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Abstract: In recent years, the interest of institutions in land use has increased, creating the need to
determine the changes in use through spatial-temporal and statistical analysis. This study analyzes
the changes over the last 40 years, based on a cartography of landscape units obtained from the study
of geo-environmental parameters in the Jerte Valley (Spain) with satellite images, Landsat 5 and 7.
Subsequently, through the analysis of spatial patterns and diversity and fragmentation indices, and
with the Fragstat software, the landscape was characterized from 1994 to the present. The results
show that wooded areas decreased slightly, crops increased in altitude and major environmental
disturbances (mainly forest fires) negatively affected the environmental mosaic. Land uses affect
the landscape by developing larger tesserae (+5 ha), which are less fragmented (−0.15), but more
isolated (0.12). This study demonstrates that landscape metrics can be used to understand changes
in spatial pattern, help in decision making to implement appropriate management measures in
the conservation of traditional land uses, and allow the maintenance of connecting areas between
fragments to avoid the loss of natural corridors to increase landscape quality.

Keywords: land use; landscape fragmentation; remote sensing; climate change

1. Introduction

Landscape can be defined as a spatial configuration of patches of dimensions relevant
to the phenomenon under consideration or to the selected organism, which exists only at
the moment in which it is perceived by the senses. The landscape can also be considered as
a portion of the real world within which we are interested in describing and interpreting
processes and patterns; this context can lead to different conclusions, depending on whether
we use abiotic and/or biotic factors [1]. These factors make it intrinsically dynamic,
both at a temporal [2] and spatial scale [3], since it is conditioned by environmental
conditions [4], the ecological processes that take place in it, changes in land use, and
anthropic disturbances [5].

Landscapes with marked heterogeneity have a complex structure of habitats, which
translates into a high index of diversity [6]. This heterogeneity, as a factor of organiza-
tion of ecological systems, presents a permanent character of landscapes and determines
the generation of differentiated environmental mosaics [7]; which makes their study at a
large scale extremely difficult. To the natural dynamics perpetuated by geomorphologi-
cal [8–10], hydrological [11], and biotic [12] processes, to cite some significant examples,
we must add human activities, which are currently the main factor in landscape evolution
worldwide [13–16].

Remote sensing imagery is widely used for land cover classification, target identifica-
tion, and thematic mapping from local to global scales due to its technical advantages such
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as multiresolution, wide coverage, repeatable observation, and multispectral/hyperspectral–
spectral records [17,18]. Several classification methods based on satellite images can be
classified as supervised or unsupervised classification methods giving higher priority to
supervised classification [19] because of its learning method [20,21].

Each land use class is to an image what a patch is to a landscape mosaic, so with this
premise in mind, landscape metrics can be applied to measure the effect of land use changes
on landscape shape [22]. Different studies calculated multiple levels of landscape metrics
to measure landscape patterns in order to analyze land use, mainly focused on urban land
use [23–25], and on the classification of satellite images rather than on the analysis of spatial
patterns [26]. The research studies where a landscape analysis was performed used metrics
based on average patch characteristics [27], ignoring the distribution, size, and changes
occurring in the last decades, therefore, this study focuses on diversity indices and indices
of the entire landscape.

The implementation of geographic information systems and remote sensing [28] have
helped to carry out large-scale landscape studies, and with the support of different spatial
pattern analysis programs [29], they have allowed a more precise study of the temporal
dynamics of the landscape, which has provided a significant leap in the quality of the
studies. For the analysis of spatial patterns, multiple indices have been developed that
allow the study of landscape configurations at different temporal moments, evaluating
their composition and configuration, the proportion of each class, or the shape of the
elements [30].

The objective of this article was to know the effect of changes in land use on the
landscape configured as a fluvial-structural valley during the last three decades, comparing
the potential landscape with the landscape in 1994, and analyzing the spatial patterns
in the subsequent years 2000, 2010, and 2019. Using Landsat 5 and Landsat 8 satellite
images, and by analyzing spatial patterns and indices of diversity, dominance, shape, and
fragmentation with Fragstat software, four scenarios were characterized and studying their
tendency in the configuration of the environmental mosaic allowed us to understand the
natural dynamics and the influences of human activities on the landscape.

Landscape metrics and the indices obtained have shown an important role in the
analysis of changes in land use, so this study will enable land managers to implement
appropriate measures for the maintenance of physical and functional connectivity in
an anthropized environment, in order to achieve the objectives, set by the strategies of
conservation and improvement of the landscape, for the sake of future sustainability.

2. Materials and Methods
2.1. Study Area

The Jerte valley is located in the north of the province of Cáceres (Spain) (Figure 1).
It presents a geomorphological structure of a valley sandwiched between two mountain
complexes (Sierra de Béjar, Sierra de Tormantos).

The geology of the study area is mainly formed by granitoids with some quartz
outcrops, in the dykes of the Alentejo-Plasencia fault. On the southwestern edge of the
study area there are outcrops of metamorphic rocks.

The geomorphological component was obtained based on the mapping of geomor-
phological units [31], synthesized in a mapping of geomorphological domains. The main
geomorphological domains are as follows: summit surfaces and fluvial divides, embedded
fluvial-glacial valleys, slopes and colluvial slopes, polygenic surfaces, hills and hillocks,
glaciers, and fluvial terraces, alluvial and valley bottoms.

As for the vegetation that develops in the Jerte Valley, it is conditioned by the slopes
of the hillsides, the differences in altitude, and the climate. In the areas located to the west,
areas of low slope and glacial geomorphology, open formations such as pastures have
developed. As one ascends in latitude and altitude there are large extensions of tree crops
(cherry trees) very typical of this area. Halfway up the slope, both to the south and north
of the river, there are large areas of wooded formations (pine forest, chestnut grove, oak
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forest, ...). On reaching the timberline, there are different scrublands, and later, ascending
in altitude, the summit pastures. Some summits have a steep slope which hinders the
development of vegetation while the rock remains on the surface.
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Figure 1. Study area.

2.2. Methods

The methodology followed (Figure 2) for landscape mapping was that described by
Martínez-Graña [32], using a supervised classification of Landsat images as vegetation
mapping for the years 1994, 2000, 2010, 2019.

With ArcGIS 10.8 software, the mapping of homogeneous units was carried out,
from the union between lithology and geomorphological domain mapping. Once the
union of these mappings was carried out, 29 homogeneous units were obtained. To
simplify these mappings, all units smaller than 2 hectares were filtered out, as they were
not representative. The units with similar landscape development behavior, such as
quartz slopes and colluviated slopes, basic rock slopes and colluviated slopes, and schist
slopes and colluviated slopes, were unified. Finally, the 18 homogeneous units, most
representative of the study area, were mapped.

Landsat images were downloaded from the U.S. Geological Survey (https://earthexplorer.
usgs.gov/, accessed on 21 July 2021). These images were taken between the months of April,
May, or June of the years 1994, 2000, 2010, and 2019. It was decided to use images from
Landsat satellites since they were the free satellites with the highest resolution available
during the entire study period. The use of images from other satellites, such as Sentinel 2,
was considered, but only images from 2015 were available, so we would only have had
the latest image to study and with a different resolution, so the surfaces to be compared
could have varied. In the end, this option was discarded to homogenize the data as much
as possible.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure 2. General methodology.

Each image was subjected to radiometric calibration preprocessing, atmospheric
corrections, and topographic corrections. Once the images were obtained, training areas
were selected after a field reconnaissance and with the help of orthophotos from previous
years. Supervised classifications were performed on each image to obtain the land cover.
It was decided to carry out the land cover mapping based on supervised classification
since high-resolution orthophotos of the study years and field sampling of the last year
were available and thus training areas could be delimited with great precision and a highly
accurate mapping could be obtained.

Once the study areas were delimited, we proceeded to calculate the spectral signatures
of each defined class, in order to extrapolate each pixel value of each class of the training
area from the rest of the image. The supervised classification was performed by the
maximum likelihood process, this method makes a statistical study (mean and standard
deviation) of the pixel values of the training areas and calculates the probability of the
values of the external indices to the training areas of belonging to one class or another,
while the class with the highest probability is the one assigned to it.

After the supervised classification, a Majority filter was performed, thus filtering the
neighboring contiguous cells of the larger size classes and avoiding the salt and pepper
effect of supervised classification.

To validate the historical land use mapping, the Kappa index of each supervised
classification was calculated. For the mapping to be accepted for further study, the Kappa
index had to have been greater than 0.75 [33,34].

Land uses were classified into 10 main classes (water, forest, forest, cherry crops,
treeless, scrub, snow, rocky, urban, burned area, clouds) to make the data homogeneous
and to be able to analyze their parameters in the landscape as a whole.

The vegetation series mapping used was obtained from the Vegetation Series Map
developed by Rivas Martínez in 1981 and revised in 1987 [35]. In the study area there are
5 vegetation series of the 37 existing in Spain. The vegetation series present in the study
area have been reclassified (Table 1) in the denomination of the vegetation classes used in
the present work in order to make a comparison of potential vegetation and real vegetation.
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Table 1. Reclassification of the vegetation series to the legend of the vegetation mapping used for
the study.

Vegetation Series Vegetation Unit

Serie bejarano- gradense silicícola from Festuca indigesta Grassland
Serie bejarano-gredense occidental and salmantina silicícola from

Cytisus purgans Scrubland

Serie carpetano-ibérico-alcarrena sub-humid silicícola from
Q. pirenaica Wooded formations

Serie luso-extremadurense humid from Q.pyrenaica Wooded formations
Serie luso- extremadurense silicícola from Q.rotundifolia Wooded formations

Geoserie riparia mediterráneo Wooded formations

Then, the corresponding unions of the homogeneous unit mappings with the different
vegetation mappings obtained from the vegetation series map and supervised classifica-
tions from Landsat images of the years 1994, 2000, 2010, 2020 were carried out, giving rise
to the natural unit mappings.

In the mapping of natural units, 53 units were obtained and simplified in the following
way:

1. Very small units, smaller than 2 hectares, were eliminated.
2. Units adjacent and similar to the most representative neighboring units were unified,

as long as the extension of the different units was not significant.
3. The field study showed that the simplified landscape units were not representative of

the landscape to be studied (Figure 3).
4. The result was 8 landscape units (Table 2):
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Table 2. Ending landscape unit.

Landscape Units Characteristics of the Unit

Unit 8 Urban landscape.
Unit 7 Glacis and slope in granites with open formations.
Unit 6 Summits and slopes in rocky outcrop granitoids and bare soil.
Unit 5 Polygenic surfaces in scrubland granitoids.
Unit 4 Summits and fluvial-glacial valleys in grassland granite.
Unit 3 Slope y colluvion slope in granites of tree crops.
Unit 2 Slopes and colluvial slopes in granites of wooded formations.
Unit 1 Water landscape

Finally, with the data collected, with the software Fragstat v4.2.1 [36] the analyses
of the spatial and ecological patterns of the Jerte Valley were carried out. Fragstat is a
software that allows the quantification of landscape patterns, which is a prerequisite for
the study of landscape relationships with the processes that degrade it. Fragstat calculates
a set of indices and variables that quantitatively describe the level of fragmentation and
spatial distribution of land use and land cover.

These analyses were carried out with the help of indices that describe the different
classes or patches of the units or allow a description of the landscape as a whole.

The indices used are those described in Table 3.

Table 3. Index Fragstat.

Index Observations

Total Area (TA) TA equals the total area (ha) of the landscape

Number of Patches (NP) NP is the number of patches of the corresponding patch type.

Mean Patch Area (ÁREA_MN It is the average of the area of the patches (ha)

Index Equation Observations

Radius of Gyration
(GYRATE)

z
∑

r=1

Hijr
Z

Hijr = distance (m) between cell ijr and the centroid of patch jr, based
on cell center-to-cell center distance; Z = number of cells in patch ij.

It is equal to the distance in m,
between each pixel of the

fragment and its
corresponding centroid.

Patch Density (PD)
PD = Ni

A × (10.000) × (100)
Ni = number of patches in the landscape of patch type (class) i; A = total

landscape area (m2).

Number of fragments in this
category for the total area.

Interspersion and
Juxtaposition Index

(IJI)

IJI = ∑m
i=1 ∑m

k=i+1[(
eik
E ×ln(

eik
E )]

ln(0.5[m(m−1)]) (100)
eik = total length (m) of edge in landscape between patch types i and k;
E = total length (m) of edge in landscape, excluding background; m =

number of patch types present in the landscape, including the
landscape border, if present.

This is the interspersion
observed over the maximum

probable dispersion according
to the number of categories.

Shannon’s Diversity
Index (SHDI)

SHDI = −
m
∑

i=1
(Pi × ln P1)

Pi = proportion of the landscape occupied by patch type (class) i.

Relative abundance of
different types of coverage in

the landscape.

Shannon’s Evenness
Index (SHEI)

SHEI = ∑m
i=1(Pi×ln Pi)

ln m
Pi = proportion of the landscape occupied by patch type I; m = number
of patch types present in the landscape, excluding the landscape border

if present.

It is the Shannon diversity
index divided by the

maximum diversity index
expected for the classes.

Simpson’s Diversity
Index (SIDI)

SIDI = 1−
m
∑
i=l

P2
i

Pi = proportion of the landscape occupied by patch type (class) i.

Probability that two patches
belong to the same class.
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Table 3. Cont.

Index Observations

Patch Cohesión Index
(COHESION)

COHESION = [1− ∑n
j=i P∗ij

∑n
j=1 P∗ij
√

a∗ij
]×
[
1− 1√

Z

]−1
× (100)

Pij
* = perimeter of patch ij in terms of number of cell surfaces; aij

* =
area of patch ij in terms of number of cells.
Z = total number of cells in the landscape.

It measures the physical
connectivity of the analysed

category.

Landscape Shape
Index (LSI)

LSI = 25E∗√
A

E* = total length (m) of edge in landscape; includes the entire landscape
boundary and some or all background edge segments; A = total

landscape area (m2).

Provides a standardised
measure of total edge or edge
density to suit the size of the

landscape.

Contagion Index
(CONTAG)

CONTAG = [1 +
∑m

i=1 ∑m
k=1[Pi×

gik
∑m

k=l gik
]×[ln (Pi×

gik
∑m

k=1 gik
)]

2 ln(m)
]× (100)

Pi = proportion of the landscape occupied by patch type; gik = number
of adjacencies between pixels of patch types i and k based on the
double-count method; m = number of patch types present in the

landscape, including the landscape border if present.

It measures the percentage of
adjacency between classes, in

relation to the maximum
possible considering the

frequency of these.

Landscape Division
Index (DIVISION)

DIVISION = [1−
m
∑

i=1

n
∑

j=1

(
aij
A

)2
]

aij = area (m2) of patch ij.
A = total landscape area (m2).

Probability that two areas of
the landscape are not located
in the same habitat fragment.

Connectance Index
(CONNECT)

CONNECT = [
∑m

i=1 ∑n
j=k cijk

∑m
i=1

(
ni(ni−1)

2

) ](100)

cijk = joining between patch j and k of the same patch type, based on a
user-specified threshold distance; ni = number of patches in the

landscape of each patch type (i).

It is the percentage of the total
tesserae or of a class

connected according to a
threshold distance.

Proximity Index
(PROX)

PROX =
n
∑

g=1

aijg

h2
ijg

aijs = area (m2) of patch ijs within specified neighborhood (m) of patch
ij; hijs = distance (m) between patch ijs and patch ijs, based on patch

edge-to-edge distance, computed from cell center to cell center.

Sum of the areas of tesserae of
the same class whose edges

are at a specific radius.

Fragmentation (F) F = TA
NP×2×ENNMN×( PD

π )

Spatial disaggregation of
patches or habitat types in a

given area.

3. Results

The supervised rankings performed for the years 1994, 2000, 2010, and 2019 obtained
a Kappa index higher than 0.75 (Table 4), so the mapping was accepted for study:

Table 4. Kappa index and overall accuracy for supervised classification (material complementary).

Year Parámetros de Imágenes Kappa Index Overall Accuracy

1994 LT05_L1TP_202032_19940314_20180217_01_T1 0.92 0.93

2010 LT05_L1TP_202032_20100310_20161016_01_T1 0.76 0.80

2000 LT05_L1TP_202032_20000314_20180312_01_T1 0.88 0.91

2019 LC08_L1TP_202032_20190303_20190309_01_T10.86 0.88

The changes in land use in the Jerte Valley can be seen in Figure 4. The land use
changes obtained in the Jerte Valley can be seen in Figure 3. There is a clear increase in
the cultivation of cherry trees, a minimal loss in the extent of forests, with a decrease in
scrubland in the years 2000 and 2020 where wildfires were notable.
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Based on the maps of landscape units for the study years: 1994, 2000, 2010, and 2019,
the data obtained were analyzed (Figure 5). The statistical study began in 1994. Taking as a
reference the vegetation series of Rivas Martínez, as potential vegetation, it can be observed
that the proportion of land occupied by tree formations is much lower than would be
expected (Table 5).
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Table 5. Land cover indices in the Jerte Valley, in the years 1994, 2000, 2010, 2019 and in the vegetation series.

TA
SV 1994 2000 2010 2019

Total % Total % Total % Total % Total %

Unit 1 433.7 1.10 433 1.10 380 0.98 358 0.92

Unit 2 30,957 82.34 11,103 28.06 9657 24.43 9836 25.29 10,951 28.13

Unit 3 7178 18.14 7486 18.93 7564 19.45 11,271 28.95

Unit 4 76.5 0.20 5257 13.28 5400 13.66 3333 8.57 2176 5.59

Unit 5 4087 10.87 3776 9.54 4913 12.43 3365 8.65 2728 7.01

Unit 6 6368 16.09 6609 16.72 8002 20.57 7187 18.46

Unit 7 2477 6.59 2594 6.55 2334 5.90 2280 5.86 2235 5.74

Unit 8 874 2.21 936 2.47 996 2.56 1386 3.56

Total 37,598 37,598 37,598 37,598 37,598

Table 5 also shows how, in 1994, 28% of the surface area of the Jerte Valley was occupied
by wooded formations (unit 2), such as oak (Quercus pyrenaica), chestnut (Castanea sativa),
and pine (Pinus sylvestris), as opposed to 82% according to the optimum development of
the vegetation series. It can also be observed that the presence of grassland areas (unit 3) is
higher (13%) due to the traditional cultural uses of the land and its use for grazing, initial
stages of recolonization of areas affected by forest fires, deforestation, etc. This stage of
landscape development was taken as the initial situation, year 1994, and from there, the
changes in the landscape over the last decades were studied.

The development of human activities in the environment has greatly conditioned the
landscape in recent decades, occupying the optimal potential areas for the development of
tree formations with cherry plantations (28.95%). On the other hand, there is an increase of
57% in the cultivation of cherry trees (unit 2) to the detriment of pasture and scrubland
areas, 9% (unit 4 and 5).

The analysis of landscape structure was based on territorial changes in vegetation
cover, geomorphology, and land use in recent decades. It was necessary to analyze land
cover together with the models and management systems adopted in order to correctly
assess the significance of the changes detected.

According to the values obtained in the diversity (SHDI and SIDI) and evenness
(SHEI) indices, in the last three decades (Figure 6), heterogeneity and complexity are being
lost in the landscape pattern. The number of patches is decreasing, becoming larger, more
compact, and with simpler shapes. The grouping of tesserae causes a decrease in ecotones
and has direct repercussions on the richness of species present in the environment. This
evolution is largely due to the increase in agroforestry practices, forest management, and
disturbances such as forest fires.

Once the spatial patterns and metrics of area, density, and landscape aggregation were
analyzed (Table 6), it could be said that there is an increase in homogeneity at the landscape
level in the study area, which corroborates the results obtained in reference to diversity.

The number of patches has almost halved from 16,023 in 1994 to 8183 in 2019. This has
caused the patch density to decrease by 50%. Their average area of occupancy has doubled,
indicating that we have fewer and larger patches. Likewise, the cohesion index, Landscape
Shape Index, and the Interspersion and Juxtaposition Index have increased, which means
that the masses maintain a moderately high degree of intermixing despite their tendency
to homogenization.
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Table 6. Table of area, density and landscape aggregation metrics obtained by the FRAGSTAT software.

Area, Density and Aggregation Metrics 1994 2000 2010 2019

Total area (TA) 37,598 37,598 37,598 37,598

Number of Patches (NP) 16,023 15,939 9820 8183

Patch Density (PD) 40.48 40.31 25.48 20.69

Radius of Gyration (GYRATE_MN) 47.21 48.90 49.29 57.87

Landscape Shape Index (LSI) 83.32 86.71 50.54 55.25

Mean Patch Area (AREA_MN) 2.47 2.4805 3.92 4.83

Largest Patch Index (LPI) 16.72 10.53 27.25 23.33

Euclidean Nearest-Neighbor Distance Mean
(EMM_MN) 141.70 142.01 149.61 166.43

Contagion Index (CONTAG) 30.20 29.10 39.3 40.85

Interspersion and Juxtaposition Index (IJI) 73.55 73.05 70.18 73.00

Connectance Index (CONNECT) 0.36 0.35 0.48 0.48

Landscape Division Index (DIVISION) 0.95 0.97 0.89 0.91

Proximity Index (PROX) 169 124 551 295

Patch Cohesion Index (COHESION) 96.94 96.20 98.38 98.02

Fragmentation Index (F) 0.07 0.07 0.16 0.22

The isolation of the spots increases, with a 74% increase of the proximity index and
a 17% increase of the Euclidean Nearest-Neighbor Distance Mean. While the degree of
fragmentation decreases by 200% (0.15, remember that it is inverse).

The study of the structure of the landscape at the class level makes it possible to
discern the role of each tesserae in the environmental mosaic, assigning to each group a
diversifying or homogenizing function in the whole.

The most outstanding results of the study in this area are the increase in the area
under cultivation (+7000 ha), dedicated almost exclusively to cherry (Table 7). The tesserae
that make up this class increase in number, but maintain the same patterns of isolation,
shape, and area. Wooded areas decrease slightly but show changes in their arrangement
indicating that the wooded tesserae are larger, less fragmented, but more isolated. On
the other hand, units 4 and 5 decrease (3000 ha and 1000 ha respectively) and present
very small, isolated, and fragmented tesserae. The open formations (unit 7), due to their
singular character, being pasture areas subjected to a strong anthropic influence, require a
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detailed analysis and study. Large variations in fragmentation are observed, which can be
explained by the agrosilvopastoral treatments to which this habitat is subjected.

Table 7. Table of area, density, and aggregation metrics of the patches obtained by the FRAGSTAT software. Where: TA:
Total area; NP: Number of Patches; PD: Patch Density; AREA_MN: Mean Patch Area; IJI: Interspersion and Juxtaposition
Index; Frag: Fragmentation Index.

Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8

1994

TA 11103.25 7178.5 5257 3776 6368.5 874 2594

NP 2517 2433 3555 3547 2728 825 19

PD 6.36 6.148 8.983 8.962 6.893 2.085 0.048

AREA_MN 4.41 2.95 1.47 1.06 2.33 1.05 136.52

LSI 62.159 63.268 73.399 72.484 62.853 31.445 16.441

ENN_MN 132.46 139.07 134.83 132.38 138.87 229.17 104.34

IJI 74.018 78.363 76.914 64.811 72.291 72.84 66.494

F 0.82 0.54 0.19 0.14 0.38 0.35 4281

2000

TA 9657 7486 5400 4913 6609 713 2334

NP 2483 2407 3423 3740 2568 965 48

PD 6.28 6.09 8.66 9.46 6.5 2.44 0.121

AREA_MN 3.88 3.11 1.57 1.31 2.57 0.73 48.62

LSI 64.59 63.86 73.26 81.51 62.31 31.97 20.516

ENN_MN 137.41 138.72 136.27 128.65 142.1 223.7 106.79

IJI 69.44 80.1 77.24 65.18 74.66 68.72 66.835

F 0.71 0.58 0.21 0.17 0.44 0.21 589

2010

TA 9836 7564 3333 3365 8002 996 2280

NP 1523 1600 2620 1489 1811 338 56

PD 3.95 4.15 6.8 3.86 4.7 0.88 0.54

AREA_MN 8.76 4.72 1.27 2.26 4.41 1.35 5.11

LSI 50.53 51.7 58.96 43.5 35.49 19.12 19.13

ENN_MN 127.05 138.91 147.96 155.86 160.85 217.14 117.58

IJI 73.75 69.78 74.27 57.78 69.53 74.61 62.09

F 2.02 1.29 0.2 0.59 0.92 2.43 100

2019

TA 10951 11271 2176 2729 7188 1386 2236

NP 1143 1216 1707 2064 1334 348 39

PD 2.89 3.07 4.32 5.22 3.37 0.88 0.10

AREA_MN 9.58 9.26 1.27 1.32 5.38 1.67 57.32

LSI 39.08 37.17 46.39 50.75 38.06 20.18 14.65

ENN_MN 149.84 139.19 178.83 162.20 167.69 269.81 108.49

IJI 71.53 77.71 78.63 66.25 71.05 66.49 69.90

F 3.48 3.40 0.26 0.25 1.50 2.63 841

Valuable assessments can be obtained from the yearly detailed analysis. The year 2010
deserves a special comment since the initial data used for the mapping of landscape units
contained parts covered by snow (unit 6). Snow represents an important and common
disturbance in vegetation and, in general, in mountain areas. It highlights changes in
landscape heterogeneity in annual and sub-annual space. In this particular case, it causes
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notably high levels in the cohesion and proximity index, and a decrease in the interdisper-
sion and juxtaposition index. In addition, the area occupied by bare soil (snow) increases
significantly to the detriment of areas of scrub and grassland, typical of mountain areas
where snow accumulates.

Finally, it should be noted that the evolution of urban infrastructures shows a stable,
moderate growth and does not represent a problem for the landscape, with diffuse an-
thropic pressure being practically non-existent, apart from some isolated agricultural and
livestock constructions.

4. Discussion

The identification of changes in land use over the last 50 years makes it possible to
identify the environmental impact that has occurred in the territory. The decrease in the
area of snow, the increase in crop and urban areas, demonstrate an impact generated by
anthropogenic activity in the area, mainly by the cherry tree cultivation activity. In other
landscape evolution simulation studies, remote sensing techniques were used [33], with
classification metrics between 80 and 90% of the images studied for the classification of the
extent of tropical forest fragmentation [3] and a supervised classification methodology and
landscape indices for landscape fragmentation simulations [37].

The analysis of the areas of occupation of the different types of land use allows a
preliminary evaluation of the evolution of the territory. As previously mentioned, the
landscape is a dynamic entity in continuous spatial and temporal evolution [38]. The
environmental mosaic present in the Jerte Valley is quite heterogeneous and, therefore, the
agents that cause these changes are diverse. The most important are: geomorphological
agents in the areas of rock and bare soil, where they are the main modelers of the landscape
together with the climate; and, in the areas dominated by vegetation, (geobotanical land-
scape) it is the plants that modify the edaphoclimatic conditions of the area. In addition,
we are in a territory with a growing human influence, which determines a much more
accelerated time scale of changes due to the disturbances caused by their activities.

Curiously, as a consequence of the change in climatic conditions, the optimal areas for
cherry cultivation are no longer the valley bottoms and slopes, but now occupy the higher
areas (scrub and pasture). It is a phenomenon marked in other territories with other fruit
crops and especially for grapevine [39]. Ultimately it is a consequence of climate change.
Presumably, this trend will continue until the lithological and edaphological conditions
mean that the land cannot be cultivated, even with the application of the current techniques
of farming [40].

Another of the recurrent landscape disturbances in the Jerte Valley and in other areas
with a Mediterranean climate are forest fires [41]. At an ecological level, they can be
beneficial for the maintenance of the forest structure if they do not occur too frequently, in
limited areas, or in areas with a subarid climate. In these cases, they cause simplification of
the environmental mosaics [42]. In the study area, forest fires in recent years have mainly
affected scrub and grassland areas (see the decrease in the area of occupancy for the year
2020), minimizing their ecological effects, compared to the foreseeable consequences of
affecting complex tree formations.

The naturalization of pastures, together with the growth of cherry orchards, has
caused the landscape mosaic to change and present more homogeneity and less diversity.
It is an unstable and singular situation, since at the same time the natural and cultural
landscapes are advancing, giving rise to a common result. This situation can lead to the
generation of a cyclical dynamic based on the recurrent occurrence of fires, which is not
typical of this territory and can lead to the loss of biological and environmental resources,
increased erosion [43], ecological imbalances, etc.

The expansion of cherry trees towards the highlands could be a partial mitigation of
the effects described above, enhancing the coexistence of valuable cultural and natural
elements. This would favor the maintenance of anthropized areas with lower fire risk
and greater economic and ecological potential. Another favorable measure would be
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the maintenance of extensive livestock farming, both in pasture areas and in mountain
pastures, since it plays a fundamental role in the conservation of these habitats, as well as
the geobotanical, genetic, and landscape diversity found in them [44].

Dehesa grassland systems have been found to present a high and changing fragmen-
tation of the stippled or mottled type due to the type of management. They are very
heterogeneous but harbor a greater diversity than other equivalent potential systems and
are therefore a priority for conservation.

5. Conclusions

Previous work has been carried out combining landscape metrics and remote sensing,
however, changes in land use have not been studied with this methodology. In the present
study, the importance of land use changes in landscape dynamics is highlighted by sys-
tematically analyzing landscape evolution using spatial patterns and indices of diversity,
dominance, form, and fragmentation. The scenarios analyzed reveal a trend towards
homogenization of the territory with loss of diversity and changes in natural dynamics,
largely caused by human influence (cherry tree cultivation) and major disturbances created
by forest fires.

The research has shown that the analysis of landscape patterns in a multi-temporal
study allows both the analysis of changes in past land uses and the promotion of actions for
the future conservation of land uses that are positive for the landscape, allowing compliance
with conservation strategies, as well as the evaluation of the causes and consequences of
large-scale actions or disturbances in the landscape. In addition, the use of geographic
information systems, remote sensing, and spatial analysis software allows the evaluation
and integration of many geo-environmental parameters that form the landscape, enabling
the development of a base cartography of superior detail and quality; and enables the spatio-
temporal and statistical analysis of landscape units and their effect on the environment.
This methodology can be implemented in different regions with similar characteristics,
large areas with a large number of classes, remote regions, difficult to access, etc. For
the future, we intend to apply this methodology for shorter time intervals and to see the
gradual modification of the landscape for annual periods to observe whether the landscape
modifications are gradual or abrupt. It is a fundamental tool for the proper management of
land use, land use planning, and environmental conservation. Institutions and territorial
managers will be able to adapt the policies and programs of each region to each present and
future scenario, adapting this generic methodology to particular situations, thus achieving
objective and comparable parameters, extremely useful for decision making.
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