like soil moisture retrieval, a non-linear
relationship exists between features and target. Also, in most cases, all features have non-
normal distribution and lie in different ranges. To deal with these problems, all datasets
were normalized before preprocessing to bring all feature values to the specified range.
There are different manual and automatic methods for feature selection including trial
and error, backward feature selection, and forward feature selection methods, with three
selected for evaluation in this study.

2.9.1. Trial and Error

In this study, the Pearson correlation matrix, in this study known as correlation matrix,
is used to document the correlation between soil moisture and each polarimetric feature.
This graphic is also a convenient approach to tabulate the correlation between features.
The high correlation coefficient is indicative of the redundancy of some features [56]. To
assess whether highly correlated features lead to R-squared reduction or not which is a
debatable topic, the performance of the algorithm was tested by adding remaining features
that are highly correlated to the main features (R-squared > |0.5|).

As an initial step, polarimetric features were arranged based on their individual
correlation (linear correlation) with soil moisture. Next, the features with the highest
correlation (labeled here as main features) were used individually in the soil moisture
algorithms and assessed for accuracy. To determine if the value is added by including
additional remaining polarimetric features, the correlation between main and remaining
features were calculated. Correlated features can decrease estimation accuracy and typically
the most relevant features for target estimation are not highly correlated. To test this
hypothesis, a ± 0.5 Pearson correlation coefficient (R) value threshold was set. Feature
sets are divided into two categories. Category one contains remaining features with a
correlation to main features of less or equal to |0.5| and category two with correlations
more than |0.5|. As the first step, features in category one were arranged based on lower to
higher correlation value with the ‘main’ feature. The features were added to the algorithm
based on their arrangement. After each feature entrance, the accuracy metric (R-squared)
was assessed to evaluate the performance of each feature on accuracy modification. The
remaining features are retained only if R-squared accuracies of soil moisture estimation
did not change or accuracies increased. After testing the features in category one, all the
above-mentioned steps were repeated on highly correlated features (category two). In some
cases, the addition of these highly correlated features not only does not reduce accuracies
but also improves soil moisture estimates. Given these findings, the correlated features
which improved accuracies are retained. The list of selected features is provided in Table 5.

2.9.2. Backward Feature Selection (BFS)

BFS is a wrapper feature selection technique that uses a grid search procedure for
irrelevant feature elimination [57]. In this technique, all of the features were used as
initial inputs to the algorithm. Then the process of removing the least relevant features
was initiated and the performance of the algorithm was evaluated in each iteration. The
element which had the least positive effect on algorithm performance was deleted. The
metric for performance evaluation of the model was a p-value greater than 0.05 which
means that the features that have p-values greater than 0.05 are deleted from the feature list.
These steps were repeated until a level of stability was reached, such that the R-squared
value did not change significantly by removing the features.

2.9.3. Forward Feature Selection (FFS)

FFS is another wrapper feature selection technique that is initiated with an empty
set of features [58]. Features were first normalized to values from zero to one. Then the
correlation between features was evaluated and features with a correlation (R-value) that
exceeds |0.5| were removed from the input list. All remaining elements were evaluated
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separately. In each iteration, the feature that provided the best accuracy was selected
and retained. In each subsequent iteration, the remaining features were added to the last
version to find the next best feature. This procedure continued until all the features were
assessed. One of the negative points of this algorithm relates to this fact that by adding a
feature to the algorithm, it would not be removed from the algorithm.

3. Results
3.1. Feature Selection

Correlation matrixes were generated for each individual crop to document the correla-
tion between measured soil moisture and each feature, as well as among features. These
correlation matrixes for soybeans, wheat, and corn are provided in Figure 3.

A cross-comparison of results from the three feature selection approaches is docu-
mented in Table 6. Features including the roughness parameters (RMS-H and correlation
length) were selected regardless of which selection method was applied. The roughness pa-
rameters highly affected SAR backscattered signals which led to over and underestimation
of soil moisture retrieval. It is therefore logical that the availability of surface roughness
information helps soil moisture retrieval with higher accuracy. In some cases, the HH
backscatter parameter also showed good performance for soil moisture retrieval which
proves the sensitivity of HH polarization to moisture content. In most cases, anisotropy
parameter was one of the most important parameters in different algorithms. As expressed
by Cloude et al., 2000 [59] and Hajnesk et al., 2002 [60] anisotropy parameter is sensitive
to soil surface roughness. This suggests that these parameters are likely to be important
contributors to soil moisture retrieval. Other features, including volume scattering freeman,
dihedral scattering van zyl, HV

HH and surface scattering
surface + dihedral + volume are selected only by some of

the feature selection methods. These features may contribute to the modeling of moisture
but are likely to be less important.

Figure 3. Cont.
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Figure 3. Correlation matrixes for soybeans, wheat, and corn. These correlation matrixes docu-
ment the correlation between soil moisture and polarimetric features, and the correlation between
polarimetric features. HH = transmits and recieves Horizontal Polarization; VH = transmits Ver-
tical and recieves Horizontal Polarization; VV = transmits and recieves Vertical Polarization; FD
Dideral = Freeman Decomposition Dihedral scattering; FD Surface = Freeman Decomposition Sur-
face scattering; FD Volume = Freeman Decomposition Volume scattering; VZ Dideral = van zyl
Decomposition Dihedral scattering; VZ Surface = van zyl Decomposition Surface scattering; VZ
Volume = van zyl Decomposition Volume scattering; Sur = Surface Scattering; Di= Dihedral scattering;
Vol = Volume Scattering.
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3.2. Soil Moisture Estimation Using a Random Forest (RF) Algorithm

The accuracy of soil moisture retrieval, using features selected by trial and error, is
similar to accuracies when all features are used in an RF algorithm. As such, from this
analysis, it is reasonable to conclude that a limited number of features (in this case less than
half) can deliver accurate soil moisture estimates. Some features, specifically the surface
roughness parameters (RMS-H and Correlation Length), are selected for all RF runs. Some
features like alpha and anisotropy are chosen from most runs. The feature importance
option in RF models provides this opportunity to rank the features as very convenient and
efficient. From this option, the authors found out and acknowledged that selected features
(features with higher importance) have higher importance for soil moisture retrieval. The
best results are reported for soybeans. For this crop, features selected using trial and error
as inputs to the RF delivered a high correlation of determination of R2 = 0.86. The poorest
results were found when the FFS feature selection was applied to estimate soil moisture for
corn fields (R2 = 0.51). (More accurate soil moisture estimates were reported for soybean
fields compared to wheat and corn. The canopy of soybean crops was more open and
soybeans accumulated less above-ground biomass. For corn and wheat crops, SAR signals
interacted more with less large canopies, and even at L-band, less direct soil scattering
contributions occurred.

Trial and error feature reduction procedure delivered results comparable to soil mois-
ture retrieval outcomes when all features were input. In the final step of trial and error
some highly correlated features were retained, and these remaining features although
highly correlated with main features, appeared to be important in soil moisture retrieval.
The features selected by the BFS delivered the second most accurate estimates, with the
FFS selected features the least accurate. The FFS feature reduction method, coupled with
the RF algorithm, produced the lowest soil moisture accuracies for all crop types, and this
may be due to the fact that FFS selects the fewest input features. All the accuracy results
in Table 7 are acquired from the unseen dataset. Soil moisture retrieval results over test
dataset are given in Figure 4.

Table 7. Soil moisture retrieval accuracies using selected features from Table 6 and a random
forest algorithm.

R2 RMSE (m3 m−3) MAE (m3 m−3) MBE (m3 m−3)

Soybeans 0.86 0.041 0.030 0.001
Wheat 0.85 0.042 0.032 0.032
Corn 0.68 0.032 0.024 −0.002

Soybeans 0.86 0.041 0.030 0.000
Wheat 0.83 0.041 0.033 0.000
Corn 0.60 0.033 0.026 −0.003

Soybeans 0.85 0.043 0.031 0.001
Wheat 0.83 0.042 0.033 0.000
Corn 0.57 0.038 0.027 0.000

Soybeans 0.84 0.043 0.031 0.001
Wheat 0.81 0.045 0.033 0.000
Corn 0.51 0.039 0.028 −0.002

The red line is known as the line of best fit. This line in each scatter plot best expresses
the relationship between measured and estimated moisture value. The closer sample points
to line of best fit leads to higher correlation values between measured and retrieved soil
moisture increases. Like any real-world issue, it’s a very usual phenomenon that predicted
values for some sample point could be different from ground truth values. SAR signal is
sensitive to different parameters in addition to soil moisture including vegetation effects
and also surface roughness parameters. These parameters lead to biases when it comes to
the sample points located outside the line of best fit.
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Figure 4. Cont.
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Figure 4. Soil moisture retrieved using a random forest (RF) algorithm plotted against field-measured soil moisture. Four
plots are provided for each crop type (soybeans, wheat, and corn). For each crop type, soil moisture retrieval results are
provided based on (a) all extracted features, and also using features selected by (b) trial and error, (c) forward feature
selection (FFS), and (d) backward feature selection (BFS) selection procedures.
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3.3. Soil Moisture Estimation Using a Neural Network Algorithm

As with the RF analysis, the NN algorithm was tested for soil moisture retrieval using
all available features as well as features selected by trial and error, BFS, and FFS methods.
Soil moisture retrieval results for the validation dataset for each feature selection method
and crop type are given in Figure 5 and Table 8.

The best results are obtained using all the extracted features. As with the RF runs, the
most accurate estimates of soil moisture using an NN are for soybean fields with R2 = 0.80
(all extracted features used as inputs). The highest errors are reported for corn using FFS
selected features R2 = 0.40. The poorer performance for corn fields is not unexpected given
the large biomass associated with this crop canopy. At peak biomass, corn fields in the
SMAPVEX12 study site had approximately four times the fresh biomass relative to soybean
crops (approximately 4000 gm−2 for corn compared to 1000 gm−2 for soybean) [35] with
the height of the corn canopy averaging 2–2.5 m at peak growth [61]. The size of this corn
canopy would impede even L-band wavelengths (here 23.8 cm) from reaching the soil
unimpeded by volume scattering from the crop leaves and stalks. Soybean canopies are not
only lower in biomass and height, but have wider row spacing than crops like wheat. In
this region of Manitoba, soybean row spacing varies but the median spacing between rows
is relatively high (approximately 64 cm). This lower canopy and wider row spacing offer
ample opportunity for the penetration of L-band waves and direct interaction with the soil.
The BFS approach selected about half of the available features, with the best performance
for soil moisture retrieval for soybean, wheat, and corn fields. Outcomes in Table 8 were
acquired on the test dataset.

Figure 5. Cont.
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Figure 5. Soil moisture retrieved using a Neural Network algorithm plotted against field-measured soil moisture. Four
plots are provided for each crop type (soybeans, wheat, and corn). For each crop type, soil moisture retrieval results are
provided based on (a) all extracted features, and also using features selected by (b) trial and error, (c) FFS, and (d) BFS
selection procedures.
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Table 8. Accuracy statistics for estimating soil moisture using a neural network algorithm for soybean,
wheat, and corn canopies, and different feature selection approaches.

R2 RMSE (m3 m−3) MAE (m3 m−3) MBE (m3 m−3)

Soybeans 0.80 0.044 0.034 0.006
Wheat 0.77 0.047 0.036 0.000
Corn 0.70 0.034 0.027 0.003

Soybeans 0.76 0.048 0.030 0.008
Wheat 0.71 0.051 0.033 −0.006
Corn 0.62 0.040 0.026 −0.004

Soybeans 0.78 0.045 0.035 0.001
Wheat 0.72 0.051 0.040 −0.010

Corn 0.67 0.035 0.027 0.001

Soybeans 0.71 0.050 0.039 0.011
Wheat 0.73 0.051 0.039 0.005
Corn 0.40 0.044 0.035 −0.002

3.4. Comparison between RF and NN Algorithms

When the results of the RF and NN algorithms were compared using the same selected
features, random forest estimates soil moisture to a higher accuracy regardless of crop type.

Several parameters have direct impacts on backscattered SAR signals toward the
sensor including the crop height and biomass [24]. At early crop growth stages, most of the
backscatter is related to soil surface impacts. Moving forward to the middle of the growing
season, the soil surface impacts on the backscattered signal is decreased and it reaches its
lowest amount at the pick of the crop growth stage. During the SMAPVEX12 campaign,
data were collected from crop emergence (17 June) to fully developed crop growth stages
(17 July). Therefore, the vegetation impacts on soil moisture estimation modeling were
significant. However, using the polarimetric decomposition parameters, the soil moisture
estimation accuracies were at the promising RMSE range of 0.03–0.05 m3 m−3 for both RF
and NN algorithms and all the crop types.

4. Discussion

This study investigates the potential of L-Band Synthetic Aperture Radar (SAR) po-
larimetric features for soil moisture retrieval under three crop canopies (corn, soybeans,
and wheat). Three feature selection approaches are assessed including trial and error,
BFS, and FFS. The polarimetric features evaluated are derived from the model-based
Freeman–Durden decomposition and the Eigenvalue-Eigenvector based H/A/α and Van
Zyl decompositions. Other SAR inputs include backscatter intensities (HH, VV, and HV
polarizations), polarization ratios, and roughness parameters. Selected features are used as
input into both a random forest and the multi-layer perceptron neural network algorithm
with estimated soil moisture validated against field-measured moisture. The research uses
airborne UAVSAR data and field data collected in Manitoba (Canada) during the Soil
Moisture Active Passive Validation Experiment 2012 (SMAPVEX12).

Considering other studies, Özerdem et al., 2017 [27] used the backscattering coeffi-
cients, H/A/α and Freeman–Durden polarimetric features extracted from the C-band quad
polarimetric Radarsat-2 data to retrieve soil moisture over agricultural regions. They used
the Generalized Regression Neural Network as their soil moisture estimation algorithm.
They divided their dataset into bare soil, low vegetation cover, and high vegetation cover
and derived R = 0.92, R = 0.80, R = 0.74 between the measured and estimated soil moisture
for these three vegetation cover ranges, respectively. Özerdem et al., 2017 stated that the
lack of surface roughness data was one of the main restrictions. Also, the crop type is not
determined in this study. In another case, Wang et al., 2016 [24] confined the potential of
model-based Cloude–Pottier to surface scattering mechanism. They retrieved soil moisture
with RMSE = 0.06 to 0.12 m3 m−3 just on pixels with dominant surface scattering mecha-
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nism. The proposed method restricted the proposed algorithm’s capability for soil moisture
retrieval over regions with dominant volume and dihedral scattering mechanisms. In other
research, Wang et al., 2017 [25] checked the potential of three polarimetric model-based
decompositions (Freeman–Durden, Hajnesk, and An) for soil moisture retrieval. They
removed the volume scattering component to investigate the potential of surface and
dihedral scattering mechanisms over corn, canola, soybeans, and wheat vegetation covered
fields. However, they neglected the potential of volume scattering component on soil mois-
ture retrieval over the agricultural region. Hajdu et al., 2018 [30] used C-band Sentinel-1
data and the random forest algorithm for soil moisture estimation over agricultural fields.
They used a backscattered signal (VV polarization, vegetation index, and terrain attributes
(slope, aspect, roughness, and wetness index)) for soil moisture retrieval. Similar to what
we demonstrated in this study, their results showed that random forest was able to learn
the non-linear relationship between ground-based and remotely-sensed parameters and
derived R2 = 0.86 between the measured and estimated soil moisture. Hajdu et al. used a
dual-polarized dataset which records the limited complexity of the targets in comparison
to the Polarimetric SAR dataset. Millard et al., 2018 [62] used Polarimetric Radarsat-2,
MODIS, and Lidar data for soil moisture prediction in presence of dynamic surface and
vegetation phenomena. The vegetation information was derived from a multi-date MODIS
dataset. They applied empirical CART and random forest regression models for soil mois-
ture retrieval to determine the relationship between SAR derived variables, Lidar-derived
dynamic surface roughness, vegetation features at the vegetation-covered region with
ground measured soil moisture values. Using Lidar-derived dynamic parameters is one
of the attractive points of Millard’s study which provides the opportunity to evaluate the
effect of surface roughness without ground-measured values.

In comparison to some studies like what was proposed by Hadju et al., 2018 and
Millard et al., 2018, which used multi-source information, our results prove that the
potential of polarimetric SAR extracted features provide comparable results for highly
accurate soil moisture retrieval using only UAVSAR dataset. In comparison to some
studies which retrieved soil moisture using dual-polarized information, a fully polarimetric
UAVSAR sensor can record more information. The results obtained from some studies
(like [27,30]) confirm the fact that more and various feature extraction could not be a
solution for soil moisture retrieval with better accuracy. One of the main results in this
study shows that in some cases the same accuracy could be obtained using a lower number
of features.

In this research, the authors also utilized the potential of volume and dihedral scat-
tering like surface scattering and did not refuse part of this information for soil moisture
retrieval over vegetation coverage. In our study, it was also proven that the roughness pa-
rameters have significant impacts on soil moisture retrieval accuracy. A brief description of
the above-mentioned studies is listed in Table 9. The algorithms were tested over soybeans,
wheat, and corn crops separately to determine the potential of the same NN-MLP and RF
algorithms over a specific feature set for each field. The results obtained from these studies
confirm the fact that more and various feature extraction could not be a solution for soil
moisture retrieval with the highest accuracy. One of the main results in this study shows
that in some cases the same accuracy could be obtained using a lower number of features
and some features like roughness parameters, HH backscatter intensity, and anisotropy
features were most important for soil moisture retrieval over this agricultural landscape.
The final results show comparable results with similar studies as demonstrated in Table 9.

The algorithms were tested over soybeans, wheat, and corn crops separately to de-
termine the potential of the same NN-MLP and RF algorithms over a specific feature set
for each field. The results obtained from these studies confirm the fact that more and
various feature extraction could not be a solution for soil moisture retrieval with the highest
accuracy. One of the main results in this study shows that in some cases the same accuracy
could be obtained using a lower number of features and some features like roughness
parameters, HH backscatter intensity, and anisotropy features were most important for
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soil moisture retrieval over this agricultural landscape. The final results show comparable
results with similar studies as demonstrated in Table 9.

Table 9. A summary of above-mentioned studies for soil moisture retrieval using SAR dataset (PD = polarimetric decomposition).

Source Dataset Land Cover Best/Worst Result Model

Our study UAVSAR Agricultural region R2 = 0.86
R2 = 0.40

RF, NN

[24] UAVSAR Agricultural region RMSE = 0.06 m3 m−3

RMSE = 0.12 m3 m−3 Simplified PD

[25] UAVSAR Agricultural region RMSE = 0.06 m3 m−3

RMSE = 0.11 m3 m−3 Model-based PD

[27] Radarsat-2 Agricultural region R = 0.95
R = 0.63 GRNN

[30] Sentinel-1 Agricultural region R2 = 0.86 RF

[62] Radarsat-2, Lidar,
MODIS Peatland 0.14 < R2 < 0.66 RF, CART

5. Conclusions

According to this research, the random forest algorithm provides higher accuracies
for soil moisture estimation when compared to the neural network when using identi-
cal features. The better performance of the RF is observed for all three crop types and
holds regardless of the feature selection methods used (trial and error, BFS, or FFS). The
best results are achieved for lower biomass soybean fields using the RF, with statistical
performance metrics of the coefficient of determination R2 = 0.86, root mean square error
(RMSE) = 0.041 m3 m−3 and mean average error (MAE) = 0.030 m3 m−3. The least accurate
results are reported for corn canopies using a NN algorithm and the FFS feature selection
approach (R2 = 0.40, RMSE = 0.044 m3 m−3 and MAE = 0.035 m3 m−3). This study demon-
strated that the accuracy of soil moisture estimation does not depend exclusively on the
number of features selected for input to retrieval algorithms. That means in some cases,
relatively similar results were obtained using fewer features.

Until now, no ground soil moisture measurement project had measured surface rough-
ness for all sample points. Due to the considerable effect of surface roughness for high
accuracy soil moisture retrieval, the roughness parameters could be provided using some
factors like the land cover, land usage, or very high-resolution bare earth DEM in fu-
ture studies.
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