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Abstract: In viticulture, information about vine vigour is a key input for decision-making in con-
nection with production targets. Pruning weight (PW), a quantitative variable used as indicator of
vegetative vigour, is associated with the quantity and quality of the grapes. Interest has been growing
in recent years around the use of unmanned aerial vehicles (UAVs) or drones fitted with remote
sensing facilities for more efficient crop management and the production of higher quality wine.
Current research has shown that grape production, leaf area index, biomass, and other viticulture
variables can be estimated by UAV imagery analysis. Although SfM lowers costs, saves time, and
reduces the amount and type of resources needed, a review of the literature revealed no studies on
its use to determine vineyard pruning weight. The main objective of this study was to predict PW
in vineyards from a 3D point cloud generated with RGB images captured by a standard drone and
processed by SfM. In this work, vertical and oblique aerial images were taken in two vineyards of
Godello and Mencía varieties during the 2019 and 2020 seasons using a conventional Phantom 4 Pro
drone. Pruning weight was measured on sampling grids comprising 28 calibration cells for Godello
and 59 total cells for Mencía (39 calibration cells and 20 independent validation). The volume of
vegetation (V) was estimated from the generated 3D point cloud and PW was estimated by linear re-
gression analysis taking V as predictor variable. When the results were leave-one-out cross-validated
(LOOCV), the R2 was found to be 0.71 and the RMSE 224.5 (g) for the PW estimate in Mencía 2020,
calculated for the 39 calibration cells on the grounds of oblique images. The regression analysis
results for the 20 validation samples taken independently of the rest (R2 = 0.62; RMSE = 249.3 g)
confirmed the viability of using the SfM as a fast, non-destructive, low-cost procedure for estimating
pruning weight.

Keywords: drone; RGB imagery; structure from motion (SfM); viticulture; pruning weight

1. Introduction

The 107 million hectolitre international demand for wine in 2018 translated into EUR
9 × 109 in export revenues for France, EUR 6 × 109 for Italy, and EUR 3 × 109 for Spain,
although Spain exported a higher volume than either of its neighbours [1]. Those figures
provide eloquent proof of the need to efficiently produce quality wine to compete effectively
on an ever-more demanding market and ensure the profitability of wine production. That in
turn calls for harvest monitoring and routine data gathering of vine parameters indicative
of crop condition. Routine data collection of that nature enables farmers to adopt the sort
of decisions early in the season that favour the production of higher quality wine at a
lower cost.

Variables such as plant height, canopy volume or leaf area may afford growers with
information on canopy structure, estimated production, and vine condition, parameters
that can be used to predict harvest quantity and quality [2–5]. Such information was

Agronomy 2021, 11, 2489. https://doi.org/10.3390/agronomy11122489 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-3935-5197
https://orcid.org/0000-0001-9975-5726
https://orcid.org/0000-0002-5758-5420
https://orcid.org/0000-0002-7776-2623
https://doi.org/10.3390/agronomy11122489
https://doi.org/10.3390/agronomy11122489
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11122489
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy11122489?type=check_update&version=1


Agronomy 2021, 11, 2489 2 of 13

traditionally acquired with conventional repetitive sampling-based methods that are nor-
mally slow, costly, and impractical where large areas are involved [6,7]. The vast resources
required for such endeavours have induced researchers to analyse remote sensing tools
to lower the economic cost of and time devoted to standard sampling for more efficient
information gathering on vine condition [8].

Research exploring remote detection tools has led to the development of methods
applying: laser image detection and ranging (LiDAR) to collect information on vine
structure [7,9]; field spectroscopy to determine crop water content [10,11]; the MS Kinect
device for pre-harvest production predictions [12]; and aerial photos from which to assess
wine characteristics [13,14].

Imaging-based vineyard studies have focused particular attention on assessing the
scans conducted with unmanned aerial vehicles (UAVs) or drones. Such interest has been
sparked by the shorter time needed to plan flights and replace sensors, along with the lower
cost and high geometric resolution and precision timing afforded by such platforms [15–18].
Thanks to UAV imagery biomass can be estimated, missing plants identified [19–21], vigour
maps drawn [13,22], and quality variables predicted [23,24] from vegetation indices and
digital image processing.

Advances in UAV-mediated technology and software have been applied by any
number of researchers deploying structure from motion (SfM) photogrammetry to build
high-precision three-dimensional models. SfM delivers point-cloud models at much lower
expense than other technologies such as LiDAR. As SfM image orientation is based on au-
tomatic calibration, the procedure accommodates conventional non-metric cameras lacking
calibration certificates, such as used in other studies to develop three-dimensional crop
models [25]. Research deploying three-dimensional modelling has successfully gathered
information on production quality variables such as harvest weight to estimate yield, leaf
area index (LAI) for information on vineyard environmental conditions, and vine volume
to improve crop management and reduce inputs [26–28].

Quality parameters include pruning weight (PW), a quantitative variable used as
an indicator of plant vigour associated with the quantity and quality of the grapes har-
vested [29–31]. The smaller field sampling effort needed to collect information on this
variable entails substantial cost savings for viticulturists redounding to more efficient
production management.

A number of studies have been conducted to assess vine pruning weight with remote
sensing methods [32–34]. Ground LiDAR-based techniques have contributed significantly
to characterising and modelling vine structure from trunk and cordon volume and pruning
weight [33]. As vine canopy volume can be used to estimate parameters related to pruning
weight parameters such as biomass and leaf area, proximal imaging sensors are valid
alternatives to traditional methods [32–34].

Multispectral aerial photographs have been used to map vineyard geometry-related
vegetation indices such as NDVI (normalised difference vegetation index) and develop
models for estimating pruning weight for which coefficients of determination upward of
0.75 have been reported [35,36]. UAV multispectral image-based pruning weight can be es-
timated by calculating relationships from infrared band-based vegetation indices (Pearson
correlation coefficient, r = 0.58) or regression models relating biomass to pruning debris
determined with three-dimensional vineyard imaging [27,37]. In other UAV applications
RGB imagery has been deployed to model vineyard geometry and estimate pruning weight
with multiple linear regression taking geometric statistics such as the Pearson correlation,
verified with root mean square error (RMSE), as predictor variables [38,39].

In light of the foregoing discussion, the main objective of this study was estimate
pruning weight in vineyards from a 3D point cloud generated with conventional images
captured by a standard drone and processed by structure from motion photogrammetry.
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2. Materials and Methods
2.1. Study Area

The study area comprised two vineyards, each growing a different variety of grape,
one Mencía and the other Godello. Both were located in Cacabelos, a municipality in
the Spanish province of León. The 0.7 ha Mencía field (centre point coordinates: 683,675,
4,721,110 CRS UTM29N/ETRS89) was planted in 2005 with northeast to southwest-oriented
trellises spaced at 1.8 m in rows and 1 m between rows. It stands at an altitude of 615 m
on a 0–4.5% grade and features sandy-loam soil. Godello vineyard was planted in 2010
on a plot running from east to west and characterised by sandy loam soil. The field
of Godello has 0.25 ha trellises characterised by 3.0 × 1.0 m spacing. Its centre point
coordinates are 683,865, 4,720,475 CRS UTM29N/ETRS89 at an altitude of 595 m on land
with a 0–2.3 % grade.

2.2. Experimental Procedure

The methodology applied is summarised in the flowchart in Figure 1. Field data
collection consisted in selecting and geo-referencing the sampling plots and control points,
UAV digital-imaging and pruning the vines and weighing the pruned wood. Digital image
processing entailed building 3D point clouds for the vineyards, modelling the vine canopy
and calculating sample cell volume. The cell volume-pruning weight curve was fitted using
OLS linear regression, and the respective regression models were subsequently validated.
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2.3. Sampling Cells

Two consecutive vines were selected as sampling cells. In the pattern followed for
selection in the Mencía vineyard, the cells were spaced at a mean distance of 18.50 m in
each row with five rows between one set of cells and the next. In the Godello field the cells
were positioned on every other row and spaced at a mean in-row distance of 11.65 m. A
total of 39 cells were selected to calibrate the Mencía data and 28 the Godello values. The
cell arrangements in the two seasons studied are shown in Figure 2.
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Figure 2. Sampling cell arrangement in the vineyards studied: (a), Mencía 2019; (b), Mencía 2020;
(c), Godello 2019; (d), Godello 2020 (background images orthorectified for each vineyard and season).

In the 2020 season, 20 additional sample cells were selected in the Mencía vineyard
for validation (black rectangles in Figure 2b).

The ground control points in all sampling cells were geo-referenced with a Leica
Viva GNSS GS08 Plus receiver (Leica Geosystems A.G., Heerbrugg, Switzerland), working
in RTK (real-time kinematics) mode and linked to the Castilla y León GNSS network
(VRS3-format RTCM 3.0).

Pruning materials were weighed in situ at season end on a calibrated and fully levelled
field scales.
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2.4. Drone Imaging

Drone images were captured on 1 August 2019 in the Mencía and 22 August in the
Godello vineyard, whilst in 2020 the UAV was flown over both vineyards on the same date,
3 September. The images were captured beginning at 12:00 local time (UTC + 2 in daylight
saving time) in optimal weather conditions, using a DJI Phantom 4 Professional UAV (SZ
DJI Technology Co, Ltd., Shenzhen, China) fitted with a built-in DJI FC6310 sensor. Flights
were programmed with DJI GS Pro (SZ DJI Technology Co, Ltd., Shenzhen, China)) IOS
software installed on an iPad. Transverse and longitudinal images were captured with 70 %
overlaps and the exposure parameters such as aperture, exposure time, ISO sensitivity, and
white balance were pre-set.

In 2019, the vineyards were scanned with vertical flight paths at altitudes of 40 m in
Mencía and 30 m in Godello. In 2020, they were scanned obliquely, in Mencía at 20 m off
the ground using a camera angle of −30◦ and on Godello at a height of 24 m using a −60◦

camera angle.
Nine ground control points each, uniformly distributed to geo-reference the images in

the SRC UTM29N/ETRS 89 system were established at Mencía and Godello, measuring the
coordinates with the GNSS receiver cited earlier. The flight parameters for each vineyard
and season are summarised in Table 1.

Table 1. Flight parameters per vineyard and season.

Mencía Godello

2019 2020 2019 2020

Parameter

Projection Vertical Oblique Vertical Oblique
Camera angle (◦) −90 −30 −90 −60
Control points 9 9 9 9
Flight altitude (m) 40 20 30 24

2.5. Digital Image Processing

The aerial images were processed using Agisoft Photoscan V1.3.1 (Agisoft LLC,
St. Petersburg, Russia) commercial software, which uses structure from motion photogram-
metry to reconstruct the surface by matching images and automatically identify homol-
ogous points in each orientation operation. The photogrammetric stages consisted of
image alignment, sparse point model optimisation, dense point cloud construction, and
orthoimage creation. Parameter values were calculated to the criteria recommended by
the software developers. Images were aligned with the high accuracy feature enabled
and the two preselection options provided (generic and reference); camera performance
was optimised by calculating focal length (f), principal point coordinates (cx, cy), radial
distortion coefficients (k1, k2, k3), and tangential distortion coefficients (p1, p2); point
clouds were processed with medium quality and no depth filtering, whilst orthoimages
were built without colour correction. In this stage, control points were used to scale the
model and correct camera parameter and reference coordinate misalignment errors. Dense
point cloud construction was based on camera positions optimised by calculating unfiltered
pairwise-aligned depth maps and applying the result to the final dense point cloud.

The 3D point cloud was processed to find the volume for each sampling cell using
ArcGIS v10.7.1 (ESRI Inc., Redlands, CA, USA) GIS-based commercial software and LiDAR-
based LAStools V1.4 (Rapidlasso GmbH, Gilching, Germany) software. A step-by-step
approach was adopted to build (1) the digital terrain (DTM), (2) vineyard vegetation canopy
model, (3) corresponding areas to sampling unit, and (4) sampling unit volume.

The DTM was developed using a dense point cloud DEM and ArcGIS v10.4.1 software.
Both the DTM and the dense point cloud were exported in *.las format and processed to
build the vineyard vegetation canopy model, subsequently divided into sampling cells
in shapefile format. The result was then processed using the ArcGIS v10.4.1 software
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minimum bounding volume feature to calculate sampling cell volume, exported as tables.
The features used at each step are given in Figure 1.

2.6. Pruning Weight Statistics

The primary pruning weight statistics are listed in Table 2, that include number of
samples (No.), Minimum, Maximum, Range, Median, Mean, Standard Deviation (SD) and
Coefficient of Variation (CV). As the pruning wood samples selected for weighing were
drawn from the same field and season, the values were fairly uniform, with CV < 50 %,
denoting reasonable scatter. The validation method used in this study was deemed suitable
for the sample size and pruning weight variability observed.

Table 2. Pruning weight statistics.

Season Vineyard No. Minimum
(g)

Maximum
(g) Range (g) Median

(g) Mean (g) SD (g) CV

2019 Mencía 39 200 2800 2600 1240 1307.18 527.49 40%
Godello 28 400 3460 3060 1560 1792.14 754.63 42%

2020 Mencía 39 220 2220 2000 1000 1066.67 419.69 39%
Godello 28 860 2680 1820 1410 1540.36 491.92 32%
* Mencía 20 180 1840 1660 980 1026.50 370.98 36%

* Mencía: separate dataset used for validation.

2.7. Statistical Analysis: Linear Regression and Validation

The linear regression equations relating predicted and observed data were formulated
using ordinary least squares (OLS) methodology, taking vine volume (minimum bounding
volume) as the predictor variable. The OLS methodology was previously evaluated by
other researchers for the estimation of variables using aerial and satellite images [40,41]
Two methods were used to validate the results. Leave-one-out cross validation (LOOCV)
was applied to validate the models built for each variety and season, running the procedure
on R script further to the steps described in [42]. In that procedure one item is left out
after each iteration and the rest of the sample used to fit the linear regression model. The
prediction error was computed after each iteration and the process repeated for all possible
combinations in the sample. The root mean square error (RMSE) and the coefficient of
determination (R2) were taken to be the mean of all the respective values found for each
LOOCV iteration. The second method involved separately validating the Mencía vineyard
in 2020 using a dataset comprising 20 sample cells (Table 2).

3. Results
3.1. Digital Image Processing

The image orientation findings are summarised in Table 3. All the images captured
by the drones were used to build the point cloud. Of the 426 images collected for the
Mencía variety in 2020, the points could be positioned for only 352, whereas all the images
comprising the other three cases could be used in the model.

The orthoimages obtained for the Mencía variety in the 2019 season (Figure 2a) fea-
tured 1 cm, and those for the 2020 season 0.5 cm, pixel spatial resolution (Figure 2b). The
orthoimages for the Godello variety in the 2019 season exhibited 0.8 cm (Figure 2c) and
those for the 2020 season 0.6 cm (Figure 2d) pixel spatial resolution. The orthoimages were
obtained with the setup summarised in Table 1.

The root mean square errors of the control points (RMSEXYZ) ranged from 5.0 to 9.0 cm
in the Mencía vineyard and from 3.7 to 7.0 cm in the Godello vineyard. These positioning
error values of the control points were deemed to be reasonable and acceptable for the
present research [43,44]. In both vineyards, the smallest RMSEXYZ were found for the
images an oblique angle, which were taken in 2020 season (RMSEXYZ = 5.0 cm in Mencía
and RMSEXYZ = 3.7 cm in Godello).
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Table 3. Digital processing data calculated with structure from motion procedures for UAV images
captured in the Mencía and Godello vineyards in 2019 and 2020.

Mencía Godello

2019 2020 2019 2020

Parameter

No. of cameras 172 426 141 385
No. of aligned cameras 172 352 141 385
RMSEXYZ (cm) 9.0 5.0 7.0 3.7
GSD (cm/pix) 1.0 0.5 0.8 0.6

Dense point cloud

Total No. of points 22,468,598 56,160,935 16,538,552 33,755,521
No. of sample cell points 93,108 210,653 153,028 281,214

Point cloud densification for the Mencía variety generated a total of nearly 22.5 M
points in the 2019 season and 56 M in 2020, with 93,108 attributable to sampling cells in
2019 and 210,653 in 2020. Analogously, point cloud densification for the Godello variety
generated a total of round 16.5 M points in 2019 season and just under 34 M in 2020, with
153,028 attributable to sampling cells in 2019 and 281,214 in 2020.

3.2. Statistical Analysis of Prediction Model Results

Predicted PW is plotted against observed pruning weight for the four cases studied in
Figure 3 (Mencía 2019 in Figure 3a, Godello 2019 in Figure 3b, Mencía 2020 in Figure 3c,
and Godello 2020 in Figure 3d), for which regression analysis identified good fits using
calculated volume (V) like predictor variable.

Table 4 shows the result of the goodness of fit calculated by LOOCV of the linear
regression models of the Figure 3, where LOOCV validation model were for Mencía 2019
R2 = 0.66 and RMSE = 304.5 g; for Godello 2019 R2 = 0.68 and RMSE = 421.1 g; for Mencía
2020 R2 = 0.71 and RMSE = 224.5 g; and for Godello 2020 R2 = 0.56 and RMSE = 319.9 g.

Table 4. Results of leave-one-out cross validation for predicted pruning weight.

Data Set Equation R2 RMSE (g)

Mencía 2019 PW = 2279.7 V − 560.1 0.66 304.5
Godello 2019 PW = 2293.0 V − 531.5 0.68 421.1
Mencía 2020 PW = 1572.6 V + 37.4 0.71 224.5
Godello 2020 PW = 1862.1 V + 149.3 0.56 319.9

PW: pruning weight; V: volume.

Figure 4 plots predicted PW against observed pruning weight for the Mencía valida-
tion calculated using the photogrammetric procedure described in Section 2.5. A fairly
close correlation was found with the respective regression analysis, with R2 = 0.62 and
RMSE = 249.3 g.



Agronomy 2021, 11, 2489 8 of 13

Agronomy 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

No. of aligned cam-

eras 
172 352 141 385 

RMSEXYZ (cm) 9.0 5.0 7.0 3.7 

GSD (cm/pix) 1.0 0.5 0.8 0.6 

     

Dense point cloud     

Total No. of points 22,468,598 56,160,935 16,538,552 33,755,521 

No. of sample cell 

points 
93,108 210,653 153,028 281,214 

The orthoimages obtained for the Mencía variety in the 2019 season (Figure 2a) fea-

tured 1 cm, and those for the 2020 season 0.5 cm, pixel spatial resolution (Figure 2b). The 

orthoimages for the Godello variety in the 2019 season exhibited 0.8 cm (Figure 2c) and 

those for the 2020 season 0.6 cm (Figure 2d) pixel spatial resolution. The orthoimages were 

obtained with the setup summarised in Table 1. 

The root mean square errors of the control points (RMSEXYZ) ranged from 5.0 to 9.0 

cm in the Mencía vineyard and from 3.7 to 7.0 cm in the Godello vineyard. These posi-

tioning error values of the control points were deemed to be reasonable and acceptable 

for the present research [43,44]. In both vineyards, the smallest RMSEXYZ were found for 

the images an oblique angle, which were taken in 2020 season (RMSEXYZ = 5.0 cm in Mencía 

and RMSEXYZ = 3.7 cm in Godello). 

Point cloud densification for the Mencía variety generated a total of nearly 22.5 M 

points in the 2019 season and 56 M in 2020, with 93,108 attributable to sampling cells in 

2019 and 210,653 in 2020. Analogously, point cloud densification for the Godello variety 

generated a total of round 16.5 M points in 2019 season and just under 34 M in 2020, with 

153,028 attributable to sampling cells in 2019 and 281,214 in 2020. 

3.2. Statistical Analysis of Prediction Model Results 

Predicted PW is plotted against observed pruning weight for the four cases studied 

in Figure 3 (Mencía 2019 in Figure 3a, Godello 2019 in Figure 3b, Mencía 2020 in Figure 

3c, and Godello 2020 in Figure 3d), for which regression analysis identified good fits using 

calculated volume (V) like predictor variable. 

 

(a) 

 

(b) 

Agronomy 2021, 11, x FOR PEER REVIEW 8 of 14 
 

 

 

(c) 

 

(d) 

Figure 3. Predicted vs. observed pruning weight validated with the leave-one-out cross procedure for: (a) Mencía 2019; 

(b) Godello 2019; (c) Mencía 2020; (d) Godello 2020 (dashed lines = 1:1) 

Table 4 shows the result of the goodness of fit calculated by LOOCV of the linear 

regression models of the Figure 3, where LOOCV validation model were for Mencía 2019 

R2 = 0.66 and RMSE = 304.5 g; for Godello 2019 R2 = 0.68 and RMSE = 421.1 g; for Mencía 

2020 R2 = 0.71 and RMSE = 224.5 g; and for Godello 2020 R2 = 0.56 and RMSE = 319.9 g. 

Table 4. Results of leave-one-out cross validation for predicted pruning weight. 

Data Set Equation R2 RMSE (g) 

Mencía 2019 PW= 2279.7 V − 560.1 0.66 304.5 

Godello 2019 PW= 2293.0 V − 531.5 0.68 421.1 

Mencía 2020 PW= 1572.6 V + 37.4 0.71 224.5 

Godello 2020 PW= 1862.1 V +149.3 0.56 319.9 

PW: pruning weight; V: volume. 

Figure 4 plots predicted PW against observed pruning weight for the Mencía valida-

tion calculated using the photogrammetric procedure described in Section 2.5. A fairly 

close correlation was found with the respective regression analysis, with R2 = 0.62 and 

RMSE = 249.3 g. 

Figure 3. Predicted vs. observed pruning weight validated with the leave-one-out cross procedure for: (a) Mencía 2019; (b)
Godello 2019; (c) Mencía 2020; (d) Godello 2020 (dashed lines = 1:1).



Agronomy 2021, 11, 2489 9 of 13
Agronomy 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 4. Predicted vs. observed pruning weight for the Mencía vineyard validated with inde-

pendently collected data (dashed line = 1.1). 

4. Discussion 

This study aimed primarily to assess RGB images captured by a low-cost drone to 

predict pruning weight in two varieties of grapevines from point clouds generated with 

structure-of-motion photogrammetry. Point clouds for precision viticulture studies are 

typically built from data acquired by LiDAR sensors in aerial or ground platforms to 

model canopy structure and calculate quantitative grapevine biomass variables. The use 

of such sensors may prove too costly to ensure crop profitability at a given end product 

market value. Drone-mediated conventional imaging is both a viable alternative, deliver-

ing results apt for accurate vine modelling and generally more affordable in terms of cost 

and resources. 

Here point clouds were built from SfM-processed images [45]. As the sensor used 

was geometrically calibrated via photogrammetry, the control points defined yielded a 

high-precision three-dimensional model of the geo-referenced crop [46]. The relationship 

between pruning weight and the respective point clouds was calculated in the laboratory 

using linear regression. 

UAV images were captured both vertically and obliquely for use in pruning weight 

predictions. The validation data for the 2019 season when the UAV captured the images 

at a 90° angle were, for Mencía 2019 R2 = 0.66 and RMSE = 304.5 g; and for Godello 2019 

R2 = 0.68 and RMSE 421.1 g. The results for the oblique scanning conducted in the 2020 

season were, for Mencía 2020 R2 = 0.71 and RMSE 224.5 g; and for Godello 2020 R2 = 0.56 

and RMSE = 319.9 g (Table 4). Attention is drawn to the particularly high accuracy for 

Mencía 2020. 

In earlier studies estimating quantitative variables such as crop height or leaf area 

index the authors found that that precision could be enhanced by including oblique im-

ages in the data analysed [47–49]. Those reports are consistent with the data given in Table 

3, according to which the positioning error for the reconstructed control points (RMSEXYZ) 

was smaller where oblique imaging was deployed [48]. 

Oblique photogrammetry delivered a 2.26-fold larger number of sampling cell data 

points than vertical photogrammetry for the Mencía vineyard and 1.83-fold more for the 

Godello vineyard (Table 3). The R2 for the cell canopy volume calculated to estimate prun-

ing weight was higher in the model generated from oblique photographs (Figure 5). That 

Figure 4. Predicted vs. observed pruning weight for the Mencía vineyard validated with indepen-
dently collected data (dashed line = 1.1).

4. Discussion

This study aimed primarily to assess RGB images captured by a low-cost drone to
predict pruning weight in two varieties of grapevines from point clouds generated with
structure-of-motion photogrammetry. Point clouds for precision viticulture studies are
typically built from data acquired by LiDAR sensors in aerial or ground platforms to model
canopy structure and calculate quantitative grapevine biomass variables. The use of such
sensors may prove too costly to ensure crop profitability at a given end product market
value. Drone-mediated conventional imaging is both a viable alternative, delivering
results apt for accurate vine modelling and generally more affordable in terms of cost
and resources.

Here point clouds were built from SfM-processed images [45]. As the sensor used
was geometrically calibrated via photogrammetry, the control points defined yielded a
high-precision three-dimensional model of the geo-referenced crop [46]. The relationship
between pruning weight and the respective point clouds was calculated in the laboratory
using linear regression.

UAV images were captured both vertically and obliquely for use in pruning weight
predictions. The validation data for the 2019 season when the UAV captured the images
at a 90◦ angle were, for Mencía 2019 R2 = 0.66 and RMSE = 304.5 g; and for Godello 2019
R2 = 0.68 and RMSE 421.1 g. The results for the oblique scanning conducted in the 2020
season were, for Mencía 2020 R2 = 0.71 and RMSE 224.5 g; and for Godello 2020 R2 = 0.56
and RMSE = 319.9 g (Table 4). Attention is drawn to the particularly high accuracy for
Mencía 2020.

In earlier studies estimating quantitative variables such as crop height or leaf area
index the authors found that that precision could be enhanced by including oblique images
in the data analysed [47–49]. Those reports are consistent with the data given in Table 3,
according to which the positioning error for the reconstructed control points (RMSEXYZ)
was smaller where oblique imaging was deployed [48].

Oblique photogrammetry delivered a 2.26-fold larger number of sampling cell data
points than vertical photogrammetry for the Mencía vineyard and 1.83-fold more for the
Godello vineyard (Table 3). The R2 for the cell canopy volume calculated to estimate
pruning weight was higher in the model generated from oblique photographs (Figure 5).
That finding was consistent with the data recorded by Che et al. [47], who found oblique
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images to improve the correlation in the SfM-generated three-dimensional model used to
estimate vegetation canopy parameters.
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The findings for the Godello vineyard in 2020 are not consistent with the results
reported for earlier studies or those found here for the Mencía vineyard. The green pruning
conducted at Godello during the 2020 vegetative cycle affected the weight of the debris.

Our results demonstrate volume of vine canopy was a variable that allows estimating
pruning weight from drone images and SfM photogrammetry. The resulting 3D point
cloud was processed with LAStool LiDAR point cloud software and the ArGIS graphic
information system. That methodology yields a geometric figure adjusted to the irregular
shape of the vine structures that enhances the quantitative estimates of parameter values,
in which the presence of voids in the vegetation is also taken into consideration [20]. The
R2 = 0.74 coefficient of determination found in this study for the relationship between
pruning weight and the volume so calculated supports the viability of using SfM to
determine vine quantitative variables, a finding in line with earlier reports [20,50,51].

The present research confirmed the feasibility of estimating pruning weight from
photogrammetrically processed drone images. Based on 3D point-cloud processing, the
pruning weight predicted with this approach was validated with independently collected
data (Table 4, Mencía 2020). The scientific literature corroborates the validity of using
point clouds to predict pruning weight from data collected by ground vehicles fitted with
sensors [32,52,53].

Tagarakis et al. [52] and Siebers et al. [32] showed that ground LiDAR could be used to
estimate that parameter. The Tagarakis et al. [52] findings for the relationship between the
LiDAR data and vine parameters based on scanning impact maps were closely correlated
(Pearson correlation coefficient, r = 0.83; p < 0.01). An even higher coefficient was obtained
with the methodology proposed by Siebers et al. [32], in which the volume found with
the LiDAR point cloud was used to predict pruning weight. Their method was tested in
the present study in which the cloud was built with points obtained by UAV-captured
RGB images.

LiDAR is an investment-intensive method, however, whereas low-cost sensors would
be more affordable for farmers. Further to that reasoning, Moreno et al. [53] deployed
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a low-sweep sensor to estimate pruning weight. They nonetheless concluded that their
method might not be wholly suitable for narrow canopy areas with low and scantly robust
correlations and that the results of simple linear regression validation might be impacted by
the number of fields analysed. The advantage of using the leave-one-out cross validation
approach adopted in our study enhanced the reliability of the results compared to the
method used in Moreno et al. [53].

5. Conclusions

A photogrammetric method using RGB imagery was applied to predict vineyard
pruning weight. Using a dense point cloud (DPC) generated with a structure from motion
(SfM) algorithm, vine volume was calculated by modelling the minimum bounding volume.
Linear regression was then used to estimate pruning weight from vine volume as the
predictor variable. Model accuracy was assessed with cross validation (two years’ data)
and a separate dataset (for one year). The R2 found with cross validation ranged from
0.66 to 0.71 for the Mencía vineyard and 0.56 to 0.68 for the Godello field. Although
precision and accuracy predictions were variety- and season-dependent, the quality of the
respective estimates suffices to use information on pruning weight or related parameters as
proxies for vine vigour. The present findings attest to the usability of UAVs as speedy, cost-
effective, and non-destructive platforms for estimating vineyard pruning weight. Future
precision viticulture research will focus on the application of UAV imagery to characterise
vineyard structure.
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