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Abstract: The European Commission introduces the Control by Monitoring through new technologies
to manage Common Agricultural Policy funds through the Regulation 2018/746. The advances in
remote sensing have been considered one of these new technologies, mainly since the European Space
Agency designed the Copernicus Programme. The Sentinel-1 (radar range) and Sentinel-2 (optical
range) satellites have been designed for monitoring agricultural problems based on the characteristics
they provide. The data provided by the Sentinel 2 missions, together with the emergence of different
scientific disciplines in artificial intelligence —especially machine learning— offer the perfect basis for
identifying and classifying any crop and its phenological state. Our research is based on developing
and evaluating a pixel-based supervised classification scheme to produce accurate rice crop mapping
in a smallholder agricultural zone in Calasparra, Murcia, Spain. Several models are considered to
obtain the most suitable model for each element of the time series used; pixel-based classification is
performed and finished with a statistical treatment. The highly accurate results obtained, especially
across the most significant vegetative development dates, indicate the benefits of using Sentinel-2
data combined with Machine Learning techniques to identify rice crops. It should be noted that it was
possible to locate rice crop areas with an overall accuracy of 94% and standard deviation of 1%, which
could be increased to 96% (±1%) if we focus on the months of the crop’s highest development state.
Thanks to the proposed methodology, the on-site inspections carried out, 5% of the files, have been
replaced by remote sensing evaluations of 100% of the analyzed season files. Besides, by adjusting
the model input data, it is possible to detect unproductive or abandoned plots.

Keywords: multispectral remote sensing; Copernicus; sentinel; image processing; machine learning;
agriculture; land cover; rice crop; common agricultural policy

1. Introduction

Since 1960, the European Commission (EC) has aimed to provide a harmonized
framework for agriculture through the Common Agricultural Policy (CAP) [1,2], financial
aid, and the politics of co-operation in Europe. Financial aid and political co-operation
have been developed through several legal acts. Regulations are the most direct legal acts
of the European Union (EU), as they are immediately enforceable as laws in all member
states. Regulation 1306/2013 [3] is the most recent law on the financing, management,
and monitoring of the CAP. It forms the basis for the start of the regulation for usage of new
technology, mostly involving Remote Sensing (RS): Sentinel satellites (especially missions
1 and 2), unmanned aerial vehicles (UAV), and georeferenced photographs (Regulation
2018/746 [4]).

The regulation was introduced with the intention to bring about a change in the
manner of inspections of existing aid. At present, checks are carried out in 5% of cases
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during a specific campaign period. As a result of the reform, it will be possible to carry
out inspections on 100% of dossiers continuously throughout the campaign. This change
requires the automation of the photo-interpretation of satellite images and the subsequent
processing of the results.

The CAP intends to take advantage of the new philosophy of Earth Observation (EO)
within the Copernicus Programme designed by the European Space Agency (ESA) [5].
The ESA’s aim is that several Sentinel satellites [6] will act as Europe’s eyes on Earth. At
present, the following satellites are in orbit: Sentinel-1 (S1), which has a radar sensor
installed, the Sentinel-2 (S2) satellite pair (Sentinel-2A and Sentinel-2B), which have optical
sensors to study and monitor agriculture [7,8], and Sentinel-3, which has visual (VI) and
near-infrared (NIR) sensors, for monitoring marine environments.

S1 images are a powerful tool for agricultural area classification and monitoring under
various weather conditions [9]; nevertheless, the parameters studied using radar images
are limited and should be complemented with parameters in the optical range (S2) which
allow for crop identification and monitoring of the CAP [10].

In their technical guides, the Joint Research Centre (JRC) [11]—the EC’s science and
knowledge service–allows the free choice of Sentinel data processing to monitor CAP
aids. These guides focus both on working with traditional biophysical indices and on
Artificial Intelligence techniques, such as Machine Learning (ML) or Deep Learning [12].
These guides also propose a traffic light system to indicate a farmer’s compliance with the
payment scheme’s requirement: It can be green (if it is complied with), red (if it is not),
or yellow (if there is insufficient evidence).They are also defined by two types of errors:
Those of type 1 (α) and those of type 2 (β). Type 1 errors are false positive or false red,
while type 2 errors are false negatives or false greens.

In summary, the changes introduced to Control by Monitoring (CbM) [13,14] CAP sub-
sidies seek to achieve the supervision of all declarations presented during the agricultural
campaign, avoiding the expenses derived from “in situ” visual supervision, and getting
the applicants to comply with the commitment acquired when applying for their aid.
To achieve this objective, the use of satellite data (specifically S1 and S2) and RS techniques,
whether traditional or new, have been proposed.

Based on the new requirements for the CbM of CAP subsidies, this work aims to create
a methodology that allows for the identification of rice crops through the use of S2 data
and classification techniques based on ML. Considering this, the farmer’s obligation to the
payment scheme, as monitored in this work, is to carry out the routine work required for
rice cultivation and for the rice to reach the flowering stage. Therefore, the management,
in this way of the Paying Agency’s aid, will be more productive and efficient.

Related Work

These are times when a revolution is taking place in agriculture, marked by the use of
new instruments and techniques. The tools of RS have acquired great importance, as well
as the methods related to them. The ability to include optical sensors, as well as their
spatial resolution and revisit period, allow the agricultural sector to collect essential data to
monitor farms. S2 satellite imagery can be directly applied to agriculture, as they provide
crucial data with a spatial resolution of 10 m every five days. Moreover, the progression of
predictive learning has allowed for the development of new applications in RS.

In the literature, several studies have addressed the use of S2 satellite data for rice
monitoring. In [15], the conjunction of three topics gave rise to the ERMES Project
(2014–2017) [16]. This project aimed to develop pre-operational downstream services dedi-
cated to rice farming systems, based on the assimilation of EO products and in-situ data
into crop modelling solutions. ERMES aims to exploit the state-of-the-art data provided by
Geospatial Information Infrastructures (GII), also known as Spatial Data Infrastructures
(SDI), and smart applications, in order to acquire in-field information and deliver it to the
end-users of the service [17]. The authors of the paper [18] developed a methodology to
create rice crop maps using S2 data and information on crop phenology. In the paper [19],
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a method was proposed to create rice cultivation maps using Random Forest and the
time-series of S1 and S2 data. Furthermore, in [20], S2 imagery was used to extract the
Normalized Difference Vegetation Index (NDVI) [21–23] and Leaf Area Index (LAI) for
later use in the ML Nearest Neighbors classifier. In the paper [24], it has been shown that
the S2 data are useful for the identification of the rice crop and valid for the identification
of different varieties.

Furthermore, as can be seen in [25,26], S1 data are also highly suitable for detecting
rice cultivation, especially in areas where S2 images are not an option (e.g., due to persistent
cloud cover).

Here have also been studies proposing new applications for vegetation monitoring
using UAV image analysis for rice cultivation [27] and for very dense vegetation condi-
tions [28]. Some studies establish a correlation between multi-stage vegetation indices
extracted from UAV imagery and leaf-level parameters such as dry biomass, area index,
and total nitrogen at each of the rice growth stages that allow accurate rice rating growth
characteristics [29].

2. Study Area

The area of interest for CbM—of the aid line associated with rice cultivation—is in the
southeast of Spain, specifically in Calasparra (Coordinates: 38.13, −1.42) [30], which has
an average elevation of between 300 and 500 m above sea level. It is a homogeneous rice
planting area with an approximate extension of 10 km × 15 km, located in the northwest of
Murcia, as shown in Figure 1.

Figure 1. Coto Arrocero location in southeastern Spain and 2019 campaign help statements.

The two main varieties of rice are Sendra and Bomba. They are under guarantee
granted by the Regulatory Council of the Calasparra Designation of Origin (D.O. Calas-
parra) [31], regulated by the Royal Decree of 1 February 1908, which delimited the Coto
Arrocero to three municipal boundaries: Hellín (Castilla La Mancha), Moratalla, and Calas-
parra. This rice reserve has an area of 2463 hectares.

The main characteristics of crop in the study area include that it is not grown in
stagnant water but the water is extracted from the river to flood the plots. These plots are
at different levels and are connected, causing a renewing current of water that maintains
the correct water level at all times, returning the excess water to the river. Rice cultivation
in this area has four phases: soil preparation, sowing, weeding, and harvesting.
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For the 2019 campaign, there were 67 dossiers consisting of 306 declaration lines of
support associated with rice, of which 301 belonged to declaration lines located in the
Autonomous Community of the Region of Murcia, with a total of 336.76 hectares declared.
Five declaration lines remained unmonitored, as they belonged to another Region.

Within the 2463 hectares of the “Coto Arrocero”, the monitored plots were located in
three zones, as shown in Figure 1. Of the 301 declaration lines of aid associated with the
rice crop to be monitored, 186 had less than one-hectare area and 109 less than 0.5 hectares.
Seventy-one were between 1 and 2 hectares. Only six plots had an area of more than
5 hectares.

In the area, we can find an orography that causes the proliferation of small and hetero-
geneous plots, together with plantations of horticultural crops or legumes (an agricultural
practice used to regenerate plots that have clayey soil). In any case, these circumstances
complicate the identification of rice cultivation through biophysical indices.

3. Materials and Methods
3.1. Materials

The material proceed from two different data sources: RS data and Geographical
Information System (GIS) data.

One of the functional elements of the Copernicus Integrated Ground Segment (IGS)
is the Data and Information Access Services (DIAS) [32], which make Copernicus data
and information available for access, and offer high processing capabilities in the cloud.
To perform the processing tasks detailed in this work, in the DIAS environment called
Creodias [33], a virtual machine was created under a Windows Server 2016 environment to
carry out the related tasks, with eight processors (Intel Xeon Sandy Bridge), 32 GB RAM,
and a 128 GB SSD hard disk, along with an additional 500 GB disk. The software used
was PostgreSQL database with the PostGIS extension, QGIS, and Python 3.7 (Anaconda
environment) using libraries such as scikit-learn, numpy, pandas, and gdal.

3.1.1. Remote Sensing Data

A time-series of 53 days are available between 1 January 2019 and 27 December 2019,
with zero cloud coverage in the area, formed by the T30SXH tile and orbit number 051
found in the EPSG:32630 reference system [34]. The product type is S2MSI2A, whose main
characteristics are processing level 2A, ortho-rectified and Universal Transverse Mercator
(UTM) geocoded, BOA [35], and multi-spectral reflectance [36].

The bands from S2MSI2A product satellites used in this project have been B2, B3, B4
and B8 [37,38]. Table 1 shows the technical information.

Table 1. S2 10 m bands.

Band Spatial Resolution Central Wavelength Description

B2 10 m 490 nm Blue
B3 10 m 560 nm Green
B4 10 m 665 nm Red
B8 10 m 842 nm Near Infrared (NIR)

3.1.2. Geographic Information System Data

Vector information from the plots with support applications associated to rice for the
2019 campaign are available in the Aid Management System (SGA) application, developed
by the Ministry of Agriculture of Spain through Fondo Español de Garantía Agrícola
(FEGA). This application allows a user to export alphanumeric and graphical information
in XML file format.

Each statement line is identified by the campaign file number, an application num-
ber, the applicant’s tax identification number, and a declaration line identifier regarding
alphanumeric information. As regards geographical information, the applicant has the
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option of maintaining the definition of the parcel in the Geographical Information System
of Agricultural Parcels (SIGPAC) [39] or manually redefining the parcel concerned.

3.2. Previous Analysis of the Coto Arrocero

In its technical guides, the JRC distinguishes three parts (or groups of activities) in the
implementation of CbM:

• Preparation of monitoring in the years previous to its implementation (first phase);
• The year of initiation for the monitoring (second phase); and
• Horizontal activities not directly related to the processing of the application itself but

the improvement of system efficiency (third phase).

The first section of the JRC’s technical guides deals with the identification of the uses
and crops of the monitored zone in previous campaigns “Y-2”, “Y-1”, Y being the official
starting campaign of CbM. Therefore, in our case, the 2017 and 2018 campaigns should be
analyzed, as the first campaign for the monitoring controls was 2019.

The goal is to understand what useful information can be obtained from Sentinel
data, based on the chosen area’s conditions for monitoring and the controlled regime.
The processing of these data from previous campaigns must be completed, unrelated to the
current campaign’s monitoring procedure.

To fulfil the first phase, we opted to use a traditional RS approach. After consulting
with the D.O. Calasparra regarding the characteristics of and the methods used for rice
cultivation in the area, it was concluded that the main ones are the process of flooding
the plots (Figure 2a) and the characteristic of vigour of the crop in the pre-harvest phase
(Figure 2b). They also indicated that there may be a lag of four weeks in the implementation
of agricultural practices and, therefore, in the crop’s evolution, depending on the plot’s
location. Parcels are gravity irrigated with the Northern plots flooded first.

(a) Flooded rice cultivation. (b) Rice cultivation in maximum vigorousness.

Figure 2. Images of rice cultivation in the Coto Arrocero area.

The indices that report the most information when obtaining the phenological
curve [40–42] are the NDVI:

NDVI =
B8− B4
B8 + B4

, (1)

and the Normalized Difference Water Index (NDWI):

NDWI =
B3− B8
B3 + B8

. (2)

Due to the need to automate the obtaining of the rice crop’s phenological curve using
the NDVI and NDWI indices, an algorithm was implemented in Python to extract the
zonal statistics of biophysical indices of the plots. The algorithm used S2 images of the
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time-series corresponding to 2017–2018. In brief, the implemented algorithm performed
the following steps:

1. Extraction of alphanumeric and geographic information from application declaration
lines SGA and loading this information into the PostgreSQL database with PostGIS
extension, in order to store all information generated by the implemented algorithms.

2. Checking on the availability of S2 images (Bottom of Atmosphere, BOA) in the Creo-
dias EO repository using the Finder tool [43] for a specific date and scene included in
the area of study, as well as downloading S2 10 m bands through the Amazon Simple
Storage Service [44]-based server, where the Creodias EO repository is accessible.

3. Stacking of the four unloaded bands and clipping the generated raster [45] to fit the
zone and, thus, speed up the process.

4. Generation of level 3 products NDVI and NDWI [46] from the rasters generated in the
previous step.

5. Provision of several statistics (average, standard deviation, minimum, maximum,
count, and sum) from the zonal statistics [47] between the parcel and the indices
obtained in the previous step.

6. Storage of calculated statistics for each of the parcels.
7. The process is executed for each of the images obtained within the study campaign.

Figure 3 shows the infrastructure used to execute the analysis algorithm based on the
methodology used in this work.

Figure 3. The geospatial infrastructure design used in this work.
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The phenological curves obtained for rice cultivation in the 2017 and 2018 campaigns
are shown below, in Figure 4a,b, respectively. The time-series was composed of 38 dates
for 2017 and 41 for 2018.

(a) The phenological curve of the rice crop in the study area for the 2017 season.

(b) The phenological curve of the rice crop in the study area for the 2018 season.

Figure 4. Phenological curves based on the mean and twice the standard deviation, for the 2017 and
2018 seasons in the study area.

Analyzing the previous figures, we saw that there was a clear correlation between the
NDVI and the NDWI [48], we could also determine the phases of rice cultivation, as shown
in Table 2.

Table 2. Rice cultivation phases in the Coto Arrocero area.

Phase Start End

Preparation Early January Early May
Flood Early May Mid June

Growth Mid June Early September
Collection Early September Mid October

Detailed analysis of the data indicated that a lag of about three weeks could occur
between a given phase and its previous and subsequent phases.

Based on the conclusions obtained in phase 1 (Section 3.2), the NDVI and NDWI [49,50]
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rasters were incorporated into the process, along with the S2 bands (2, 3, 4, and 8). This in-
formation was used to compose the input variables of the learning matrix. Figure 5a,b
show examples of the indices used on the dates for which they were most representative,
which in the case of the NDWI is in early July and for the NDVI is in early September.

(a) NDWI index dated 5 June 2019 in the study area. (b) NDVI index dated 3 September 2019 in the study area.

Figure 5. NDVI and NDWI indices of S2 for the study area.

3.3. Methodology
3.3.1. Overview

Our objective was to implement an algorithm for crop identification [51]—specifically
rice in the Coto Arrocero area—for CAP grant monitoring purposes through S2 data
and ML. For this purpose, ML-based models were implemented using the Python scikit-
learn [52,53] and XGBoost [54] libraries.

Figure 6 shows that, once the input information had been generated, the algorithm
performed an initial assessment among many ML models [55,56], from which the most
optimal one was chosen based on the information provided. Then, hyper-parameter
optimization was performed for the selected model [57]. Once the classifier was ready,
pixel-by-pixel prediction [58] was performed and, finally, validation of the used model was
carried out [59].

The methodology used generates the most relevant data: a raster with the prediction
made and a large volume of data (stored in the spatial database). The data available
in the database are related to characteristics of the input data, classifier configuration,
model evaluation and validation metrics, probabilities associated with each of the classes,
and information on the zonal statistics between the plot and the generated raster.

This algorithm was executed as many times as images were available in the reference
time-series; specifically, 53, as mentioned in the previous paragraph (Section 3.1). The main
reason for this was the difference of four weeks in applying agricultural techniques on the
plot, depending on where it was located, as discussed in Section 3.2; which we felt could
cause some uncertainty in the model.

In principle, the implemented algorithm performed classification between two classes.
However, it was defined with a high parameterization capability, in order to be used for
the classification of more than two classes. Similarly, the input variables that will be part of
the learning matrix and the necessary S2 scenes are configurable.
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Figure 6. Stages of the developed methodology and their main events.

3.3.2. Data Preparation

So that ML models can do their work, the input information provided has to be array-
like. Therefore, our vector and raster geographical information had to be transformed into
a format understandable by these models.

The models used in the implemented algorithm were based on supervised learning.
For this reason, the prediction was made based on the training data, which must be
generated in a particular way, maintaining a balance between classes during classification
and ensuring that they were sufficiently dispersed throughout the area of study.

The learning matrix (or ground-truth generation) was based on Regions of Interest
(ROI) consisting of a series of polygons that indicated the areas rice in which was grown
and those in which it was not. These ROIs were generated through a semi-automatic
process implemented in Python and could belong to two classes:

• No Rice: value 1;
• Rice: value 80 (corresponds to the product code in the SGA application).
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The class refers to the output variable; that is, what the ML model predicted.
For the rice class, the mechanical part consisted of selecting the declaration line plots,

which were fully adjusted (updated with the series treatments) to the phenological curve
of the crop of the current campaign. Data from the current campaign’s phenological curve
were obtained using the process reported in Section 3.2. The following formula was used
to establish whether or not a plot was adjusted to the phenological curve represented in
Figure 7:

µNDVI − 2σ <= µi <= µNDVI + 2σ, (3)

where µNDVI is the mean of the NDVI index for the current treatment date and σ is the
standard deviation.

Figure 7. The phenological curve for the 2019 season in the study area, based on the mean and twice
the standard deviation.

The class corresponding to rice was formed from the parcels of the D.O. Calasparra,
seeking to select those plots which grew rice in the current campaign and which have not
requested aid for its cultivation, thus avoiding overfitting as much as possible. The objective
here is to avoid as much as possible the inclusion in the learning matrix of those plots that
will later have to be predicted. Thus avoiding that the model learns too well that learning
matrix and favoring it can make predictions with high accuracy.

The class corresponding to the non-cultivation of rice was generated by digitizing
polygon-type geometries manually on an S2 image, in areas where no rice was grown.
The non-rice class mainly included elements that may have behavior and spectral response
similar to rice cultivation, such as the horticultural and leguminous crops cited in Section 2
or, even, the wild vegetation proliferating in the mote of the river that crosses the Coto. In
this case, approximately 20% was allocated to horticultural areas, 15% to legumes, 25% to
wild vegetation in the riverbed, and the rest to other types of elements, such as areas of
huge trees, scattered trees, tilled or bare soil, and so on.

A balanced data sample was obtained after generating the training matrix, with a
fair percentage of rice and non-rice pixels sufficiently dispersed over the study area’s
entire surface.

Once the learning matrix rows had been composed (as detailed in the previous step),
we still had to define the column values obtained from the raster that included the S2 bands
and the biophysical indices.

Following the lessons learned in phase 1, a raster was generated based on the S2
scene element of the corresponding time-series, consisting of bands 2, 3, 4, and 8 and the
biophysical indices (NDVI and NDWI).
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Finally, a raster with 1538 rows, 1003 columns, and six bands was available, with a
total of 1,542,614 pixels.

Once the vector data had been generated from the ROIs and the raster onto which the
values of those ROIs had been extracted, the values themselves were removed to form the
array of input variables.

With regard to the transformation of the geometries into raster format so that values
could be extracted from the tacked S2 image at the corresponding locations, the pixel
distribution (among the classes to be classified) in the learning matrix is given in Table 3:

Table 3. Learning matrix layout.

Class Pixels Percentage

No Rice (1) 2042 56.3
Rice (80) 1587 43.7

Finally, once the extracting values had been launched, the learning matrix was pro-
vided to the ML model to carry out the prediction.

To avoid random relationships between variables, it is good practice to subset data
from the learning matrix into training data and test data [60]. As its name indicates,
the training data set is used for fitting or model training, while the test data set is used to
test the model and find the errors that occurred during the prediction. The test data set
must never be used for training, and vice versa.

In this case, 75% of the learning samples were allocated for training and the remaining
25% for testing. In this process, randomness is also introduced in the input variables.
Therefore, 2721 pixels remained for training and 908 for testing (498 of the non-rice class
and 410 rice).

The learning matrix was composed of six input variables. Four of them (bands 2, 3,
4, and 8) contained values between 0 and 4.095. The remaining two (NDVI and NDWI),
obtained from the previous ones, had values ranging from −1 to 1. The above results
can lead to the predominance of one input variable over others when making predictions,
making some more critical than others.

Table 4 shows a table with Pearson’s correlation coefficient for the six input variables,
observing the co-linearity between some variables:

Table 4. Pairwise Pearson correlation coefficient for input variables.

Band 2 Band 3 Band 4 Band 8 NDVI NDWI

Band 2 1.00 0.98 0.97 0.74 −0.52 0.38
Band 3 0.98 1.00 0.97 0.78 −0.49 0.35
Band 4 0.97 0.97 1.00 0.76 −0.52 0.30
Band 8 0.74 0.78 0.76 1.00 0.060 −0.17
NDVI −0.52 −0.49 −0.52 0.06 1.00 −0.91
NDWI 0.38 0.35 0.30 −0.17 −0.91 1.00

Further, for many learning estimators, the standardization of the supplied data set is an
indispensable requirement, as they may behave erratically if the individual characteristics
do not resemble, more or less, the standard normal distribution.

To avoid the above, the algorithm performed standardization [61] of the input vari-
ables, consisting of a data rescale to have a mean (µ) of zero and a standard deviation (σ)
of one. This value was calculated as follows:

z =
x− µ

σ
. (4)
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3.3.3. Model Evaluation

Once a learning matrix with properly separated and standardized data was available,
we proceeded to evaluate a set of ML models [62] with the target of selecting the one that
offered the best prediction capability.

The following types of estimators allow for classification [63]: Ensemble [64], Decision
Trees, XGBoost [54], Neural Network, Naive Bayes, Neighbors, Linear, Discriminant, and Support
Vector Machine.

The process made a pre-adjustment with training data and predicted the test data for
each of the models. It should be clarified that in this phase, the models to be evaluated
are defined without any adjustment, by which the hyper-parameters will have the pre-
established default values. To perform a classification of the models, based on their
performance, we used K-Fold Cross-Validation [65]. This method is an iterative process
that consists of randomly dividing the data into k groups of approximately the same size.
Then, k − 1 groups are used to train the model and one of the groups is used as a test set.
This process is repeated k times, using a different group as the test set in each iteration.
The process generates k test error estimates, whose average is used as the final estimate.
In our case, the value of k was five.

K-Fold Cross-Validation was performed using the accuracy as a metric [66,67], as we
had a balanced class distribution:

accuracy =
true_positives + true_negatives

total_predictions
. (5)

Thus, taking five different input data sets ensures that the accuracy obtained is ad-
justed and is reasonably reliable for evaluating each model’s performance.

3.3.4. Model Optimization

Once we had selected the estimator with which the classification was to be performed,
its hyper-parameters were then optimized [68], in order to achieve classification as effi-
ciently as possible, having the maximum possible score with the least overfit.

This part of the algorithm establishes a series of hyper-parameters and the range of
values they could take and evaluates the classifier’s performance for each of the possible
combinations for each type of classifier. Measures such as the score or the adjustment time
are taken into account, in order to decide the best configuration. Furthermore, as described
in Section 3.3.3, K-Fold Cross-Validation (k = 5) was used and the accuracy was used as a
scoring metric.

For example, for ensemble classifiers, parameters such as the number of estimators
(n_estimators), the function to measure the quality of the node divisions (criterion), the way
to select the maximum number of elements for each tree (max_features), and the minimum
number of elements to allow a new node split (min_sample_leaf ) are optimized. In the case
of XGBoost, parameters such as the number of estimators, learning rate, or maximum
depth of a tree are optimized.

3.3.5. Classification

After the model has been optimized, the algorithm proceeded to adjust the model
using the training data and S2 image prediction of our time-series. To predict class mem-
bership, the class probabilities were added together.

Based on the predicted output variable, together with the probability of belonging
or not to the rice class, a raster was generated with the same characteristics of the used
S2 image. For example, Figure 8 shows how the selected pixel was classified as rice
(Band 1 = 80) with a probability of being rice of 95% (Band 3 = 0.953333) and a probability
of not being rice of approximately 5% (Band 2 = 0.0466667). It should be clarified that this
option only applies to those models that incorporate the functionality allowing association
of probabilities to predictions. However, in this study, all the models selected finally
presented this feature.
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Figure 8. Raster resulting from the classification process with information about its bands through a
GIS client.

The first phase of the CbM is the so-called automatic and dealt with in this paper.
In this automatic phase, the plots marked with yellow traffic light color will go to a
phase called expert judgment. In this phase, an expert, based on information of all kinds,
must indicate whether or not the plot is fulfilling the obligations of the aid requested.
Therefore, products and functionalities such as those shown in Figure 8 can be very useful
for the expert’s decision making.

To avoid the maximum type 2 errors (β), false negatives, or false greens (Section 1),
resulting in the payment of a non-corresponding grant, during classification, a process was
implemented that allowed for adjustment of the threshold of probability that establishes
membership of one class or another. By default, the estimators used 50% to establish this
membership. The implemented algorithm allowed for obtaining an additional classification
using a new membership threshold. If it is preferred to control this new threshold’s
value, it can be set manually through the configuration file. If the parameter is not in
the configuration file, the algorithm automatically sets it as the average probability of
the pixels that were predicted as rice. Thus, this threshold may differ, depending on the
time-series element.

xi = 80↔ P(xi) >= µ(xclass=80). (6)

Below is a comparison between the resulting raster with a threshold of 50% (Figure 9a)
and the raster using the automatically established threshold (Figure 9b).
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(a) 50% threshold classification (Green: Rice, Red: No Rice).
(b) Classification adjusted with an automatic threshold

(Green: Rice, Red: No Rice).

Figure 9. Comparison between classification with a 50% threshold and adjusted with an automatic threshold.

3.3.6. Validation

Once the original and adjusted predictions were available, the classifier was validated.
For this purpose, data relating to different metrics [66,69] were recorded, including:

• Confusion Matrix: Not a metric, as such, but no less critical is a table-shaped visualiza-
tion of the model’s predictions versus the ground-truth.

• Accuracy:

accuracy =
true_positives + true_negatives

total_predictions
. (7)

• Precision:

precision =
true_positives

true_positives + f alse_positives
. (8)

• Sensitivity or Exhaustivity (Recall or True Positive Rate, TPR):

recall =
true_positives

true_positives + f alse_negatives
. (9)

• F1 Score:
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f 1_score =
2 ∗ precision ∗ sensitivity

precision + sensitivity
. (10)

• Specificity or False Positive Rate (FPR):

speci f icity =
true_negatives

true_negatives + f alse_positives
. (11)

• Kappa Score [70]:

kappa =
total_accuracy− random_accuracy

1− random_accuracy
. (12)

• Area under the curve (AUC): An aggregate measure of the performance of a binary
classifier at all possible threshold values. It is the probability that the model ranks a
random positive example higher than a random negative sample.

3.3.7. Zonal Statistics

Once the information derived from the validation of the corresponding estimator
was recorded, it proceeded to obtain the zonal statistics [71] between the parcels and the
raster generated during the prediction process. The purpose of the zonal statistic was to
provide additional information to the classification, in order to facilitate crop identification;
however, instead of being pixel-oriented, it is plot-oriented.

Among the statistics obtained were the typical mean, standard deviation, minimum,
maximum, count, sum, and majority. At the zonal statistic level, the plots with the most
pixels labeled rice were marked as rice crops and vice versa.

Furthermore, complementary statistics were added for each plot: number of pixels
classified as rice, number of pixels classified as non-rice, the average probability of the plot
being classified as rice or non-rice (based on the associated probabilities generated by the
classifier for each of the pixels included in the plot), the reliability of the zonal statistics
level classification (the fraction of the total number of pixels included in the plot that have
been labeled as rice), as shown in the equation:

reliability_zonal_statistics = ∑ pixelsclass=80
|parcel_pixels| , (13)

and the average probability that the parcel was classified as rice or as non-rice; the latter
based on the associated probabilities generated by the classifier for each of the pixels
included in each of the plots.

Finally, the algorithm uses all the generated statistics to establish the traffic light color
for each plot.

3.4. Validation of Results

Two elements were used to validate the results offered by the algorithm manually.
On one hand, ground-truth elements were used on a random set of plots generated by
visits made at different times, taking photographs “in situ” and associating the geograph-
ical coordinates with each photographed plot, as shown in Figure 10. To improve the
visualization of the plots under study, a process was carried out that extracts metadata
from the photographs and stores them in a spatial database.

Moreover, as illustrated in Figure 11, HHR satellite images were used (specifically,
Pleiades-1 [12]) with a spatial resolution of 50 cm. An image was requested by date to
distinguish rice: in June, when the plots were flooded, and in September, the crop was at
its maximum vigour.

In conjunction with the cited elements, the raster obtained from the classification, and
using GIS tools (Figure 10), a visual validation was performed, which allowed us to assess
the inconsistencies of the automatic and manual processes.
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Figure 10. GIS information used for field control.

(a) Pleiades-1 June image technical specifications. (b) Pleiades-1 June image.

(c) Pleiades-1 September image technical specifications. (d) Pleiades-1 September image.

Figure 11. Pleiades-1 image used for control in June and September.
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Furthermore, a quality assessment of CbM was carried out, following the indications
of the technical guide issued by the JRC, which uses the same statistical assumptions of the
binomial distribution underlying the international standard ISO document 2859/2 proce-
dure B [72]. The control systems are based in the feedback of the data and methodology for
that the result is less than that an error or be controlled, this is the reason why this phase is
incorporated in all control systems [73].

4. Results
4.1. Use of Estimators

This section shows how the use of the different classifiers analyzed for the entire time
series was distributed.

4.1.1. By Model Type

Figure 12 shows the accuracy obtained during the evaluation of the models, grouped
by estimator type for the entire time-series analyzed. In this figure, the ends of the box
represent the first (25th percentile) and third quartile (75th percentile), the line inside the
box represents the median or second quartile (50th percentile). Finally, the end lines or
whiskers show the range of the data. The overfitting observed is because the models in this
phase are not fined tuned. This overfitting will disappear in the optimization phase of the
selected model. It can be seen that the ensemble-type models were the ones that obtained
the best scores:

Figure 12. Average accuracy for time series grouped by estimator type.

Table 5 indicates that, for the 53 elements of the time-series, the type of estimator used
the most times was the ensemble:

Table 5. Use of estimators in classification grouped by type.

Type Count Percentage

ensemble 45 84.9
xgboost 5 9.4

neighbors 3 5.7

4.1.2. By Classifier

Table 6 shows, using different metrics, the efficiency of each of the classifiers in the
evaluation process for all of the dates of the time-series. A similar performance was
observed among all the analyzed ensemble types, KNeighbors, and XGBC:
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Table 6. Different metrics obtained by the classifiers for the entire time-series in the evaluation phase.

Classifier Type Accuracy Precision Recall F1 Score

ExtraTrees ensemble 0.93 0.94 0.94 0.94
RandomForest ensemble 0.93 0.94 0.93 0.93
KNeighbors neighbors 0.93 0.93 0.94 0.93
GradientBoosting ensemble 0.92 0.93 0.93 0.93
XGBC xgboost 0.92 0.93 0.93 0.93
MLP neural network 0.91 0.92 0.93 0.92
DecisionTree tree 0.90 0.91 0.92 0.91
SVC svm 0.90 0.91 0.92 0.91
ExtraTree tree 0.89 0.90 0.91 0.91
XGBCRandomForest xgboost 0.87 0.89 0.89 0.89
QuadraticDiscriminant discriminant 0.85 0.91 0.82 0.86
LogisticRegression linear 0.84 0.85 0.87 0.86
GaussianNB naive bayes 0.77 0.86 0.71 0.77

Table 7 details the minimum, average, and maximum accuracies for each model
obtained in the evaluation process. The minimum accuracy appeared when the rice crop
was not noticeably present in the field, instead of the maximum precision. It can be seen
that all the models analyzed had optimum performance when the crop was fully developed.
When the crop was not present or was under development, some models had difficulties.
The ensemble-type models, KNeighbors, and XGBC offered more balanced performance
throughout the time-series.

Table 7. Accuracy statistics obtained by the classifiers for the entire time-series in the evalua-
tion phase.

Classifier Min Accuracy Mean Accuracy Max Accuracy

ExtraTrees 0.80 0.93 0.98
RandomForest 0.79 0.93 0.98

KNeighbors 0.79 0.93 0.98
GradientBoosting 0.79 0.92 0.98

XGBC 0.79 0.92 0.98
MLP 0.77 0.91 0.98

DecisionTree 0.76 0.90 0.98
SVC 0.76 0.90 0.98

ExtraTree 0.74 0.89 0.98
XGBCRandomForest 0.68 0.87 0.98

QuadraticDiscriminant 0.68 0.85 0.97
LogisticRegression 0.60 0.84 0.97

GaussianNB 0.55 0.77 0.95

As a consequence of the information shown in Tables 6 and 7, and as shown in
Figure 13, it was concluded that the ExtraTrees classifier was the most-used in the 53 ele-
ments of the time-series. The RandomForest model also had some notoriety, although to a
lesser extent. As can be seen, only five different models were used for classification in the
whole time-series.

4.2. Model Optimization

Figure 14 shows the validation curves of the two most-used models in the study—
ExtraTrees and RandomForest. By analyzing these validation curves, it can be seen that,
from 600–800 iterations, the model reached a plateau point, which gives us an idea that
the classifier was correctly optimized, as the passage of further iterations does not increase
the accuracy.
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Figure 13. Distribution of the use of estimators in the classification of the time series elements.

Figure 14. Example of the obtained validation curves.

4.3. Input Variables Importance

Based on Figure 15, noting the average importance of each of the bands used, and tak-
ing into account the data provided by all the optimized models used during the clas-
sification of all the elements of the time-series, it can be concluded that there was no
preponderance of one band over another, obtaining very similar percentages among the
different input variables involved in the prediction of the output variables, thanks to the
process of standardization.

Figure 15. Average importance of the input variables used for time series prediction.
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4.4. Learning Matrix

Looking at the learning curve generated during the model validation process, as shown
in Figure 16, it can be observed that the accuracy reached a point of stability at around
500 samples; so, there will likely not be any significant improvement if we train with more
data. In this study, the learning curve was used to measure the model performance and,
so, the accuracy was used as a metric; in addition to being the metric used for the model
evaluation and selection.

(a) ExtraTrees Learning Curve. (b) RandomForest Learning Curve.

(c) KNeighbors Learning Curve. (d) XGBC Learning Curve.

Figure 16. Example of learning curves obtained.

4.5. Model Validation

This section shows the results obtained in the validation phase through different
elements.

4.5.1. Metrics

Analysis of the average scores of the metrics studied for the entire time-series,
related to the rice crop and included in Table 8, provided very consistent and concor-
dant results, indicating that the model did not demonstrate overfitting. These high values
suggest that the model is capable of making useful predictions.

Table 8. Average metric values analyzed for the entire time-series.

Metric Score

Accuracy 0.934
Precision 0.942

Recall 0.940
F1 Score 0.941
Kappa 0.866
AUC 0.933
FPR 0.074
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Figure 17 below shows the values of different metrics obtained by the models used in
the analyzed time series. It can also be seen how higher scores were obtained for the dates
at which the crop was developing; that is, from mid-May to the end of September.

Figure 17. Comparison of the metrics analyzed for the entire time series.

Focusing only on the period in which the crop was easily identified by its peculiarities—
between May and September—it can be observed that the scores associated with these
metrics increased with some moderation, as shown in Table 9.

Table 9. Average metric values analyzed between May and September.

Metric Score

Accuracy 0.96
Precision 0.966

Recall 0.962
F1 0.964

Kappa 0.919
AUC 0.96
FPR 0.046

Comparison of Tables 8 and 9 shows that it is not necessary to analyze the entire time
series, but only to focus on the period between the flooding of the plots and the rice crop’s
peak growth.

4.5.2. Confusion Matrix

Although the confusion matrix is not a metric itself, it can validate and check the
designed model’s effectiveness. In this case, by analyzing the average values of the
confusion matrix for the entire time-series results, Table 10 was obtained.

Table 10. Confusion matrix for the entire time series.

No Rice Rice Sum

No Rice 449 51 500
Rice 61 347 408
Sum 510 395 908
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Just as in the previous section, focusing on the months in which plot was flooded and
the crop achieved its more significant vegetative development, Table 11 shows how the
confusion matrix values improved.

Table 11. Confusion matrix for time-series dates between May and September.

No Rice Rice Sum

No Rice 470 28 498
Rice 38 372 410
Sum 508 400 908

Comparison between Tables 10 and 11 further indicates that it is not necessary to
analyze the entire time-series.

4.6. Biophysical Indices vs. Machine Learning

An approach to crop identification through RS could be the use of biophysical indices
and, in any doubt, to proceed with classification using ML techniques. As an example,
the plot associated with declaration line 227,743 in file 14,000,264 (Figure 18) clearly shows
how aid had been requested for 100% of the total area of the parcel (black border) and, yet,
only a part of this entire area had been cultivated:

Figure 18. Parcel suspected of failing to comply with the conditions of the aid system.

Once the parcel under study had been classified using NDVI (for crop vigour), it was
classified with a green colour, indicating a type 2 error (β), as shown in Figure 19. Therefore,
the parcel was considered, for all purposes, to comply with the conditions of the aid for the
period from mid-August to mid-September, as shown in Figure 20. The NVDI was chosen
as it considers the phenological curve obtained through the study’s processes in the two
years before the 2019 campaign (Figure 7).
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Figure 19. Method classification result based on biophysical indices.

Figure 20. Phenology of the plot suspected of not meeting the conditions.

When using the parcel’s NDVI index mean values with a confidence interval of 2 times
the standard deviation, pixels with vegetation predominate over those with no vegetation
and cause the signal obtained to be within this confidence interval.

On the other hand, generating the classification through ML differentiates pixels in
which there is a crop from those in which there is not, as shown in the following Figure 21.

Through the zonal statistics, referenced in Section 3.3.7, using the raster resulting
from the classification, it was observed that half of the pixels of the plot were consistently
marked as non-rice during the growth period of the rice crop, as shown in Table 12.
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Figure 21. Classification of the plot suspected of not meeting the conditions by ML-based method.

Table 12. Pixel distribution of the zonal statistics for suspicious plot.

Date Pixels Rice Pixels Non-Rice

19 August 2019 48 51
24 August 2019 53 46

3 September 2019 47 52
18 September 2019 42 57

Even in less remarkable cases, as shown in Figure 22, the algorithm allows the user to
set a threshold concerning the percentage of pixels marked as rice. Thus, if a plot exceeds
this threshold, it will be assigned the green traffic light. In this way, it is possible to detect
weak plots or parcels with cultivation problems. Table 13 shows the percentage of pixels
detected as rice and non-rice for the example in Figure 22.

Table 13. Percentage pixel distribution of the zonal statistics for weak plot.

Date Percentage Pixels Rice Percentage Pixels Non-Rice

19 August 2019 68 32
24 August 2019 64 36

3 September 2019 72 28
18 September 2019 74 26

4.7. Results Validation

By applying the methodology for the validation of results described in Section 3.4,
we found that the implemented algorithm could correctly predict not only all the cul-
tivated rice plots but also those where it as not present and even those where it was
partially present.

Out of the 301 monitored declaration lines, the algorithm predicted that 292 complied
with the aid scheme’s obligations, and nine did not. After visual inspection of high-
resolution satellite imagery and on-site visits in those cases where there were doubts, it was
concluded that the algorithm was 100% correct in its predictions.
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(a) Undeclared unproductive parcel. (b) Unproductive plot detected.

Figure 22. Example of unproductive detection through ML.

4.8. Reuse Calibrated Model

A preliminary analysis was carried out to check whether the calibrated model, gen-
erated as a result of the algorithm’s complete execution, could be used for campaigns in
subsequent years.

Therefore, the 2019 campaign-calibrated model was used on a sample of dates of the
2020 campaign without cloud cover, and in which the crop was at its highest development
point, obtaining the results of Table 14:

Table 14. Test score for the test 2020 rice crop with the 2019 calibrated model.

Date Test Score

29 July 2020 0.81
8 August 2020 0.86
13 August 2020 0.85
18 August 2020 0.85
28 August 2020 0.83

Although acceptable values were obtained, they were far from the 97% obtained for
the same period of the 2019 campaign. Furthermore, if we consider that obtaining errors
in the prediction can result in the payment of aid in cases where obligations are not met,
we cannot use the calibrated model between different campaigns.

When, on the other hand, a new learning matrix was generated and the algorithm was
launched from the beginning, the performance results of the 2020 campaign were similar
to those of 2019.

In short, this preliminary analysis shows that a model calibrated for one campaign cannot
be used for subsequent ones; however, the algorithm is valid for different campaigns.
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5. Discussion

The objective of the study was to assess whether ML estimators can be valid for use in
the CbM proposed by the EC, Regulation 2018/746 [4] of 18 May 2018, as a replacement
for in-field checks; bearing in mind that controls must be carried out on 100% of aid
declarations and continuously throughout the campaign. This regulation allows for the use
of new technologies; above all, Sentinel data from the Copernicus Programme, particularly
those of missions 1 and 2. As a sample, we decided to monitor rice cultivation in the area
of Coto Arrocero of Calasparra (Murcia, Spain). We also contrasted methods based on
biophysical indices with ML-based methods.

To achieve our goal, it was necessary to collect S2 data without cloud coverage;
specifically, 53 days belonging to the 2019 campaign were chosen. After selecting the
images, an algorithm was implemented to prepare data according to the needs of the ML
classifiers. For validation of the data, a set of estimators was evaluated and, after choosing
the best one, its hyperparameters were optimized to achieve the best possible prediction.
The study area was then classified at pixel level (whether or not there was rice cultivation).
Finally, the model was validated.

Analysis of the results showed that estimators used most often throughout the an-
alyzed time-series were ensemble type and, within these, ExtraTrees performed best,
followed by RandomForest. On the other hand, in terms of model efficiency, starting from
500 samples and 800 iterations, there was no gain in accuracy. In this environment, 93–94%
accuracy, precision, sensitivity, and F1 score metrics were found for the entire time-series,
which could be increased to 96% when considering time-series elements between May and
September; that is, the months in which the crop’s vegetative development occurs. This
increase clearly indicates that the full time-series does not need to be analyzed.

Additionally, the associated average probability of rice class membership for the entire
time-series analyzed was 79% useful information for minimizing type 2 errors.

Furthermore, the model behaves particularly well in homogeneous short plots with a
non-geometric structure. This capability can be used for error detection in aid statements
or for the detection of unproductive areas in SIGPAC, due to the use of zonal statistics
between the raster resulting from the prediction and the plot.

In the literature, different proposals are addressing the topic of rice crop detection
using ML models. In the paper [74] they make use of the WEKA tool for the treatment
of the input variables and the obtaining of results. At the same time, this work is finally
transformed into a personalized tool in continuous improvement. Besides, this tool is
used frequently and plays a key role in the allocation of CAP support. In the paper [75],
data from several combined sensors is used to mapping rice crop. In this work, it has not
been necessary to use other sensors such as the S1 SAR due to the low cloud cover in the
study area. Besides, with the obtained metrics, especially during the period of greater
representativeness of the cultivation, it is considered that the incorporation to the model of
the data contributed by other sensors does not offer a remarkable improvement. Finally,
paper [76] deals with the identification of rice cultivation through the use of recurrent
neural networks (RNN) such as LSTM or Bi-LSTM, in addition to ML models. According
to the most recent literature, RNNs are showing some improvement in crop identification
compared to ML models.

Although this work is not exhaustive at the data split between training and testing
level, as it could have been tested at both the pixel and the polygon level. In addition,
model training tests could have been performed by eliminating the highly correlated
variables. It would also be necessary to compare one classification with the dates treated
individually vs. all dates treated together, or grouped by the different crop phases. Further
analysis is also needed regarding the use of the calibrated model in subsequent campaigns.
The methodology created in this work is the first approach to identify rice cultivation in
this area through ML. The main idea is to improve it throughout subsequent agricultural
campaigns by strengthening its weaknesses.
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As for improvements in this line of research, besides treating the S2 dates available
in a single data matrix instead of individual elements or grouped by the different phases
of agricultural practice to use time as a predictor, we intend to adapt the methodology to
the use of S1 images together with S2, and other input variables such as elevation or even
agroclimatic data. The zonal statistics on the prediction raster will be further developed,
in order to remove the information of pixels at plot boundaries and to ensure that the area
declared for aid is the same as the area cultivated. Furthermore, we intend to incorporate
a process that generates an image detecting the change produced in land-use and land-
cover between two elements of the same time-series, through the use of methods based
on biophysical indices and the ML PCA and KMeans models [77]. It is also intended to
use RNNs to identify rice cultivation in the area and to be able to compare the results
offered, with those obtained in this work. Finally, we will use the developed methodology
to try to identify other crops located in disparate areas, thus taking advantage of the
main features of the implemented algorithm, including its general purpose, scalability,
and automation options.

6. Conclusions

The implement a methodology for crop identification according to the CAP grant
monitoring purposes using S2 data and ML was achieved as well as the objective of our
research. It defined a methodology which is capable of identifying rice cultivation in
the area of Coto Arrocero in the Region of Murcia through ML, using S2 data (bands
2, 3, 4, and 8) and the NDVI and NDWI biophysical indices, without any one of them
prevailing over the others. The average of the analyzed metrics for the whole time-series
was around 93% and standard deviation of 1%. Supposing we focus only on the period of
the full development of the crop—between May and September—the result obtained could
be increased to 96% (±1%), which indicates that it is unnecessary to analyze the entire
time-series, implying corresponding resource savings. It was also concluded that the most
appropriate type of model for the identification of this crop was the so-called ensemble
and, more specifically, the Extra-Trees and Random Forest models. These classifiers were
very consistent in predicting the entire time-series and provided correct results when the
crop was not yet at the peak of development.

The methodology created in this work can serve as a tool used periodically to establish
those farmers which comply with the aid conditions and return the amount of assistance
received. This solution’s definition entails a great change of culture and awareness in
Public Administrations, promoting digital services that allow: increasing productivity and
efficiency in their internal operation, implementing intelligent corporate management of
data, and reducing time in administrative procedures.

In conclusion, this study’s results indicate that the CbM proposed by the EC for
CAP aids, specifically those associated with rice cultivation, can be carried out through
ML ensemble-type models with a reasonably high level of precision. The main novelty
of this work is implementing a tool that helps the Administrations promote their digital
transformation to manage the aids granted by the CAP, and that will be mandatory between
the years 2021 and 2022. Besides, we must take into account not only the area of study,
which has never been investigated by RS but the particular characteristics of its production
system, less intensive than in other areas, so that the spectral signatures of rice are less
defined, which implies difficulties not usually found in other areas of cultivation.

An innovative element of the proposed system is that all the results generated by the
methodology are integrated into the Administration’s file management platform, allowing
a greater resolution of files and the detection of 7% more files that did not comply with
the obligations to receive the aid. Further, it was discovered that the defined methodology
could also be used to detect heterogeneous parcels and whether they are unproductive
or abandoned areas. As proposed, it can be used as a substitute for on-site inspections;
over 5% of the dossiers in a specific moment can be checked through RS, or over 100% of
the dossiers during the whole season.
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