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Abstract: Remote-sensing measurements are crucial for smart-farming applications, crop monitoring,
and yield forecasting, especially in fields characterized by high heterogeneity. Therefore, in this
study, Precision Viticulture (PV) methods using proximal- and remote-sensing technologies were
exploited and compared in a table grape vineyard to monitor and evaluate the spatial variation
of selected vegetation indices and biophysical variables throughout selected phenological stages
(multi-seasonal data), from veraison to harvest. The Normalized Difference Vegetation Index and the
Normalized Difference Red-Edge Index were calculated by utilizing satellite imagery (Sentinel-2)
and proximal sensing (active crop canopy sensor Crop Circle ACS-470) to assess the correlation
between the outputs of the different sensing methods. Moreover, numerous vegetation indices and
vegetation biophysical variables (VBVs), such as the Modified Soil Adjusted Vegetation Index, the
Normalized Difference Water Index, the Fraction of Vegetation Cover, and the Fraction of Absorbed
Photosynthetically Active Radiation, were calculated, using the satellite data. The vegetation indices
analysis revealed different degrees of correlation when using diverse sensing methods, various
measurement dates, and different parts of the cultivation. The results revealed the usefulness of
proximal- and remote-sensing-derived vegetation indices and variables and especially of Normalized
Difference Vegetation Index and Fraction of Absorbed Photosynthetically Active Radiation in the
monitoring of vineyard condition and yield examining, since they were demonstrated to have a
very high degree of correlation (coefficient of determination was 0.87). The adequate correlation of
the vegetation indices with the yield during the latter part of the veraison stage provides valuable
information for the future estimation of production in broader areas.

Keywords: precision viticulture; Sentinel-2; crop circle ACS-470; vegetation indices; vegetation
biophysical variables

1. Introduction

Grapevines are one of the most important planted fruit crops, with a significant
position in human sustenance. More than seven million hectares of vineyards are grown
worldwide in many different geographical areas [1] and are commonly characterized by
high heterogeneity, due to physical, biological, and chemical factors, including spatial
variations in topography, climatic conditions, and soil characteristics, as well as non-
structural factors, mediated by crop practices [2,3].

Precision agriculture and farm management necessitate monitoring of crops at high
spatial and frequent temporal resolution during the entire growing season [4]. Precision
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Viticulture (PV) is considered as the use of Precision Agriculture (PA) in vineyards and
regularly aims at developing variance management to attain the actual requirements of
each area [5,6]. Over the last decades, PV has emerged as an innovation-driven solution
and received significant attention in the agricultural community [7–9].

Remote and proximal sensing (RS and PS) have been proven to be important tools
in PV for crop-condition monitoring, yield prediction, and optimization of agricultural
management [10–14]. These remote and proximal sensors take advantage of vegetation’s
reflectance properties and provide the possibility to assess crop parameters (e.g., biomass,
yield, acreage, and vegetation vigor) and predict crop conditions or yield, enabling early
and efficient decision making in fertilization, irrigation and pest controlling [2,15,16].

Remote and proximal applications in PA go back to the middle 1980s with the treat-
ment of satellite, aerial, and hand-held or tractor-mounted sensors, using mainly of the
visible and near-infrared parts of the electromagnetic spectrum [17]. Typically, remote
sensing provided systematic information for large areas instead of proximal sensing, which
was primarily used for minor scale applications (one or few parcels) with higher resolution.
Most of the initial research on vineyards using remote sensing has involved the analysis of
multispectral satellite or aerial images such as those of Lamb et al. [18], Belmonte et al. [4],
Meggio et al. [19]. The last two decades, the launch of enhanced satellite systems (like
GeoEye, WorldView, Pléiades, Cartosat, etc.) and Unmanned Aerial Vehicles (UAV) deliver
new perspectives in PA. They carry innovative acquisition instruments (LiDAR, thermal
cameras, etc.) having extremely enhanced spectral (using wavelengths from the ultraviolet
to thermal infrared and microwave portions and smaller bandwidths of hyperspectral sens-
ing), spatial (reaches the few meters or centimeters), and temporal (few days acquisition)
resolutions, which offer a considerable development at a more accurate and near-real-
time crop management [17,20]. Additionally, the full and free availability of satellite data
has accelerated an increase of interest in the use of Earth Observation (EO) products in
agriculture. Copernicus program of the European Space Agency (ESA) offers accurate,
timely, and open-access data to enhance the monitoring and management of agricultural
land. The Sentinel-2 (S2) mission comprises two identical satellites in the same orbit, 180◦

apart. Together they cover all Earth’s surface, with a wide swath coverage (290 km width),
providing imagery of high spatial (10 m), spectral (13 bands), and temporal (5-day cycle, at
the equator) resolution, providing new perspectives for the exploration and monitoring of
crops [21–24]. Moreover, multi-seasonal imagery offers a spatially detailed and up-to-date
geo-information, which is unique for crop monitoring, covering all the growing stages and
different conditions of the cultivation [25,26].

Proximal sensing provides a great amount of accurate data, that under the appropriate
elaboration can produce very reliable and extremely useful predictive maps [10,27]. The
technology of active proximal sensors, such as the active crop canopy sensor Crop Circle
(CC) ACS-470 (Holland Scientific Inc., Lincoln, NE, USA) which was used in this research,
has the key advantage of carrying their own light source and, therefore, are able to overcome
numerous restrictions associated with satellite or airborne remote sensing [28–30]. These
limitations include adverse weather conditions, atmospheric effects, and potential revisit
time. Proximal sensors decrease the distance between the light source and the target and
can be guided towards the desired canopy part; therefore, they reduce the effect of shadows,
minimize the background soil interferences, and enhance the sensing potential [31]. Crop
Circle ACS-470 and the previous versions (210 and 430) have been utilized in numerous
studies associated with PV [31–33] and other crops, such as rice, maize, wheat, etc. [34–36].

Consequently, the use of the recent and innovative satellite and proximal products has
released several new perspectives on the potential use in PV [10,37]. Many research plans
concerning PV worldwide exploit a wide range of available remote and proximal-sensing
technologies to describe the vineyard spatial and temporal variability, revealing the signifi-
cant value of proximal, aerial and satellite sensors [15,38–40]. Both sensor systems utilized
in this study, Crop Circle and Sentinel-2, can retrieve multiple-wave-band data representing
canopy reflectance enabling field variability detection and vineyard vigor monitoring and
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can be transformed subsequently into many potential spectral vegetation indices (VIs) and
vegetation biophysical variables (VBVs) [41]. VIs and VBVs are important parameters and,
therefore, are unique to assess variations in the physiological state and biophysical proper-
ties of vegetation. Moreover, they perform crop growth monitoring and yield assessment,
detect vegetation stress, and improve crop management practices [19,31,42]. The optimal
wavelengths and VIs vary for different crop biophysical parameters and growth stages
(GSs). These indices have been widely implemented within remote-sensing applications by
using different remote- and proximal-sensing platforms [13,17]. The Normalized Difference
Vegetation Index (NDVI) is the most used vegetation index that measures the difference
between the canopy reflectance in the near-infrared and visible bands [43,44]. Moreover,
numerous innovative and intriguing VIs and VBVs such as the Normalized Difference Red-
Edge Index (NDRE), the Modified Soil Adjusted Vegetation Index (MSAVI), the Normalized
Difference Water Index (NDWI), the Fraction of Vegetation Cover (FVC) and the Fraction
of Absorbed Photosynthetically Active Radiation (FAPAR) have been developed which are
related to the vigorous, photosynthetically active radiation absorbed by the greener and
healthier leaves. Therefore, are considered as a unique implement to interpret the spatial
patterns of the canopy such as changes in canopy size, photosynthetic capacity and canopy
chlorophyll content, structure and plant health status, crop productivity, nutrient or water
stress and berry characteristics which can be related to changes in microclimate or other
conditions [19,20,29,31,45–48].

The research occurred in a trial vineyard in the Prefecture of Corinth in Pelopon-
nese (Southern Greece). The Peloponnese wine region is the largest vineyard area in
Greece, constituting around 31% of wine production in the country and covering an area of
approximately 22,000 ha [49].

Numerous studies the last few decades have tried to connect the characteristics of the
vegetation with the yield, in vineyards, in order to estimate their potential productivity,
such as those conducted by Borgogno-Mondino et al. [46], Matese and Di Gennaro [2],
Dobrowski et al. [50], Ballesteros et al. [51], etc. Nevertheless, the lack of plenty of studies
considering table grapes instead of the most frequent examination of wine grapes, as well
as the combination of remote and proximal sensing and the assessment of several VIs and
VBVs reveals the importance of the present research.

This study aimed to (a) compare and evaluate proximal- and satellite-derived data;
and (b) monitor and describe the temporal and spatial variability of spectral and canopy-
based vegetation characteristics within a vineyard and their relation to productivity, using
different sensors, in various growth stages. In this context, a comparison of NDVI and
NDRE derived both from remote- and proximal-sensing data sources, for the different
data-sources comparison, and additionally, MSAVI, NDWI, FVC, and FAPAR derived only
from remote-sensing data for the assessment of their correlation with the vineyard yield,
were carried out at four different stages of the cultivation. The analysis considered the
heterogeneity of the data regarding the spatial, temporal, and spectral resolution, to avoid
accuracy problems.

2. Materials and Methods
2.1. Study Area

The study area is situated in the prefecture of Corinth (Peloponnese) in Southern
Greece (37◦54.532′ N, 22◦44.798′ E, Figure 1a,b), which is characterized by a dry Mediter-
ranean climate with hot summers and mild winters, and according to the Köppen–Geiger
climate allocation, it is classified as Csa, with an average annual temperature of 18 ◦C and
rainfall of 550–600 mm [52].
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Figure 1. (a) The national, (b) regional, and (c) local position of the experimental vineyard field.

The experimentation was conducted during 2017, in a 1.4-hectare vineyard (Figure 1c).
The vines were planted in 2006 with Vitis vinifera L. cv. Thompson seedless, and the
variety was grafted onto a 1103 Paulsen rootstock system, having a double cross-arm
trellis ordinance with 1.8 m and 2.6 m among the stems and the lines, respectively. Typical
canopy management and configuration processes, growth regulators, irrigation water
(about 2400 mm/ha), and fertilizers (sixteen foliar applications) were applied during the
growing season to achieve profitable conditions for grape diameter and sugar content.
Besides, soil physical and chemical properties, such as texture, electric conductivity, pH,
organic matter, etc., were measured. The plot displays an average elevation difference of
15–20 m, which is a little higher in the western–northwestern part (Figure 2a) and shows a
variance in soil composition, with mainly two different soil types, sandy loam (west and
southwest part) and clay–clay loam (east and northeast part; Figure 2b), as well as a small
difference in the content of iron ions, as it is higher at the western part.
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Figure 2. (a) Very high-resolution Digital Elevation Model and (b) soil texture distribution characteristics of the experimental
vineyard field.

2.2. Datasets and Methodology
2.2.1. Proximal and Remote-Sensing Data

Sentinel-2 satellite system carries a Multi-Spectral Imager (MSI) sensor which covers
the Visible (VIS), Near Infrared (NIR), and Short-Wave Infrared (SWIR) portions of the
electromagnetic spectrum. Five clouds free and atmospherically corrected (2A) images to
provide Bottom of Atmosphere reflectance values in cartographic geometry (UTM/WGS84
projection), were acquired free of charge via the ESA portal (https://scihub.copernicus.eu/
accessed on 13 October 2020), for the monitoring of the study area.

The data preprocessing comprised image resampling to 10 m, since S2 spectral bands
operate on the different spatial resolution of 10 (4 bands, B2, B3, B4, and B8), 20 m (6 bands,
B5, B6, B7, B8A, B11, and B12), and 60 m (3 bands, B1, B9, and B10). Furthermore, given
the small size of the study area, a subset and masking of the pixels outside the vineyard
boundaries were applied. Finally, the collocation of 10 spectral bands (by excluding bands
1 (coastal aerosol), 9 (water vapor), and 10 (cirrus)) and four supplementary products of the
atmospherically corrected images for each date was made [53]. The four supplementary are
related to the directional information, including sun zenith (angle θs), sun azimuth (angle
ϕ), view zenith mean, and view azimuth mean, which are necessary for the calculation of
the VBVs (FVC and FAPAR).

The proximal measurements were conducted with a Crop Circle ACS-470 (Holland Sci-
entific Inc., Lincoln, NE, USA) active sensor, which incorporates three optical measurement
channels and is user-configurable from 440 to 800 nm, using 12.5 mm interference filters
(Figure 3a). This sensor is widely used for numerous Precision Agriculture applications to
record a variety of vegetation indices [30]. The CC ACS-470 provides six spectral bands. In
this study, three spectral bands were chosen and configured based on literature reviews and
previous research, having as the main objective to be in conjunction with the corresponding
bands of S2. Thus, the selected bands cover the red (670 nm), red edge (730 nm), and
NIR (760 nm) parts of the electromagnetic spectrum [30,34]. The CC sensor was adapted
to a special construction mounted on a quad bike, together with a Garmin GPS16X HVS,
(Garmin, Olathe, KS, USA) to georeference the data (Figure 3b).

https://scihub.copernicus.eu/
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Figure 3. (a) The Crop Circle ACS-470 parts, and (b) the Crop Circle canopy sensor, along with the vehicle and the special
adaptation construction, for the measurements in the field.

The measurements were collected approximately 1.5 m above the soil surface and
1 m away from the side canopy area, at a rate of 10 readings per second and walking at
a constant speed. Spectral-reflectance data were recorded and saved as a text file on an
SD flashcard, using the Holland Scientific GeoSCOUT GLS-400 data logger (Figure 3a). A
critical step before the analysis was the removal of artifacts within the data that may occur
as extraneous data points that lie outside the general range of the dataset (termed outliers),
or as data values that differ significantly from neighboring data values but lie within the
general range of the data (termed inliers). A protocol on data trimming that was proposed
by Taylor et al. [54] was used to ensure the robustness of the analysis and to yield accurate
conclusions.

Reflectance data of CC and S2 were collected across the field at three different growth
stages divided into five parts (Table 1 and Figure 4): (i) start of veraison (SV); (ii) mid
of veraison, which is separated into two parts, MV-1 and MV-2; and (iii) technological
maturity, which is also separated into two parts, H-1 and H-2. The processing stage that
called veraison (derived from the French expression “verr-ray-zohn”) is one of the most
important moments in a grapevine’s annual lifecycle is the onset of ripening when the
grapes turn from green to red and naturally begin to sweeten [18,55,56]. The choice of
these concreteness growth stages was made considering that there is a rapid change in
berry composition, which is reproduced to the final yield and quality [27,38]. The proximal-
sensing measurements’ dates occurred as close as possible to the dates of the satellite
products (Table 1 and Figure 4).

Table 1. Acquisition dates of satellite and proximal-sensing data.

Growth Stages Proximal-Sensing Dates Satellite-Sensing Dates

SV 15 June 2017 15 June 2017
MV-1 22 June 2017 25 June 2017
MV-2 09 July 2017 05 July 2017
H-1 26 July 2017 25 July 2017
H-2 16 August 2017 14 August 2017

SV, start of veraison; MV-1, mid of veraison, part 1; MV-2, mid of veraison, part 2; H-1, technological maturity,
part 1; H-2, technological maturity, part 2.
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Figure 4. Temporal distribution of the proximal- and remote-sensing data during the vineyard growing period.

2.2.2. Spectral Characteristics of Vegetation Indices and Vegetation Biophysical Variables

For the spatial variation comparison of proximal and satellite systems and their
relation to the yield, four VIs, and two VBVs were examined. As far as it concerns the
VIs, the most commonly used vegetation index, NDVI, and the innovative and intriguing
calculations of NDRE, MSAVI, and NDWI were computed [13,33,57–59].

NDVI discriminates the different response of vegetation to the visible and near-
infrared part of the electromagnetic spectrum that is closely related to crop status
(Equation (1)) [2,43]. It takes advantage of the strong energy absorption by the chloro-
phyll in the red portion of the spectrum (RED), and on the high energy scattering by the
internal structure of leaves in the near-infrared (NIR) part. It displays a sensitive response
to green vegetation even for low vegetation-covered areas and is related to canopy structure
and photosynthesis. Though, NDVI is sensitive to the effects of soil brightness and cloud
or canopy shadow. The result of NDVI calculation is an image with a continuum of pixel
values that range from −1 to 1, where, in general terms, negative values correspond to
non-vegetated surfaces, while positive values correspond to vegetated ones, and where
higher values are related to healthy photosynthetic vegetation, while lower values, espe-
cially those <0.2, are related to stressed vegetation or bare soil [21,60]. Considering that the
NIR band 8 of S2 has a different wavelength range from the NIR band that is available from
the CC sensor, the S2-NDVI was calculated by using the spectral band 6, which represents
reflectance from radiation at 740 nm, very close to the recorded wavelength of the CC NIR
band (730 nm).

NDRE is a narrowband greenness VI that was designed to provide a measure of the
overall amount and quality of photosynthetic material in vegetation, which is essential for
understanding the state of vegetation. Narrowband greenness VIs are considered ideal for
use with imaging spectrometers. NDRE was measured by using the NIR and red-edge band
(RE; 705 nm), where RE replaces the red band in the equation of NDVI (Equation (2)) [61].
Compared with NDVI, the NDRE index as a widely used red-edge-based VI has been
proved to be more resistant to the saturation problem and is more sensitive than NDVI to
chlorophyll content in vegetation [33,62,63].

Modified Soil Adjusted Vegetation Index 2 (MSAVI2) is a soil adjusted vegetation
index that aims to overcome some of the constraints of NDVI when applied to crops with
a medium or high exposure of soil surface (Equation (3)). Moreover, the use of MSAVI2
avoids the main problem of the original soil-adjusted vegetation index, which is required to
specify the soil-brightness correction factor (L) through trial-and-error, based on the amount
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of vegetation in the study area. Qi et al. [64] determined the MSAVI2, which eliminates
the need to find the soil line from a feature-space plot or even explicitly specify the soil
brightness correction factor. Likewise, it has a simpler algorithm, and it is mainly used in
the analysis of plant growth, yield estimation, and Leaf Area Index (LAI) assessment.

NDWI is delineated from the combination of NIR and SWIR reference units which are
sensing similar depths through vegetation canopies (Equation (4)) [65]. It is sensitive to
changes in vegetation water content and less sensitive to atmospheric aerosol scattering
effects. High NDWI values demonstrate a high-water content of the vegetation.

Concerning the VBVs, the FVC and FAPAR biophysical parameters were estimated.
FVC defines the ratio of the vertical projected area of vegetation canopy to the reference
ground surface, expressed as a fraction [47,66]. FVC is a key variable related to many bio-
physical features, such as plant phenology, density, and yield [47,67]. FAPAR corresponds
to the fraction of photosynthetically active radiation (i.e., within 400 to 700 nm) absorbed
by the green parts of the canopy, and it is, consequently, an indicator of the status of the
vegetation canopy, since the absorption of the photosynthetically active radiation is related
to leaf chlorophyll content [45,68]. FVC and FAPAR calculation require the reflectance of
8 simulated bands (B3–B7, B8A, B11, and B12) and the cosine of three angles (solar zenith
angle, view zenith angle, and relative azimuth angle between solar and view).

NDVI =
(B6 − B4)

(B6 + B4)
(1)

NDRE =
(B8 − B5)

(B8 + B5)
(2)

MSAVI2 =

(
2 ∗ B8 + 1 −

√
(2 ∗ B8 + 1) − 8 ∗ (B8 − B4)

)
2

(3)

NDWI =
(B8 − B12)

(B8 + B12)
(4)

2.2.3. Yield Estimation and Statistical Analysis

For the comparison of VIs and VBVs deriving from S2 images with the CC canopy
sensor-derived indices and their relation to the yield, a common methodology for upscaling
proximal data was utilized [37,69]. Specifically, a grid-layer of 126 blocks of the same size
was created with identical geometry and spatial resolution with the grid of satellite images
(Figure 5). This grid was used as a reference layer for upscaling the values generated by
proximal and yield data.

The datasets acquired from Crop Circle ACS-470 were varying in terms of density
and spatial distribution. Therefore, a geostatistical spatial prediction procedure of block
kriging was applied to the dataset gathered for the present study [70]. The output files of
CC were imported into a GIS platform for visualizing, editing and calculating the NDVI
and NDRE maps. The raster grids of the two indices were upscaled into 10 m pixel size
to be comparable with the spatial resolution of S2-derived indices, using the mean value
of the pixel situated in the same area. Subsequently, the mean values of the pixels located
within each block of the reference grid were computed by the Zonal Statistics tool of the
GIS platform, to represent the indices values per block.

Finally, Pearson’s correlation coefficient (r) and regression analysis (r2) were used to
compare the spatial similarity between the different datasets, by measuring the strength
and direction of the linear relationship among the two variables [29,71].

The table grapes were harvested by hand during 16–20 August 2017. The actual yield
was estimated at the harvest period by measuring the total number of bins in 50 sampling
blocks and multiplying it with the average bin weight of the harvested table grapes. The
sampling sites were selected randomly to represent 50 blocks of the reference grid, avoiding
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the selection of border pixels and inter-row central line, which separates the field into two
parts, to reduce the influence of the soil cover.

Figure 5. The study area divided into a grid of 126 blocks of the same size.

2.2.4. Processing and Statistical Analysis Software

The processing of the remote- and proximal-sensing data was accomplished by using
ArcGIS (Environmental Systems Research Institute, Redlands, CA, USA), ENVI (Exelis
Visual Information Solutions, Boulder, CO, USA), and SNAP (STEP, ESA, European Union)
software.

The geostatistical analysis of the Crop Circle ACS-470 datasets was accomplished
utilizing the VESPER 1.6 (Variogram Estimation and Spatial Prediction plus Error) software
of the Australian Centre of Precision Agriculture [70]. The software calculates local semi-
variograms for each neighborhood through the local kriging process and searches for the
data points within the defined site, estimating the variogram cloud by fitting a model.
Thus, highly accurate maps of the spatial interpolated values are generated [54].

The statistical analysis of yield and vegetation index correlation was made by uti-
lizing the correlation coefficient estimations and regression analysis and was performed
with the statistical software Statgraphics 16 (StatPoint Technologies Inc., Warrenton, VA,
USA) [72,73].

3. Results
3.1. Descriptive Statistics

Before performing the correlation analysis, basic statistics were calculated for the
exploration of the data. The mean values of the proximal-based NDVI ranged from 0.60
to 0.66, showing a reduced seasonal variability (Table 2). A bit surprisingly, Crop Circle
NDVI (CCNDVI) values decreased upon the second measurement date; an explanation
of that may be the farming operations during that stage (e.g., foliar fertilizers, crop grow
regulators, etc.). Not surprisingly, progressive canopy growth is observed based on the
descriptive statistics of four satellite-based (S) indices, namely NDVI (SNDVI), FAPAR
(SFAPAR), NDRE (SNDRE), and NDWI (SNDWI), with the highest mean values occurring
during the H crop stage. In the cases of MSAVI and FVC high mean values are also observed
in the first two stages, during June. Additionally, throughout the growth stages, FVC,
FAPAR, and proximal-based NDRE presented the highest degree of variation among the
satellite- and proximal-based vegetation indices, with the values of coefficient of variance
(CV) ranging from 10.59 to 14.59, 14.56 to 16.57, and 1.93 to 21.39, respectively (Table 2).
Overall, FVC, FAPAR, and NDVI (proximal- and satellite-based) presented the highest
mean values, while lower values, below 0.6, were observed in NDWI and NDRE.
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Table 2. Descriptive statistics of the vegetation indices (Vis) and vegetation biophysical variables (VBVs) at the five different
crop stages.

Sensor–VI–Growing Stage Mean Min Max SD CV (%)

SV: CCNDVI/SNDVI 0.66/0.61 0.61/0.39 0.71/0.69 0.02/0.05 3.23/8.31
MV-1: CCNDVI/SNDVI 0.60/0.62 0.57/0.41 0.63/0.71 0.01/0.05 2.15/8.67
MV-2: CCNDVI/SNDVI 0.65/0.63 0.60/0.34 0.67/0.71 0.02/0.06 2.53
H-1: CCNDVI/SNDVI 0.64/0.67 0.61/0.33 0.67/0.75 0.01/0.07 1.60/10.75
H-2: CCNDVI/SNDVI 0.61/0.74 0.54/0.41 0.64/0.84 0.02/0.08 3.03/10.31

SV: CCNDRE/SNDRE 0.53/0.42 0.50/0.24 0.55/0.46 0.01/0.03 1.93/8.31

MV-1: CCNDRE/SNDRE 0.44/0.46 0.22/0.32 0.62/0.52 0.09/0.04 19.71/8.00
MV-2: CCNDRE/SNDRE 0.36/0.45 0.32/0.32 0.40/0.50 0.02/0.04 4.65/8.61
H-1: CCNDRE/SNDRE 0.51/0.48 0.34/0.30 0.63/0.54 0.06/0.05 11.23/10.81
H-2: CCNDRE/SNDRE 0.45/0.53 0.30/0.25 0.64/0.60 0.10/0.06 21.39/11.80

SV: SMSAVI2 0.55 0.41 0.62 0.04 6.85

MV-1: SMSAVI2 0.53 0.39 0.59 0.04 6.60
MV-2: SMSAVI2 0.52 0.34 0.57 0.04 7.50
H-1: SMSAVI2 0.54 0.32 0.78 0.06 10.99
H-2: SMSAVI2 0.60 0.37 0.70 0.06 10.43

SV: SNDWI 0.44 0.29 0.49 0.04 8.62

MV-1: SNDWI 0.44 0.29 0.49 0.04 8.74
MV-2: SNDWI 0.47 0.28 0.52 0.05 10.48
H-1: SNDWI 0.49 0.25 0.55 0.06 11.87
H-2: SNDWI 0.55 0.29 0.63 0.07 12.02

SV: SFVC 0.79 0.41 0.88 0.08 10.59
MV-1: SFVC 0.79 0.39 0.88 0.08 10.38
MV-2: S FVC 0.75 0.28 0.83 0.09 12.12
H-1: S FVC 0.77 0.29 0.87 0.11 14.59
H-2: S FVC 0.85 0.37 0.94 0.10 11.89
SV: SFAPAR 0.59 0.37 0.79 0.09 15.13

MV-1: SFAPAR 0.61 0.37 0.80 0.10 15.78
MV-2: SFAPAR 0.62 0.36 0.76 0.09 14.56
H-1: SFAPAR 0.70 0.36 0.83 0.12 16.57
H-2: SFAPAR 0.81 0.37 0.92 0.12 14.88

CCNDVI, Crop Circle Normalized Difference Vegetation Index; SNDVI, satellite-based NDVI; CCNDRE, Crop Circle Normalized Difference
Red-Edge Index; SNDRE, satellite-based NDRE; SMSAVI2, satellite-based Modified Soil Adjusted Vegetation Index 2; SNDWI, satellite-
based Normalized Difference Water Index; SFVC, satellite-based Fraction of Vegetation Cover; SFAPAR, satellite-based Fraction of Absorbed
Photosynthetically Active Radiation.

Moreover, according to the descriptive statistics of the measured actual yield, the
values ranged from 4.5 to 19.8 tons/ha, and there seems to be a positive trend towards the
eastern part of the vineyard, where it is characterized by lower production than its western
part (Table 3). The mean was 16.50 tons/ha, which is considered low. The coefficient of
variance (CV) reached 18.75%, which is relatively high, considering the small area of the
vineyard (1.4 ha).

Table 3. Descriptive statistics of the yield measurements.

Mean Min Max SD CV (%)

Yield 16.50 4.58 19.82 3.00 18.75

3.2. Satellite and Proximal Based NDVI and NDRE Comparison

The regressions of the NDVI and NDRE datasets, throughout the season, are presented
in Figure 6, along with the confidence (green lines) and the prediction limits (gray lines).
The output shows the plots of fitting a linear model to describe the relationship between
CCNDVI and SNDVI at all growth stages. For the selection of the model, we took into
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account the table “comparison of alternative models” of Statgraphics to find the best fit.
The linear regression model was selected based on the values of R squared, adjusted R
squared, and Mean Absolute Error (MAE), since these are the most widely used evaluation
metrics for the regression models (Table 4). The adjusted r2 of the NDVI datasets is ranging
from 0.50 to 0.64 (Table 4), while the lowest regression values (r2 = 0.49) were recorded on
MV-2 and the best fit was reached on MV(2) (r2 = 0.64; Equations (5)–(9)). In the case of
NDRE, the fitted models display 36% (r2 = 0.36) and 33% (r2 = 0.36) of the variability in
proximal data at the stage of SV and H-1 (Table 4; Equations (10)–(14)). The recorded r2

between proximal and satellite NDRE datasets were below 0.30 at the other stages of the
crop (MV-1, MV-2, H-1, and H-2), indicating poor prediction capability of the models.

Figure 6. Cont.
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Figure 6. Regressions between NDVI and NDRE derived from Sentinel-2 images and Crop Circle sensor. Green lines show
confidence, while and the gray lines show the prediction limits.

Table 4. Regression models of proximal and satellite-derived NDVI.

Crop Circle ACS-470-NDVI

Sentinel-2

GS
Correlation
Coefficient

Pearson-NDVI
Regression Model—NDVI

R-Squared
(Adjusted for

d.f.) (%)
MAE p-Value

SV 0.71 CCNDVI SV = 0.474686 +
0.298043 * SNDVI SV (5) 50.39 0.0120 0.00

MV-1 0.80 CCNDVI MV-1 = 0.481306 +
0.194834 * SNDVI MV-1 (6) 64.36 0.0057 0.00

MV-2 0.70 CCNDVI MV-2 = 0.524896 +
0.191779 * SNDVI MV-2 (7) 48.85 0.0085 0.00

H-1 0.71 CCNDVI H-1 = 0.571603 +
0.101303 * SNDVI H-1 (8) 51.09 0.0051 0.00

H-2 0.79 CCNDVI H(2) = 0.46648 +
0.192996*SNDVI H-2 (9) 63.27 0.0085 0.00
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Table 4. Cont.

Crop Circle ACS-470-NDRE

Sentinel-2

GS
Correlation
Coefficient

Pearson-NDRE
Regression Model—NDRE

R-Squared
(Adjusted for

d.f.)
MAE p-Value

SV 0.60 CCNDRE SV = 0.452798 +
0.175541 * SNDRE SV (10) 35.50 0.0064 0.00

MV-1 0.45 CCNDRE MV-1 = − 0.0466763
+ 1.06139 * SNDRE MV-1 (11) 19.58 0.0597 0.00

MV-2 0.55 CCNDRE MV-2 = 0.252324 +
0.235186 * SNDRE MV-2 (12) 29.35 0.0096 0.00

H-1 0.58 CCNDRE H-1 = 0.204625 +
0.640423 * SNDRE H-1 (13) 32.70 0.0370 0.00

H-2 0.37 CCNDRE H-2 = 0.146509 +
0.573473 * SNDRE H-2 (14) 13.16 0.0719 0.00

GS, growth stage.

The NDVI and NDRE maps were created and classified into three classes (low,
medium, and high), using the quantile classing method to demonstrate the spatial distribu-
tion of the VIs’ values (Figure 7). Following previous studies [56], the quantile classification
method was used only for visual interpretation of VIs and yield. The method was not used
to define management zones. There are many classification methods for visualization avail-
able, including quantiles, natural breaks, equal intervals, and standard deviations [74,75].
According to ArcGIS help, which provides a detailed description of this schema, the quan-
tile classification is well suited to linearly distributed data, grouping features in equal
numbers in each class. To this end, three classes were considered sufficient. Note that if
the data distribution has a positive or negative skewness, the quantile or natural break
distribution classifiers could be chosen [76]. In the current study, and by considering the
distribution histograms of the datasets, the “quantile classifier” was chosen and applied as
the most suitable for the visualization of our dataset.

The exploratory analysis of the data revealed considerable spatial variation, and the
thematic maps presented some spatial patterns with a trend of higher values occurring at
the center and western part of the field, especially in the case of S2 data.

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. NDVI and NDRE maps showing the indices values spatial variation, derived from satellite (Sentinel-2 (S2)) and
proximal (Crop Circle (CC)) datasets for the five different stages.

3.3. Vegetation Indices and Yield Measurements

The VIs and VBVs maps were also created and classified into three classes (low,
medium, and high), using the quantile classing method to demonstrate the spatial distribu-
tion of their values (Figure 8). The same classification was also made for the yield spatial
distribution (Figure 9).

Thereinafter the correlation analysis of both VIs and VBVs values, from the proximal
and remote sensors, at all the selected growth stages with the yield measurements, were
conducted. The results display that the CCNDVI and CCNDRE have a lower correlation
than SNDVI and SNDRE, respectively (Table 5). The correlation of CCNDRE was, unex-
pectedly, extremely low, much lower than the SNDRE, and, in general, the CC values were
lower than the satellite (S2) values. The stage of MV-2 appears to be the most suitable date
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for proximal and satellite measurements (NDVI and NDRE), due to the higher correlation
values (0.87 and 0.78 for S, and 0.76 and 0.59 for CC, respectively).

As far as it concerns the correlation of both VIs and VBVs values that derived from
S2 data, the maximum positive correlation with the yield was observed from NDVI and
FAPAR, mainly at the MV-2 growth stage (0.87) and a suitable positive correlation at the SV
and MV-1 stages, varying from 0.74 to 0.78 (Figure 10). The maximum correlation values of
the NDRE occurred also at the MV-2 stage (0.78) and the minimum primarily at the H-1
stage and less at the H-2 stages, 0.60 and 0.67 respectively. (Figure 9).

On the other hand, the other three indices MSAVI2, NDWI, and FVC demonstrate a
very low correlation at all stages, and only at the MV-2 stage do they demonstrate a quite
acceptable value (Figure 9). In particular, the NDWI and (less so) the FVC display very low
correlation values mainly at the first two stages, SV and MV-1, varying from 0.37 to 0.54.

Figure 8. Cont.
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Figure 8. Cont.
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Figure 8. MSAVI2, NDWI, FVC, and FAPAR maps showing the indices values spatial variation, derived from satellite
dataset for the five different stages.

Figure 9. Yield map showing the spatial distribution of the grape production classified into three
classes (low, medium, and high).
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Table 5. Coefficients of determination (r2) of the linear relationships of CCNDVI and SNDVI values
with yield.

Growth Stages

Yield

CCNDVI SNDVI CCNDRE SNDRE

Pearson

SV 0.59 0.74 0.39 0.70
MV-1 0.59 0.76 0.23 0.60
MV-2 0.76 0.87 0.59 0.78
H-1 0.50 0.65 0.30 0.60
H-2 0.59 0.68 0.30 0.67

Figure 10. The Coefficients of determination representing the correlation of the S2-derived VIs and VBVs values with the
yield.

4. Discussion
4.1. Proximal- and Remote-Sensing Multi-Seasonal Comparison

The use of multi-seasonal remote- and proximal-sensing sensors, which provide
specific multispectral data, demonstrates to be an ideal tool to map the vineyard conditions,
monitor their development through their growth stages, and assist in the estimation of
the production from an early phase of crop growth. Several research studies have been
developed, especially during the last few decades, dealing with the implementation of
remote and proximal sensors in viticulture, such as those of Sozzi et al. [57], Gatti et al. [77],
and Matese et al. [37], which used VIs derived from S2 and UAV sensors for vineyard
monitoring. Bramley et al. [32], Taskos et al. [33], Anastasiou et al. [29], Reynolds et al. [78],
Primicerio et al. [79], Magarreiro et al. [45], Borgogno-Mondino et al. [46], and Stamatiadis
et al. [31] utilized VIs or VBVs obtained from Crop Circle and remotely sensed imagery
for assessing vineyard’s conditions and their relation to yield variability. Henry et al. [80],
Arnó et al. [6], and Stamatiadis et al. [81] used several different proximal sensors, along
with GPS and VRA to evaluate the characteristics of vineyards, while other scientists, such
as Meggio et al. [19], Xue and Su [42], and Martínez-Beltrán et al. [82], utilized for the same
reason various remote sensors (hyperspectral or thermal).
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Multi-seasonal measurements during several different growth stages, like the selected
in the present study, appear to be a reliable source of information to draw reliable conclu-
sions about the development of the crop, as it is also examined and highlighted by several
other previous studies, such as those of Anastasiou et al. [5,38], Kazmierski et al. [56],
Lamb et al. [18], Taskos et al. [33], and Mathews [83]. The correlation analysis for each
stage of development separately aimed to distinguish the most important period for the
development of the crop and its correlation with production.

For this study, the extensively tested and analyzed broadband vegetation index,
NDVI and the narrowband index, NDRE, were selected for the comparison of satellite
and proximal-derived datasets [24,37,46,77,82,84–87]. Based on the results, significant
correlations were recorded mainly for the NDVI, where the statistical analysis indicated the
robust relationships between the proximal and remote-sensing NDVI datasets, displaying
satisfactory linear correlation coefficient results, especially for the period of veraison (MV-
2) and harvest (H). These results indicate that the top canopy’s vine leaves had higher
photosynthetic rates at these stages and provide new insights into the monitoring of
vineyards at a medium resolution scale. The fact that the differences between the minimum
and maximum values of the VIs derived from the CC were very small probably due to
the very high proximity of the CC scanner and the canopy, which affect insignificant the
comparison and the relation of the indices. On the other hand, surprisingly, for the NDRE,
the correlation was not accordingly suitable. In the case of NDRE, the low correlation
with the yield is probably related to the fact that the red-edge band is associated with the
visualization of chlorophyll content in leaves that, during the selected growth stages, has
reached its maximum values and displays a significant decrease thereafter. Moreover, the
narrowband greenness VIs, such as NDRE, are combinations of reflectance measurements
sensitive to the combined effects of foliage chlorophyll concentration, canopy leaf area,
foliage clumping, and canopy architecture. Thus, it is apparent from the results that these
parameters in our case in the specific vineyard field are not ideal to reach a satisfactory
correlation [88].

4.2. VIs–VBVs and Yield Correlation

As far as it concerns the relationship of the VIs and VBVs with the yield, the highest
correlations were detected by NDVI and FAPAR vegetation indicators. Although the
NDVI has been commonly used to focus on vineyards’ conditions and, consequently,
wine production [38,89], the disposal of FAPAR estimates from satellite data releases the
possibility to evaluate the state of the vineyard health and production through a variable
closer to photosynthesis processes.

On the other hand, NDRE provided quite acceptable results, while MSAVI2, NDWI,
and FVC delivered inadequate and ineffective outcomes. MSAVI was tested because
NDVI is sensitive to the effects of soil brightness and leaf-canopy shade that, in some
cases, necessitate targeted processing and calibration [42]. Therefore, several types of
research have mentioned that utilizing medium-resolution satellites to assess vineyard
characteristics is risky due to their large heterogeneity and narrow line spacing, and,
consequently, only a few studies have been conducted in the field of viticulture with
such satellite systems [29,90]. In our experimental field, we have concluded that the gaps
between the lines were too small, concerning the spatial resolution of S2 data, to achieve
differences in the results by implementing MSAVI2 instead of NDVI, which is more accurate
when inter-row soil lines are wide. Moreover, it was ineffective for the same reason as
the attempt to separate these lines from the S2 images [57]. On the other hand, the lines
were too large for trying to make the scanning of CC from a higher altitude to simulate the
acquisition with the perspective view of the satellite sensor. Nevertheless, in the case of
PS, a significant reduction of soil reflectance interference was noted considering that the
sensor scanning takes place in close proximity to the vine canopy [81]. Additionally, the
low correlation values of NDWI are probably related to the lack of irrigation and the low or
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zero rainfall values during the summer that create extremely dry conditions at the canopy.
Their utilization could be more reliable for irrigated crops.

The low correlation values of all indices at the H-1 stage, especially of those derived
from the CC sensor, probably may be explained partly by the fact that table grapes received
numerous crop practices on the canopy, like the defoliation procedure intended for the
grape ripening, which caused a restructuring effect on the canopy characteristics and
consequently to the measurements occurred there. Likewise, the correlation between the
vegetation index and vineyard yield was higher when the border pixels were removed
from the calculation procedure in the case of S2 data, due to the edge effects of the vineyard
surrounding area on the spectral response. However, this process is extremely risky,
especially at small fields, where the border pixels comprise a large part of the vineyard [57].
This limitation will be eliminated in the following years with the expansion of the very
high spatial resolutions satellites and UAVs [2,91].

Furthermore, the highest correlations were found at the same crop stage for each of
the proximal and remote methods, during the middle of veraison (MV-2). This outcome
agrees with the findings of Anastasiou et al. [29] and Garcia-Estevez et al. [92] which found
also the highest correlation during the same growth stage (MV-2). Moreover, the highest
correlation of S2-values in comparison to the CC-values, during all growth stages and
especially in veraison, is probably related to the physiology of the vines. In particular, the
vine’s mature leaves are developed near the trunk at the initiation of vine growth, but as
the vine grows to senescence, these leaves are found at the edge of the shoot. Consequently,
the leaves that are at the side canopy, which are measured with proximal sensing, thus
providing lower values in comparison with the S2 that measures the photosynthetic activity
of the top canopy leaves.

The fact that the higher correlation was identified at the northwestern and western part
of the vineyard almost certainly is related to the geomorphological and soil characteristics,
since the experimental field is characterized by a slight slope that extends to the central
part of the plot from north to south, and better soil properties at the western part that might
affect production and vine conditions.

5. Conclusions

In this study, an assessment of different sensing methods (satellite and proximal)
for monitoring crop conditions through several VIs and VBVs, and their relation to the
yield, was conducted, during 2017, on a commercial table grape vineyard. The vegetation
indicators were calculated based on the spectral information that was derived from Sentinel-
2 and Crop Circle. The results demonstrated the potential of S2 images and CC data to
characterize vineyard blocks’ vigor and to monitor winegrowers’ practices at a territorial
(regional) scale.

The results were encouraging in the view of developing a wide-scale monitoring
system, especially relying on the Sentinel-2 mission, allowing free access to data with high
spatial and temporal resolution from most regions of the world. The conclusions from this
study will be also beneficial for improving the applications of Crop Circle in production
fields. Moreover, the fact that CC is independent of an external light-source existence, it is
not affected by ambient conditions (weather, cloud cover, etc.) makes it a valuable tool for
precise viticulture monitoring in any condition, day, or night.

The findings of proximal- and remote-sensing analysis reveal a satisfactory correlation
of VIs and VBVs with the yield at specific vine growth stages (MV-2). Agronomists and
farmers having this valuable knowledge as a pilot tool can implement precise spatial
distributed intervention practices to improve the condition of the plants increasing, and
hence, the production.

In general, the results of the present study are encouraging and give the impetus
for further research over a longer period, a larger number of experimental plots, and
by considering more parameters and/or vegetation indices from comparable sensors.
Moreover, an added value of this work is that it presents a perspective for vineyard
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production estimation using data that are easily accessible, free, and available for numerous
grapevines regions in alternative to continuous in situ measurements, which commonly
are difficult to access and often associated with extra costs.

Our research attempted to create an operational tool, trying to relate the vineyard
vegetation conditions with the yield, using different sensors, in various growth stages,
in order to be used as a guide for the production estimation on a broader scale (regional
or national). The achievement of such an effort necessitates further research and field
measurements to accomplish a trustworthy methodology.
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