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Abstract: Climate change calls for novel approaches to include environmental effects in future
breeding programs for forage crops. A set of ryegrasses (Lolium) varieties was evaluated in multiple
European environments for crown rust (Puccinia coronata f. sp. lolii) and stem rust (P. graminis f.
sp. graminicola) resistance. Additive Main Effect and Multiplicative Interaction (AMMI) analysis
revealed significant genotype (G) and environment (E) effects as well as the interaction of both
factors (G × E). Genotypes plus Genotype-by-Environment interaction (GGE) analysis grouped the
tested environments in multiple mega-environments for both traits suggesting the presence of an
environmental effect on the ryegrasses performances. The best performing varieties in the given mega-
environments showed high resistance to crown as well as stem rust, and overall, tetraploid varieties
performed better than diploid. Furthermore, we modeled G × E using a marker x environment
interaction (M × E) model to predict the performance of varieties tested in some years but not
in others. Our results showed that despite the limited number of varieties, the high number of
observations allowed us to predict both traits’ performances with high accuracy. The results showed
that genomic prediction using multi environmental trials could enhance breeding programs for the
crown and stem rust in ryegrasses.

Keywords: G × E; ryegrass; crown rust; stem rust; AMMI; GGE; genomic prediction; M × E

1. Introduction

Perennial ryegrass (Lolium perenne L.), as well as Italian ryegrass (Lolium multiflorum Lam.),
are extensively used in temperate regions as a forage crop and as turf for recreational areas.

Foliar diseases of ryegrasses caused by fungi belonging to the genus Puccinia are
the most damaging, causing a reduction in tillering, root and shoot biomass, and plant
regrowth [1]. Consequently, the infection reduces the quality of pastures used for meat,
milk, and wool production and damages turf used for recreation [2]. The two most common
rust diseases in ryegrasses are crown rust, caused by Puccinia coronata f. sp. lolii, and stem
rust, caused by P. graminis f. sp. graminicola [3–5].

Crown rust disease appears on ryegrasses in summer after the release of uredin-
iospores, which can re-infect ryegrass plants and produce a more robust infection. Due to
the asexual reproduction cycle of crown rust on the primary host, multiple ryegrass plants’
infections occur within one growing season. In autumn, the teliospores’ germination leads
to basidiospores’ formation, which, carried by the wind, moves to the alternative host,
common buckthorn (Rhamnus cathartica L.), where the sexual reproduction may occur.
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Stem rust affects mainly seed production in perennial ryegrass, causing a seed yield
reduction [6]. Sexual reproduction often occurs on the alternative host barberry (Berberis
vulgaris L.). Considering both rust species’ destructive potential, crown and stem rust
resistance are essential in variety registration and are fundamental goals in ryegrass breed-
ing [7].

The sexual phase of crown and stem rust contributes to the increase of genetic vari-
ability in the pathogen population [8]. Indeed, the eradication of the alternative host of
stem rust in the United States revealed a large impact on reducing genetic diversity [8].
Nevertheless, variability in the virulence of crown rust populations in the absence of the
sexual stage exists due to other factors, such as high mutation rates or somatic hybridiza-
tion and recombination [9]. Genetic variability leads to the presence of multiple pathotypes
that might show diverse levels of virulence in the host population.

Phenotypic diversity can also be observed in plants subjected to various environments;
variability in response derives from the environment’s effect on the expression and function
of genes associated with the trait of interest. Environmental conditions such as tempera-
ture, light, and dew might influence the infection process, as previously reported for the
penetration rate of crown and stem rust in oats [10] and wheat stem rust epidemics [11].

The analysis of genotype-by-environment interaction (GEI) in Multi Environmental
Trials (METs) is commonly conducted in breeding programs to select superior genotypes
across different locations, collecting information about the environmental effects, as well
as for predicting the performance of untested genotypes. Understanding the host-by-
pathogen interaction patterns can be challenging due to the genetic variability of both the
host and the pathogen and the effect of the environment; therefore, the identification of
stable and durable resistance varieties of ryegrasses against crown and stem rust is desired.

Several studies have been conducted to evaluate the level of genotypic stability in MET
experiments confirming the role of GEI in the response variability of the tested perform-
ers [12–16]. Understanding the role of GEI on the pathosystem and host stability across
multi environments is essential for a successful breeding program. Multi environment
testing is extensively used to analyze the adaptability and stability of varieties to diseases
and investigate the GEI effect on important agronomic traits [17–20]. The most frequently
used approaches for characterizing GEI effects are Additive Main Effect and Multiplicative
Interaction (AMMI) analysis and site regression of Genotypes (G) plus Genotype-by-
Environment (GE) interaction (GGE) biplot analysis. Both AMMI [21] and GGE biplot [22]
methods combine the principal component analysis (PCA) with the ANOVA method into
a single analysis. The main difference between these two methods is the initial analysis
where GGE models G+GE directly, while the AMMI model separates G from GE. Due to
the portioning of the phenotypic variation into genotype main effect, environment main
effect, and genotype-by-environment interaction, the AMMI model is considered superior
to linear regression [23]. On the other hand, GGE biplot analysis is deemed useful to
determine the best performer for a group of environments (mega-environment) by identi-
fying the most tolerant and stable varieties [24]. Since a mega-environment identified with
GGE analysis is defined as a group of locations that share the best set of varieties over the
years [25], data from several years are required to determine whether or not the target area
can be separated into different mega-environments. The detection of mega-environments
is correlated with the recognition of GEI patterns across different locations, and its inves-
tigation is essential for cultivar evaluation and recommendation [26]. An advantage of
these two approaches is the graphical interpretation of the statistical analysis results using
a biplot, which contains information of both genotypes and environments.
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The availability of dense marker sets made it possible to implement genomic selection
(GS) in plant breeding [27]. Numerous studies have demonstrated the benefit of including
marker information in GEI programs, leading to increased prediction accuracy [28–31].
Several GS studies have been conducted to predict varieties performances in METs by
using covariance functions [28], markers, and environmental covariates [32] or by modeling
marker x environment (M × E) interactions [33]. The M × E approach has been extended
to whole-genome regression models by Lopez-Cruz et al. [30], where phenotypes were
regressed on a large number of genome-wide markers. This approach has been extensively
used in several investigations showing that modeling M × E interactions can improve the
prediction accuracy [28,29,31,34,35]. In the M × E model, marker effects are decomposed
into components that are stable across environments (main effect) and environment-specific
deviations (interactions).

Genomic prediction has been applied to several traits in ryegrasses, such as heading
date, seed yield, dry matter yield, neutral detergent fiber, fructan as well as crown rust
resistance [36–39].

In this investigation, phenotypic data collected between 2001 and 2013 from 34 loca-
tions, as part of the EUCARPIA multi-site rust evaluation trial [4,40], were used to study
the environment’s role in driving the plant-pathogen interaction.

The main goals of this study were (i) to evaluate the GEI using AMMI and GGE
analysis for crown and stem rust resistance in multi environmental trials in ryegrasses, and
(ii) to apply the M × E model of Lopez-Cruz et al. [30] for genomic prediction of crown
and stem rust in a high dense MET.

2. Materials and Methods
2.1. Experimental Data and Phenotypic Analysis

Crown and stem rust resistance were tested on a set of 34 perennial (L. perenne),
16 Italian (L. multiflorum), and 4 hybrid (L. boucheanum) ryegrasses. The field trials were
conducted as described by Schubiger and Boller [4,40] in 34 locations across Europe (Table
S1; Figure 1). The experiments were performed every three years from 2001 to 2013 in
a randomized complete block design with four replications. The varieties were sown as
rows of 3 m length and with 0.5 m spacing. Rust incidence based on natural infection
was scored visually on a scale from 1 to 9, with 1 meaning no rust disease and 9 more
than 75% of the foliage covered by rust-affected leaf area (Table S2). The rating values
reported a relative estimation of the leaf area occupied by rust pustules and chlorosis
or necrosis, as described by Schubiger et al. [4]. For better visualization of the data, in
this investigation, the scale was inverted so that lower values refer to a lower tolerance
level (higher susceptibility) and higher scores to a higher tolerance to the rust infection.
Furthermore, for the statistical analysis, the collected observations were divided into four
groups: PCO-LP, PCO-LM, PGR-LP, and PGR-LM, including data from testing crown rust
(PCO) and stem rust (PGR) resistance on perennial ryegrass (LP) and Italian and hybrid
ryegrass (LM) varieties, respectively.

Dispersion of crown and stem rust scorings across the years of the trials were analyzed
by computing the coefficient of variation (CVar). Trait repeatability [41] as estimation of
genetic influence on the trait was calculated as σ2

g/(σ2
g + σ2

e), where σ2
g stands for total

genetic variance and σ2
e the residual variance.
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2.2. AMMI and GGE Analysis of Crown and Stem Rust

Adaptability and genotype stability in the different locations were estimated by the
AMMI (1) and GGE (2) models:

yij = µ + τi + δj +
t

∑
k

λkαikγjk + εij (1)

yij = µ + δj +
t

∑
k

λkαikγjk + εij (2)

where yij is the mean response of the variety ith in the environment jth; µ is the overall
mean of the test; τi is the genotypic effect; δj is the site effect; k is the number of SVD
(singular value decomposition) axes retained in the model, λk (λ1 ≥ λ2 ≥ . . . ≥ λt) are the
singular values for SVD axis k, αik = (α1k, . . . , αgk) are the genotype singular vector values
for SVD axis k, γjk = (γ1k, . . . , γek) are the environment singular vector values for SVD axis
k, εij is the residual term.

Analysis of variance for PGR and PCO was performed separately for perennial and
Italian ryegrass, where environments refer to a combination of location and year.

Interaction Principal Component Axis (IPCA) analysis was used to portion the sum of
squares (SS) into different AMMI models. The F-test of Gollob [42] was used to select the
model that best describes the G × E interaction by evaluating the significance of each IPCA
(Factors) related to the mean square (MS) error of the axes to be retained in the model [21].
The AMMI and GGE results were graphically visualized on a biplot to identify the most
resistant and stable varieties in different environments, as well as to explore the presence
of multiple mega-environments with unique best performers. The GEA-R (Genotype ×
Environment Analysis with R) program developed by Pacheco et al. [43] was used to
perform the AMMI and GGE analysis.
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Pearson’s rank correlation coefficients were calculated among the ranks given by the
different statistical methods. The AMMI analysis ranks were obtained by assigning the
highest level to the variety with the smallest AMMI stability value (ASV), which refers to
the distance from the biplot origin reporting IPCA1 scores against IPCA2 scores. The ASV
was calculated with the following formula, as previously described by Purchase et al. [44]:

ASV =

√[
IPCA 1SQ

IPCA 2SQ
(IPCA 2score)

]2
+ (IPCA 2score)

2 (3)

where IPCA 1SQ
IPCA 2SQ

is the weight derived from dividing the sum of IPCA 1 squares by the sum
of IPCA 2 squares. AMMI stability analysis was conducted using the R function index.
AMMI in the package agricolae [45].

2.3. Genotyping

For each variety, DNA was isolated from leaves of 0.5 g germinated seedlings, accord-
ing to Byrne et al. [46]. Sequence data were produced by Genotyping-By-Sequencing (GBS)
according to Elshire et al. [47] using the restriction enzyme ApeKI for complexity reduction.
A single GBS library was prepared for the 54 varieties and sequenced on a single Illumina
HiSeq4000 lane as 100 bp single-end. After basic data filtering and de-multiplexing using
Sickle [48] and Sabre (github.com/najoshi/sabre), respectively, reads were aligned to a
perennial ryegrass pseudo-chromosome assembly (Nagy et al., 2021;- manuscript in prepa-
ration) using BWA [49]. Variant calling was performed using GATK’s HaplotypeCaller and
CombineGVCFs [50], and SelectVariants was used to filter for biallelic sites and mapping
quality (MQ) of 30. Vcftools [51] was used to filter the data for max missing per site (20%)
and a minor allele frequency (0.02).

2.4. Genomic Prediction of Crown and Stem Rust Resistance

Following Lopez-Cruz et al. [30], an interaction model was considered to predict
the varieties genetic values in the four datasets (PCO-LP, PCO-LM, PGR-LP, and PGR-
LM). Only locations tested for a minimum of three years were included for the genomic
prediction analysis. In the M × E model, the kth marker effect in the jth environment (βjk)
is modeled as the sum of the main effect (bok) plus an interaction term bjk representing a
deviation from the main effect unique to the jth environment (βjk = bok + bjk). The model
can be described as:

y = µ + uok + ujk + ε jk (4)

where µ is an intercept, uok represents the main effect with uok~ N(0,Gσ2
b0k), ujk explain

the interaction effect with ujk ~ N(0,Gσ2
bjk), ε jk is the vector of model residuals ~ N(0,1),

where G is the relationship matrix of marker-centered and standardized genotypes.
The model was implemented using the Bayesian Generalized Linear Regression

(BGLR) R package [52]. For the estimation of the variance components, the model was
fitted to data from each environment separately, and for each data set, the magnitude of
main and interaction effect was determined by the estimation of variance components.
Settings in the model for estimating the fixed effect, markers’ main effect, and interaction
terms were set as default, as shown by Lopez-Cruz et al. [30]. Following Burgueño et al. [28],
the cross-validation (CV) considered during the analysis represented the scenario of having
an incomplete field trial (CV2). Through that, performances of varieties were predicted
in environments in which they have not been evaluated. Training and testing (TRN-TST)
partitions for CV2 were generated as described by Roorkiwal et al. [53]. The phenotypes
were randomly split into five subsets, with 80% of the lines assigned to the training set and
20% to the testing set. The training set was composed of four subsets, with the remaining
subset serving as the validation set, which led to five possible TRN-TST sets. The cross-
validation was repeated 25 times. For each TRN-TST set, the M × E model was fitted to
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the TRN data set, and prediction accuracy was assessed by computing the Brier score [54],
which is equal to:

BS = n−1
n

∑
i=1

C

∑
c=1

(πic − dic) (5)

where πic is the probability of the predictive distribution, dic takes a value of 1 if the
categorical response observed for individual i falls into category c, and 0 otherwise. We
reported the average Brier score and standard deviation from 25 subsequent iterations.

3. Results
3.1. Phenotypic Analysis of Crown and Stem Rust Disease

The range of values in both crown and stem rust scorings showed a similar dispersion
around the mean, as described by the coefficient of variation (CVar), which was on average
31.62 for PCO and 24.91% for PGR, with the year 2010, showing a lower CVar compared to
the others (Tables 1 and 2). This result indicates that the virulence of both crown and stem
rust species in Europe did not change significantly during the period of the experiment.
Confirmation of the absence of virulence variations was obtained by PGR and PCO’s trait
repeatability within years that did not change from 2001 to 2013, except for 2010 (0.52)
and 2013 (0.15), which showed the highest and lowest values for PGR, respectively. These
exceptions are probably due to the significantly reduced number of observations (624) in
2010 compared to the other years (1530, on average) and the high CVar of 2013 (32.74)
given the low number of records (1488). Both LP and LM showed more resistance to PGR
infection, as indicated by the mean scores of 6.4 (LP) and 6.9 (LM), compared to PCO
infection, 5.8 (LP) and 5.9 (LM).

Table 1. Crown rust (PCO) phenotypic distribution per year. The number of observations (n), lowest
(min), highest (max) and mean score per year; standard deviation (Sd); coefficient of variation (CVar)
calculated as Sd*100/mean; trait repeatability estimates.

Year n Min Max Mean Sd CVar (%) Repeatability

2001 4107 1 9 5.82 2.02 34.66 0.36
2004 4444 1 9 5.66 1.87 32.97 0.32
2007 3936 1 9 5.82 1.99 34.25 0.31
2010 3535 1 9 6.45 1.73 26.75 0.28
2013 3184 1 9 5.73 1.69 29.45 0.32

Table 2. Stem rust (PGR) phenotypic distribution per year. The number of observations (n), lowest
(min), highest (max) and mean score per year; standard deviation (Sd); coefficient of variation (CVar)
calculated as Sd*100/mean; trait repeatability estimates.

Year n Min Max Mean Sd CVar (%) Repeatability

2001 1056 2 9 6.74 1.68 24.91 0.30
2004 1700 1 9 6.29 1.74 27.70 0.30
2007 1872 2 9 6.89 1.37 19.93 0.33
2010 624 3 9 6.69 1.29 19.28 0.52
2013 1488 1 9 5.95 1.95 32.74 0.15

3.2. Genotypic Analysis

A total of 2,870,878,736 reads were obtained from the sequencing, with 98.02% of
nucleotides showing a quality value larger than 20 (Q20). After filtering the markers,
a total of 686,960 SNPs were used for subsequent analysis. The population structure
study revealed a clear stratification among the 54 varieties based on the species (principal
component 1) and the ploidy (principal component 2) (Figure 2).
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The narrow-sense heritability estimates for crown and brown rust resistance across all
years and locations were 0.29 and 0.06, respectively.

3.3. AMMI Analysis of Crown and Stem Rust Resistance

The combined ANOVA and AMMI analysis for PCO and PGR analysis indicated
highly significant differences (p ≤ 0.001) for the genotype, environment, and G × E in-
teraction terms (Table 3). In PGR-LP, the genotype (G) and environment (E) explained
41.7% and 43.7% of the variation, respectively, and 21.8% and 58.5% for PGR-LM. For PCO,
G and E explained 36.6% and 45.2% in LP and 63.1% and 24.7% in LM. GE interaction
explained 14.6% and 19.6% of the variation in PGR-LP and PGR-LM, respectively, and
12.2% and 18.2% for PCO-LM and PCO-LP. Using the AMMI model to partition the GE
interaction effects showed that the first two interaction principal components (IPCA1 and
IPCA2) significantly and cumulatively captured 49.5% (PGR-LP), 69.6% (PGR-LM), 48.5%
(PCO-LP), and 63.3% (PCO-LM) of the G × E interaction (Table 3).
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Table 3. AMMI analysis for PGR (a) and PCO (b); analysis of variance for the significant effect of genotype (variety) (G),
environment (E), genotype-by-environment interaction (GEI). Degrees of freedoms (Df); sum of square (SS); percentage of
variance explained (%); mean of square (MS); F test of Gollub (F); residual (Res); statistical significance code: ** p ≤ 0.01,
*** p ≤ 0.001. (A) PGR and (B) PCO. Partitioning of GEI into AMMI axes PC1, PC2 and PC3.

a Lolium perenne (LP) Lolium multiflorum (LM)

Df SS % MS F p Df SS % MS F p
G 33 3491.7 41.7 105.8 75 *** 19 624.3 21.84 33 40.7 ***
E 15 3663.4 43.7 244.2 173 *** 10 1672.3 58.50 167.2 206.9 ***

GEI 495 1224.9 14.62 2.47 2.5 *** 190 561.8 19.65 3 3.6 ***
PC1 47 185.4 32.7 3.94 9.9 *** 28 289.9 54.5 10.3 12.9 ***
PC2 45 95.5 16.8 2.1 2.1 ** 26 80.2 15.1 3.1 3.8 ***
Res 5100 7195.6 1.4 892 720.8 0.8
b Lolium perenne (LP) Lolium multiflorum (LM)

Df SS % MS F p Df SS % MS F p
G 32 8516 36.6 266.1 188.5 *** 19 13,023.2 63.1 685.4 487.7 ***
E 29 10,516 45.2 362.6 256.8 *** 33 5095.7 24.7 154.4 109.9 ***

GEI 928 4234.5 18.2 4.6 3.2 *** 627 2528.1 12.2 4 2.9 ***
PC1 60 471 27.4 7.8 5.6 *** 51 402.1 43.7 7.9 5.6 ***
PC2 58 362.7 21.1 6.3 4.3 *** 49 180 19.6 3.7 2.6 ***
Res 10,322 14,576 1.4 7081 9952.7 1.4

Environmental effect on the variety’s performances can be observed in the AMMI1
biplot by showing the variation of the overall rust mean on the abscissa and IPCA1 values
on the ordinates (Figure 3). The lower the IPCA1, the lower the GEI effect and the higher
the variety’s stability. The genotypes that contributed most to the GE interaction in PGR-LP
(Figure 3a) were Maja, Aurora, and Fennema, and those who contributed the least being
the most stable, were Guru, Gladio, Aristo, Carrera, Lacerta, Orval, Aubisque, Bocage and
Gwendal. Of these, the variety Bocage and Gwendal had the highest PGR scores, exceeding
the overall mean. For PGR-LM (Figure 3b), varieties Crema, Barprisma, Fastyl, Tarandus,
and Domino are the most stable since the coordinates on the axis were the lowest IPCA1,
with the last two varieties having a mean resistance score higher than the overall mean. In
PCO-LP (Figure 3c), varieties Aberdart, Roy, Orval, and Pastoral had high stability and
resistance values close to the mean, while Lacerta, Bocage, and Gwendal had the highest
PCO resistance scores and moderate stability. Varieties Condensa and Vincent are the ones
with the highest GE effect. In the PCO-LM set (Figure 3d), varieties Meryl, Pirol (LB),
Aberexcel, Caballo, and Domino had the highest stability across environments, and the last
three varieties had higher values than the mean.

Details about the severity of the infection at the tested location and the variability
in the response of the tested varieties can be seen in Figure 3. In Radzików (Poland),
Orchies (France) and Steinach (Germany), LP varieties showed high response variabil-
ity and susceptibility to PGR, while LM varieties performed worst in Orchies (France),
Hladke Zivotice (Czechia) and Les Rosiers (France). On the other hand, high levels of
tolerance and more response stability were detected in LP varieties in Malchow (Ger-
many), Montours (France) and Spitalhof (Germany) and by evaluating LM varieties in
Lodi (Italy), Gumpenstein (Austria) and Steinach (Germany). Higher levels of variability
and susceptibility to PCO were detected testing LP in Nort s. E. (France), Gross Luesewitz
(Germany) and Rilland/Swifterband (Netherlands) and by evaluating LM varieties in Nort
s. E. (France), Radzików (Poland), and Loughgall (UK- Northern Ireland). Whereas, LP
varieties performed better in Aberystwyth (UK- Wales), Pulling (Germany) and Hladke
Zivotice (Czechia) and LM varieties in Aberystwyth (UK- Wales), Pulling (Germany) and
Lelystad Barenbrug (Netherlands) where they showed lower variability and susceptibility
to the PCO.
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Aubisque, Lacerta and LM- Crema, Barprisma, and Domino for PGR resistance and LP- 
Aberdart, Gwendal, and LM- Aberexcel for PCO resistance was considered high. On the 
other hand, varieties with low adaptability and low rust resistance were found in quad-
rants I and III of the biplot. The ASV scores (Tables S3 and S4) were used to classify vari-
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Figure 3. AMMI 1 biplot of IPCA1 vs PGR-LP mean (a), PGR-LM mean (b), PCO-LP (c), and PCO-LM (d). The blue
numbers represent ryegrass varieties, whereas the red numbers indicate the environments. The green arrows indicate the
environmental vectors. The arrows’ length indicates the variability in the varieties’ response to that particular environment:
the longer the arrow, the higher is the response variability.

Including the first two principal components in the AMMI 2 (Figure S1), stable va-
rieties are located near the biplot origin, with values close to zero for the two factors of
interaction (IPCA1 and IPCA2). Due to their low GEI, the stability of LP- Aristo, Carrera,
Aubisque, Lacerta and LM- Crema, Barprisma, and Domino for PGR resistance and LP-
Aberdart, Gwendal, and LM- Aberexcel for PCO resistance was considered high. On the
other hand, varieties with low adaptability and low rust resistance were found in quadrants
I and III of the biplot. The ASV scores (Tables S3 and S4) were used to classify varieties
according to their stability level. Varieties LP- Aristo, Carrera, Aubisque, Lacerta, and LM-
Crema, Barprisma, Domino, and Tarandus had low scores and, therefore, were considered
stable in PGR resistance. When testing PCO resistance, varieties LP- Aberdart, Pastoral,
Elgon, Gwendal, and LM- Ellire, Pirol (Lb), Aberexcel, Meryl, and Bolero showed the
lowest ASV scores resulting in the most stable across environments.
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3.4. GGE Mean Performances and Stability

The which-won-where pattern is presented in the GGE biplot (Figure 4), where envi-
ronments groups in mega-environments (E-) based on the variety stability and tolerance
to the disease, and then it identifies the best performers within locations making up the
mega-environment. Varieties located in the vertex of the polygon correspond to the best
performers for that mega-environment. All the other varieties within the polygon have
smaller vectors indicating that they are less responsive concerning the interaction with the
sector’s environments. According to the GGE approach, in both PGR and PCO analysis,
environments fall into different sectors, indicating that different varieties are the best per-
formers in various sectors, and a crossover G × E pattern exists. In PGR-LP (Figure 4a) and
–LM (Figure 4b), three and four mega-environments could be detected, respectively. The
mega-environment covering most locations (E-2) includes Neuhof (Germany), Montours
(France), Hohenheim (Germany), Malchow (Germany), Roznov Zubri (Czechia), Jevicko
(Czechia), Steinach (Germany), and Les Rosiers (France) for PGR-LP and (E-3) Perugia
(Italy), Les Rosiers (France), Gumpenstein (Austria), Rennes (France), and Hladke (Czechia)
for LM-PGR. Varieties Gwendal (LP) and Bornhof (LM) performed better with a PGR mean
of 7.6 and 7.8, respectively. For PCO-LP (Figure 4c) and PCO-LM (Figure 4d), three and
two mega-environment were detected, respectively. The largest mega-environment (E-2) in
PCO-LP includes 20 locations out of 30 with three varieties located in different vertices,
Carrera (score average 6.6), Gwendal (7.2), and Lacerta (6.9). While for LM-PCO, both the
mega-environments cover a similar number of locations, with varieties Tarandus (7.3) and
Gosia (LB) (7.2) performing the best.
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3.5. Genomic Prediction of Crown and Stem Rust Resistance
3.5.1. Variance Estimations

The estimates of variance components and phenotypic correlations for each environ-
ment are reported in Table 4. High phenotypic correlation and GEI were detected, as
showed in Figure S2, where the response of few varieties is reported to demonstrate the
diverse interaction responses in different environments. Indeed, all reported varieties
showed a similar trend, indicating a high level of correlation, yet variability among them is
detected where some were more tolerant than others.

The portioning of the total genetic variance showed that the fraction of variance
explained by the main effect was relatively high when the phenotypic correlation between
the tested years for a given location was high. On the other hand, when the years analyzed
for a particular location had low phenotypic correlation, the estimated interaction variance
reported higher values (Table 4).

Overall, in the PCO dataset, the variance explained by the main effect was more
significant in LM (69%) than LP (35%), reflecting the phenotypic correlation observed
among the tested environments, which was on average higher in LM (0.85) than LP (0.68).
Specifically, in PCO-LP, among the 16 tested locations, phenotypic correlation ranged
between 0.48 of location Steinach (Germany) tested for four years and 0.85 of location Gross
Luesewitz (Germany) tested for three years. The markers’ main effect explained more than
35% of the total genomic variance for locations having a weighted phenotypic correlation
higher than 0.66, resulting in an interaction effect between 2% and 9% of the total genomic
variance. An exception to this trend is represented by location Ottersum (Netherlands),
tested for all five years, where despite the variance explained by the main effect (50%), the
interaction component explained 23% of the total genetic variance due to the impact of
years 2007 and 2013.
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Table 4. Estimated variance (standard deviation) components. Location site numbers (Loc); number of tested years for a
specific location (Y); phenotypic correlation among the years tested in the given location (Phen. Cor.); marker covariates
(main effect) (G); average of the environments x marker interaction effect for the tested years (interaction effect “G × E”)
and standard deviation (Sd); total variance (TotV) explained by the model for each location including the residual variance,
which is equal to 1.

PCO-LP PGR-LP

Loc Y Phen. Cor G (Sd) G × E (Sd) TotV Loc Y Phen. Cor G (Sd) G × E (Sd) TotV
3 5 0.68 0.56 (0.21) 0.07 (0.08) 1.63 10 4 0.80 1.87 (1.01) 0.11 (0.14) 2.78
4 3 0.71 0.29 (0.14) 0.07 (0.07) 1.36 15 3 0.41 0.54 (0.18) 0.05 (0.06) 1.59
6 5 0.74 0.89 (0.29) 0.08 (0.09) 1.97 18 4 0.78 0.47 (0.33) 0.31 (0.32) 1.78
7 3 0.64 0.17 (0.09) 0.05 (0.04) 1.22 20 5 0.46 0.57 (0.21) 0.04 (0.04) 1.61

13 4 0.79 0.88 (0.32) 0.07 (0.07) 1.95 25 3 0.71 0.21 (0.08) 0.05 (0.05) 1.27
14 3 0.67 0.96 (0.60) 0.16 (0.21) 2.12 27 3 0.63 0.72 (0.37) 0.24 (0.25) 1.96
15 3 0.63 0.51 (0.19) 0.06 (0.04) 1.57 28 3 0.85 0.58 (0.28) 0.07 (0.08) 1.65
17 3 0.85 0.75 (0.31) 0.06 (0.06) 1.81 32 4 0.56 0.79 (0.36) 0.07 (0.09) 1.86
18 5 0.56 0.69 (0.23) 0.19 (0.11) 1.88
19 5 0.77 1.07 (0.36) 0.11 (0.13) 2.18
20 5 0.49 0.31 (0.11) 0.06 (0.06) 1.37
23 3 0.73 0.24 (0.11) 0.06 (0.06) 1.30
24 5 0.66 1.78 (0.71) 0.81 (0.47) 3.59
26 4 0.74 0.31 (0.13) 0.04 (0.04) 1.35
28 5 0.84 1.19 (0.40) 0.06 (0.07) 2.25
34 4 0.48 0.22 (0.09) 0.06 (0.06) 1.28

PC-LM PGR-LM

Loc Y Phen. Cor G (Sd) G × E (Sd) TotV Loc Y Phen. Cor G (Sd) G × E (Sd) TotV
3 4 0.84 2.72 (1.22) 0.10 (0.10) 3.82 10 3 0.75 1.87 (1.01) 0.11 (0.14) 2.98
4 3 0.46 0.72 (0.55) 0.20 (0.20) 1.92
6 5 0.86 5.62 (3.71) 1.15 (1.15) 7.77
7 4 0.89 3.90 (1.84) 0.09 (0.09) 4.99
9 3 0.81 0.82 (0.52) 0.10 (0.10) 1.92

11 3 0.92 3.85 (2.24) 0.15 (0.15) 5.00
13 4 0.78 1.71 (0.71) 0.08 (0.08) 2.79
15 4 0.79 2.60 (1.39) 0.18 (0.18) 3.78
17 3 0.89 4.97 (2.90) 0.12 (0.12) 6.10
18 3 0.91 2.84 (1.36) 0.10 (0.10) 3.94
19 5 0.88 10.9 (3.9) 0.78 (1.07) 12.68
20 5 0.94 6.23 (3.39) 0.54 (0.54) 7.77
23 3 0.93 12.1 (6.86) 0.19 (0.19) 13.26
25 5 0.87 1.74 (0.62) 0.07 (0.07) 2.80
26 4 0.91 1.77 (0.82) 0.11 (0.11) 2.88
27 4 0.94 2.01 (0.87) 0.12 (0.12) 3.13
28 5 0.95 5.64 (2.11) 0.08 (0.08) 6.72
31 4 0.75 1.34 (0.62) 0.14 (0.14) 2.48

The phenotypic correlations between the 18 locations tested for PCO-LM were posi-
tively high, ranging between 0.75 in Les Rosiers (France) evaluated over four years, and 0.95
in Zurich (Switzerland) tested for all five years of the experiment. A considerable portion
of the total genomic variance was explained by the main effect, ranging from 38% (Aston le
Walls -UK) to 91% (Orchies -France). The interaction effect in the tested environments was
slightly low and accounted for between 1% and 14%. Among the tested environments, the
location Aston le Walls (UK) showed a phenotypic correlation of 0.46, and the main effect,
as well as the interaction factor, explained only 10% of the total genetic variance.

In PGR-LP, the phenotypic correlation ranged from 0.41 in Lodi (Italy) to 0.85 in Zurich
(Switzerland); both tested for three years. The estimations of the variance components
for the eight tested locations were relatively low. For those locations with a phenotypic
correlation higher than 0.64, the main effect ranged from 34% to 43% of the total genetic
variance. The overall interaction effect showed a variance ranging between 3% and 13%. In
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the PGR-LM dataset, only one location, Hladke Zivotice (Czechia), included records for a
minimum of three years. The main effect explained 63%, and the interaction effect 4% of
the total genetic variance.

3.5.2. Assessment of Prediction Accuracy

The accuracy of the genomic predictions was evaluated by calculating the Brier score
for each location (Table 5). Brier scores are values between 0 and 1, where values closer to 0
imply better prediction ability. Overall, the prediction accuracy was higher in locations
where the phenotypic variation of the tested varieties was low within a year and across
years, as reported by the coefficient of variation in Table S5.

Table 5. Brier scores. For each location number of tested years (Y), Brier score and standard deviation (Sd) are reported.
Dash refers to locations tested for less than three years for which the prediction was not computed.

Loc PCO-LP PCO-LM PGR-LP PGR-LM

Y Brier (Sd) Y Brier (Sd) Y Brier (Sd) Y Brier (Sd)
3 5 0.48 (0.002) 4 0.45 (0.005) - - - -
4 3 0.30 (0.005) 3 0.42 (0.013) - - - -
6 5 0.47 (0.004) 5 0.47 (0.004) - - - -
7 3 0.42 (0.004) 4 0.45 (0.007) - - - -
9 - - 3 0.44 (0.006) - - - -
10 - - - - 4 0.44 (0.004) 4 0.42 (0.006)
11 - - 3 0.43 (0.01) - - - -
13 4 0.45 (0.003) 4 0.45 (0.01) - - - -
14 3 0.45 (0.007) - - - - - -
15 3 0.45 (0.092) 4 0.47 (0.005) 3 0.46 (0.003) - -
17 3 0.43 (0.004) 3 0.45 (0.009) - -
18 5 0.47 (0.001) 3 0.44 (0.011) 4 0.44 (0.008) - -
19 5 0.46 (0.002) 5 0.46 (0.002) - -
20 5 0.47 (0.004) 5 0.47 (0.004) 5 0.47 (0.001) - -
23 3 0.44 (0.003) 3 0.47 (0.009) - - - -
24 5 0.46 (0.003) - - - - - -
25 - - 5 0.46 (0.004) 3 0.43 (0.003) - -
26 4 0.44 (0.011) 4 0.42 (0.006) - - - -
27 - - 4 0.43 (0.006) 3 0.45 (0014) - -
28 5 0.46 (0.002) 5 0.46 (0.002) 3 0.45 (0.009) - -
31 - - 4 0.48 (0.005) - - - -
32 - - - - 4 0.44 (0.002) - -
34 4 0.47 (0.004) - - - - - -

For PCO, the prediction accuracies were higher in LM than LP, on average 0.39 and
0.45, respectively. In the LP population, the best prediction accuracy (0.34) was given by
applying the model to Aston le Walls (UK) tested over three years. The highest Brier score,
meaning the lowest prediction accuracy, was obtained for Bornhof (Germany) and Steinach
(Germany) tested for four and five years, respectively. The accuracy in the PCO-LM dataset
ranged between 0.42 in Aston le Walles (UK) and Pulling (Germany) tested over three and
four years, respectively, and 0.48 in Les Rosiers (France) tested for four years.

In the PGR-LP data set, Brier scores ranged between 0.43 in Perugia (Italy) and 0.47 in
Montours (France) tested for three and five years, whereas Hladke (Czechia) was the only
one tested for three years for PGR-LM, which showed a good Brier score (0.42) compared
to those given in the other data sets (Table 5).

4. Discussion

Breeding for improved rust resistance is the best way for variety improvement. One
of the biggest challenges that breeders face in rust resistance breeding is the weather
condition’s effect on the spreading of rust infections. Indeed, the relationship between rust
disease and weather conditions has been extensively reported [55,56]. Multi environmental
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trials might solve this problem by testing the same varieties in different locations over
multiple years and identifying ideal testing locations and mega environments where
varieties perform better than others. From 2001 to 2013, as part of the EUCARPIA multi-site
rust evaluation trial, a set of 54 Italian, hybrid, and perennial ryegrass varieties were tested
for crown and stem rust resistance at 34 sites in 11 European countries.

4.1. AMMI and GGE Analysis of Crown and Stem Rust Disease

An essential aspect of developing new varieties in breeding programs is understanding
the effect of G, E, and GEI on the variety performance. GEI represents an ideal approach for
identifying and characterizing disease responses in different environmental conditions [18,20,57].

In our study, GGE analysis and AMMI were applied to evaluate the adaptability,
stability, and G × E interaction effect on the crown and stem rust resistance of the 54 tested
varieties. In the AMMI approach, genotype (variety) and environments explained the most
significant part of the total phenotypic variance. This observation is in agreement with
studies assessing GEI in fungal disease resistance responses in rice [57] and potato [19,20].
Nevertheless, variety performances were affected by the interaction with the environment;
indeed, the G × E component had a consistent effect on the observed response, indicating
that the best performer in one environment was not necessarily the best in another. This
was confirmed by the large sum of squares of the environments, which meant that the
environmental effect strongly influenced the variety’s performances. This variation could
be attributed to different weather conditions in different environments when temperature,
rainfall, humidity, and altitude were considered [58]. Therefore, to identify well-performing
varieties in terms of high tolerance to rust diseases across multiple environments, it is
crucial to consider the stability and adaptability of the tested varieties across a given
geographic area. Environments where the most and least susceptible performing varieties
to stem and crown rust were identified might provide useful information for local breeders
in terms of sources of resistance. In two locations, Aberystwyth (UK- Wales) and Pulling
(Germany), both perennial and Italian ryegrass showed higher levels of tolerance to the
crown rust disease, as well as stability in the response across years. In contrast, Malchow
(Germany) and Steinach (Germany) were locations where perennial and Italian ryegrass
showed a high level of resistance and low variability to stem rust across years. The GEI
pattern is better represented when varieties and environments are plotted considering the
two first principal components of the analysis, as previously reported in sugarcane [16] and
rice [59] studies. In this regard, the AMMI2 analysis might be more accurate to detect GEI
variation due to information from two IPCAs. However, varieties for stable rust resistance
would present a high mean resistance level and a low sensibility to environmental changes
as reflected by the low slope (bi) values and IPCA scores close to zero, indicating high
stability across tested environments [14].

GGE analysis assists in identifying mega-environments based on the tested variety
performances and selecting the best varieties for stability and level of tolerance to the
disease for a given mega-environment [22,60]. This information can be used to select
discriminating and representative environments in breeding programs to identify generally
adapted varieties. There was no clear indication that environments were being grouped
based on their geographical location, suggesting that a more intricate combination of
environmental factors, such as rainfall, temperature, and relative humidity, as well as the
presence or absence of the alternative host which might increase the virulence of crown
rust, may have played a key role in the phenotypic variability of the varieties and grouping
of the environments.

Among the tested perennial ryegrass varieties, the one that performed best in both
AMMI and GGE analysis was the Gwendal variety, showing high resistance scores to the
infection and stability across environments under crown as well as stem rust. Regarding
PGR, the Domino variety was the best performer among the Italian ryegrass varieties
in both analyses. In contrast, Aberexcel and Tarandus were among the most tolerant
varieties to PCO, being the most stable in the majority of environments under AMMI and
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GGE analysis, respectively. All the best performers were tetraploid; indeed, on average,
tetraploid varieties showed a one unit increase in rust resistance compared to the diploids.
A stronger rust tolerance is one of the features that make tetraploids better than diploids,
together with a higher yield, better palatability and digestibility [61], greater grazing
efficiency performances [62], and higher competitive ability [63]. Based on the results, it
appears possible to breed stable varieties with high tolerance to rust disease.

This investigation represents the first study evaluating crown and stem rust resistance
on different ryegrass varieties across several environments using AMMI and GGE. The
results suggest that both approaches are efficient ways of assessing ryegrass varieties in a
MET study to identify more stable rust resistance candidates.

4.2. Variance Components and Genomic Prediction Accuracy

Multi environmental trials result in a large amount of phenotypic data, which can be
used to develop predictive models for relevant traits in ryegrasses. Several studies have
shown the benefit of including marker information in G × E analysis with an extensive in-
crease in prediction accuracy [28–31]. The M × E model described by Lopez-Cruz et al. [30]
showed considerable gains in prediction accuracy compared to the single-environment
analysis and a standard across-environments model. The M × E model relies on the de-
composition of the genomic values into components that are stable across environments
(main effect) and others that are environment-specific (interactions).

In agreement with Lopez-Cruz et al. [30], the portion of genomic variance explained
by the markers’ main effect is directly related to the phenotypic correlation between
years for each location. The high phenotypic correlation between years and locations
confirmed the low variability of disease incidence in the tested environments, as previously
described by Schubiger et al. [40]. These results can be explained by the tested sites’
geographical locations, representing central and northwest Europe. Among the tested
environments, years with a lower phenotypic correlation had a more robust interaction
effect than those with a high phenotypic correlation reducing the prediction accuracy. As
reported previously [28,30,32,64,65], for traits with a high phenotypic correlation between
environments, the M × E model captures a high total genomic variance due to the inclusion
of the M × E interaction information. The presence of a significant G × E interaction in
crown rust resistance was in agreement with previous studies on perennial ryegrass [37].

For each location, varieties tested in some years but not in others were predicted (CV2).
The cross-validation is based on the decomposition of the marker variance in the main
effects and the environment-specific marker effect, and it performed exceptionally well for
all environments.

Prediction accuracy is usually evaluated by computing Pearson’s correlation between
predictions and phenotypes in the testing data set [66]. However, when the phenotypic
data are described using a categorical system, this assessment is not appropriate [67];
therefore, a Brier score was preferred. In this matrix system, lower values indicate a more
accurate prediction. We found that in environments with a high phenotypic correlation,
the interaction model explained a significantly high total variance and, therefore, genomic
predictions were more accurate overall. In general, there was a good correlation between
predictive ability and phenotypic variance, and this relationship has been observed previ-
ously [36,68,69].

As Lopez-Cruz et al. [30] reported, the advantage of using the M × E model in
the CV2 is attributed to the possibility of borrowing information within varieties across
environments. In other terms, the M × E model benefits from records of the predicted
varieties collected in correlated environments.

This represents an important result for ryegrass breeding programs that aim to evalu-
ate varieties across Europe for crown and stem rust resistance. A dense historical data set,
such as the one used in our study, made it possible to have a more accurate picture of the
rust disease development across years and locations, confirming the ability to use data from
one environment to predict the other. Despite the limitations of this study, represented
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mainly by the limited number of tested varieties, this experiment has the advantage of
having a high number of markers and sizeable historical data collected over multiple years
and locations. To our knowledge, our study is the first one to perform genomic prediction
on ryegrass using a multi-site rust evaluation trial.

5. Conclusions

This study aimed to explore the effect of the environments on the crown and stem
rust resistance in different varieties of ryegrasses. The large sum of squares, as well as the
significant impact of the G × E interaction, confirmed the environment’s role in the varieties’
response to the infection. The AMMI and GGE analysis gave similar results identifying the
best performing varieties in terms of stability and tolerance to the pathogens across the
tested environments. Our results clearly illustrate the benefit of using observations across
multi environments to evaluate varieties as well as location performances.

Furthermore, our results showed that despite the limited number of genotyped in-
dividuals, the substantial number of observations across multi environments allowed us
to predict crown as well as stem rust performances with moderate to high accuracy. We
showed that genomic prediction using METs data could help to enhance breeding programs
for the crown and stem rust in ryegrass.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11061119/s1, Figure S1: AMMI 2 biplot, Figure S2: Response variability across
environments, Table S1: List of locations tested in Europe from 2001 to 2013, Tabe S2: The adopted
scoring scale reported by Schubiger et al., Table S3: Summary of perennial ryegrass varieties informa-
tion, Table S4: Summary of Italian and hybrid ryegrass varieties information, Table S5: Summary of
the phenotypic variation per location across years.

Author Contributions: Conceptualization, M.F., M.M. and T.A.; methodology, M.F., M.M. and T.A.;
formal analysis, M.F. and M.M.; resources, T.A. and F.X.S.; writing—original draft preparation, M.F.;
writing—review and editing, M.F., M.M., T.A. and F.X.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank Stephan Hentrup for preparing the GBS libraries and members of the
EUCARPIA multi-site rust evaluation consortium who took part in the phenotypic data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dracatos, P.M.; Cogan, N.O.I.; Keane, P.J.; Smith, K.F.; Forster, J.W. Biology and Genetics of Crown Rust Disease in Ryegrasses.

Crop Sci. 2010, 50, 1605–1624. [CrossRef]
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