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Abstract: The performance of a multi-view machine vision method was documented at an orchard
level, relative to packhouse count. High repeatability was achieved in night-time imaging, with an
absolute percentage error of 2% or less. Canopy architecture impacted performance, with reasonable
estimates achieved on hedge, single leader and conventional systems (3.4, 5.0, and 8.2 average
percentage error, respectively) while fruit load of trellised orchards was over-estimated (at 25.2
average percentage error). Yield estimations were made for multiple orchards via: (i) human count of
fruit load on ~5% of trees (FARM), (ii) human count of 18 trees randomly selected within three NDVI
stratifications (CAL), (iii) multi-view counts (MV-Raw) and (iv) multi-view corrected for occluded
fruit using manual counts of CAL trees (MV-CAL). Across the nine orchards for which results for
all methods were available, the FARM, CAL, MV-Raw and MV-CAL methods achieved an average
percentage error on packhouse counts of 26, 13, 11 and 17%, with SD of 11, 8, 11 and 9%, respectively,
in the 2019–2020 season. The absolute percentage error of the MV-Raw estimates was 10% or less
in 15 of the 20 orchards assessed. Greater error in load estimation occurred in the 2020–2021 season
due to the time-spread of flowering. Use cases for the tree level data on fruit load was explored in
context of fruit load density maps to inform early harvesting and to interpret crop damage, and tree
frequency distributions based on fruit load per tree.

Keywords: deep learning; fruit-culture; fruit load; precision horticulture; machine vision; prediction
quantification; yield estimation

1. Introduction

A timely and accurate pre-harvest estimation of crop load is necessary to inform
harvest, storage and transport logistics and effective marketing. A forward estimation of
crop load is particularly important for crops such as mango (Mangifera indica L.) given
the short length of time between physiological maturity and on-tree ripening, and the
relatively short postharvest life of the harvested product. Australian mango farm managers
seek an estimate within ±10% of the actual harvest yield for planning of harvest resourcing
and marketing. In current commercial practice, yield is estimated by extrapolation from a
manual count of fruit on a sample of trees. However, manual counting is labor intensive,
with consequent management pressure to reduce time spent counting each tree and number
of trees counted.

In-field counting of fruit on tree using machine vision is possible using imagery
collected from RGB cameras mounted on ground-based vehicles [1–5], based on the imple-
mentation of deep learning in tree fruit detection, as reviewed by Koirala et al. [6]. Briefly,
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the first report of use of machine vision for estimation of mango fruit load [7] employed
color and shape thresholding for mango fruit detection, achieving a Percentage Error (PE)
of 30 to 44% on manually counted images. More recent studies have employed deep
learning architectures, e.g., a Region-based Convolutional Neural Networks (RCNN) [2]
and a You Only Look Once (YOLO) algorithm [4] were implemented using imagery of
the same mango orchard. Under appropriate imaging conditions, detection of mango
fruit within images of whole canopies is now reliable, e.g., F1 score of 0.968 and average
precision of 0.983 reported for count of mango fruit per image frame [4].

Two approaches have been taken in scaling from a fruit count per image to a count
per tree. In the so-called dual-view method, the sum of fruit detections in two images
per tree, one from each inter-row, are adjusted using an occluded fruit factor estimated
from a manual count of a sample of trees. In the so-called multi-view approach, a video
is acquired from a camera passed down the inter-rows of an orchard, providing multiple
viewpoints of each tree side [2,8,9]. Detected fruit are tracked between frames and added
to a cumulative fruit count only when not present in a predicted position for several frames.
This approach allows a greater proportion of, and possibly all, fruit per tree to be detected
compared to the dual-view method.

In a recent review, Anderson et al. [5] recommended that attention should turn from
documentation of the effectiveness of the fruit detection algorithms at an image and tree
level to focus on estimations at a whole orchard level, with consideration of factors that
affect performance. Likely factors include lighting conditions, camera orientation to the
canopy and canopy architecture/foliage density. Direct sunlight can create difficult imaging
conditions when imaging whole orchards, given the multiple orientation of the camera
with respect to the sun. Various approaches to this issue have been reported, including use
of an ‘over the row’ shade for consistent imaging of fruit on apple trees [1], use of intense
strobe lighting and short exposure times [2] and imaging at night with use of artificial
lighting [4,7].

The orientation of the camera to the canopy should allow camera view of all fruit on
trees, or at least of a consistent proportion of fruit on trees. For example, Gongal et al. [1]
utilized vertical arrays of cameras under an ‘over the row’ shade for consistent imaging
fruit on apple trees. Upward facing cameras mounted to a tractor bar were used for kiwi
fruit yield estimations [10]. For ‘modern’ mango orchards employing trees to 4 m height
and a typical row spacing of 8 m, our research group has described use of a single camera to
view the whole tree from an inter-row position, with two cameras at 180◦ to each other and
perpendicular to the row used to imaging both row sides from a vehicle moving through
the inter-row [2,4,7].

Any machine vision method is compromised if fruit are not visible from the camera
positions because of occlusion by foliage or other fruit, or if fruit are visible from both
inter-rows, resulting in double counting. For example, the difference in performance of
a machine vision count of two kiwifruit orchards relative to packhouse counts, at 6 and
15% PE, was attributed to canopy density [10]. Anticipating performance in relation to
canopy architecture and foliage density is therefore relevant to practical use of the machine
vision methods.

The performance of fruit load estimates can be expressed in terms of Absolute Per-
centage Error (APE) of the estimate relative to a reference measurement. For example, an
APE of 2.2–84.3% on harvest yields between 1.1–41.1 t ha−1 was reported in estimation
of yield of 15 mango orchards using a model based on tree height, canopy volume and
a visual assessment of a ‘load index’ (to categories of low, medium, and high) Sarron
et al. [11]. An APE of 6 and 15% was achieved relative to packhouse counts for machine
vision based estimates of two kiwifruit orchards [10]. An APE of between 5 and 15% across
five mango orchards was achieved using dual-view imaging coupled with an occluded
fruit factor, relative to packhouse counts [4]. A Mean Absolute Percentage Error (MAPE) of
18% was achieved for machine vision fruit count of 20 apple trees, compared to harvest
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counts [1]. Reported estimates have thus failed to consistently meet a specification of 10%
APE, relative to packhouse estimates.

In previous publications, our group has documented the creation of a modified
YOLOv3 detection algorithm [4], with implementation of fruit tracking to enable multi-
view estimation [9] and development of an imaging system mounted to a ground vehicle,
e.g., [12]. This hardware has been used in conjunction with the dual-view method in estima-
tion of yield mango orchards [12,13]. In the current study we report on the performance of
this hardware in conjunction with the multi-view method, and act on the recommendation
of a review of yield forecast methods [5] for reporting of estimates at an orchard level.
Consideration is given to machine vision operating factors such as ambient lighting and
the effect of different canopy architectures. Fruit load estimates of up to 20 mango orchards
were made in each of two seasons, with comparison to packhouse counts and manual
count estimates. This represents the most comprehensive report of whole orchard fruit load
estimation available to date, with the work intended to assist efforts to implement these
technologies into farm use. Use cases for the orchard fruit load density map produced
through the machine vision method are also presented.

2. Materials and Methods
2.1. Orchards

Data was sourced from 37 Mangifera indica (L.) orchards in the 2019–2020 season and
19 orchards in the 2020–2021 season. Orchards were located throughout the major mango
producing areas of Australia, and varied in cultivar (Kensington Pride, Calypso®, Honey
Gold, Keitt, R2E2 and NMBP1243), tree age and orchard layout, extending the localities
of a previous study [12] (see Table A1 of Appendix B). An orchard was defined by farm
management, i.e., by areas of consistent management practice (planting date, cultivar,
irrigation, nutrition, pruning, pest and disease management), and typically consisted of
around 1000 trees.

Where available, orchard harvest output as number of fruits was obtained from the
pack-line data management system as tray number and fruit per tray for shipped fruit,
and weight of reject fruit divided by estimated average fruit weight. If only weight data,
not tray number, was available from the packhouse, fruit number was calculated using
an average fruit weight provided by each orchard. Packhouse data will vary from field
fruit numbers where: (i) there is fruit left on tree or ground at harvest; (ii) there is mixing
of lots during harvest or packing, e.g., a wash tank that is not fully emptied between lots;
(iii) when the estimate of average fruit size is incorrect. Several orchard data sets were
rejected from the current study when the amount of fruit left in field and/or lot mixing
discrepancies in the packhouse were observed to be large.

The mango planting systems trial at the Department of Agriculture and Fisheries,
Queensland Walkamin Research Facility [14] was also accessed. This trial consists of four
training systems (conventional, hedge, single leader, trellis), of three cultivars (NMBP1243,
Calypso®, Keitt), planted to low, medium and high densities (208, 417, 1250 trees/ha). All
trees were harvested individually, providing fruit load data per tree. In the machine vision
work, counts were made of fruit on replicates of groups of five consecutive treatment trees,
with 47 conventional, 26 hedge, 26 single leader and 25 trellis replicates. For cultivars there
were 27 NMBP1243, 37 Calypso® and 35 Keitt replicates and for densities there were 22 low,
26 medium and 26 high replicates. Replicate numbers are unequal due to the design of the
high density trial [14].

2.2. Manual Estimates of Orchard Fruit Load

Manual count estimates of fruit load per tree in commercial orchards were made using
hand tally counters by human operators moving around the canopy in a single direction.
These estimates were performed after stone hardening stage of fruit development, i.e., after
fruit drop has largely ceased, approximately six weeks before harvest. Estimates of fruit
load made by farm management (FARM) were obtained for orchards 1–21 in 2019–2020 and
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1–16, 18–21 and 24 in 2020–2021. The method used for this estimate varied between farms,
with the best practice being a manual count of 25 trees by each of two people per orchard,
i.e., a count of 50 trees, or approximately 5% of trees. These trees were typically sampled
using a pseudo-systematic sampling approach involving a single transect sampling line
through the orchard.

Manual counts were also made for another 18 ‘calibration’ trees per orchard, with the
average count of counted trees multiplied by the total number of trees in the orchard to
yield an orchard estimate (CAL). Trees were selected as described by Rahman et al. [15].
Briefly, a stratified sampling approach was adopted, with six trees randomly selected from
each of three normalized difference vegetation index (NDVI) classes representing high,
medium and low vigor trees, derived from WV3 satellite images acquired at the stone
hardening stage. Counts per tree were made at least in duplicate and the average count
used. The CAL tree counts were also used to estimate a correction factor for occluded fruit
in machine vision estimates, calculated as the ratio of the tree count to the machine vision
count for each orchard.

At the Walkamin trial site, fruit per tree were counted during harvest, with fruit at
harvest maturity stage.

2.3. Machine Vision System

An in-field machine vision system developed in-house was used, with a full descrip-
tions of the system in [4,9]. The imaging platform was driven through the orchard at
5–7 km/h. The per area time to image was ~7 min/ha, varying with orchard and headland
layout. Imaging was undertaken within days of the manual counts, except for orchards
1–19 of the 2020–2021 season, for which manual count occurred 22 d after imaging.

Briefly, the system consisted of a frame mounted to a farm vehicle, carrying two
500 W LED light panels and two 5 Mp Basler acA2440 RGB camera (Basler, Ahrensburg,
Germany) fitted with 5 mm focal length Kowa lens, facing to each row side, associated
hardware for image recording and a Global Navigation Satellite System (GNSS; Trimble,
Leica GS14 or Emlid v2) (Figure 1). The GNSS system was used to provide a geolocation
datum for every image frame. The MangoYOLO convolutional neural network described
by Koirala et al. [4] was applied to detect fruit in each frame. Typical camera to canopy
distance was 2 m. In the multi-view method, video was acquired at 10 fps. A Kalman filter
was adopted to track the fruit across a sequence of frames, following the procedures of [2,9].
The fruit was added to the count when the fruit did not reappear in seven subsequent
frames. A fruit size threshold (12 × 12 pixels) was utilized to reduce the error of double
counting of fruit seen from both sides of the canopy, with distant fruit appearing smaller in
image and thus excluded from count. The sum of the manual fruit count for 18 trees in
each orchard was regressed to the MangoYOLO pipeline count of fruit in the two images
for these trees to estimate an ‘occlusion factor’ for each orchard. This correction factor
was then applied to the machine vision count of all other trees, following the approach of
Koirala et al. [16].

2.4. Experimental Exercises

Several exercises were undertaken to document machine vision method performance:
(i) an orchard was imaged repetitively through a day to assess multi-view method repeata-
bility and impact of ambient lighting; (ii) multi-view fruit load estimates were acquired
for trees of different canopy architectures to enable consideration of the impact of canopy
architecture on estimate accuracy; (iii) the impact of reduced sampling of rows for machine
vision estimations of orchards was assessed; (v) the impact of an extended flowering period,
and thus extended harvest maturity period, on a machine vision load estimate was docu-
mented; (vi) fruit load per orchard was estimated using several methods for approximately
20 orchards in each of two seasons. The methods included the farm management estimate,
based on average fruit count of trees in a single transect per orchard (FARM), the average
of the manual count of 18 trees based on a NDVI stratification multiplied by tree number
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per orchard (CAL), and multi-view machine vision, without (MW-Raw) or with correction
using an occlusion factor (MV-CAL).
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Figure 1. Imaging system, featuring GNSS receiver, LED light panels, two Basler cameras, generator
and computer.

Finally, several use cases relevant to orchard management were presented based on
machine vision data. These cases include a frequency chart for fruit load per tree for an
orchard and mapping of fruit load across an orchard.

2.5. Statistics

Percentage error (PE) on orchard fruit load estimates was calculated as:

PE =
Estimated fruit number − Packhouse fruit number

Packhouse fruit number
× 100 (1)

while Absolute Percentage Error (APE) was calculated using the absolute difference of
estimate and reference values.

To determine if there were significant differences between the estimation techniques
employed, the APE of estimates to packhouse counts for all orchards estimated were tested
for Least Significant Difference (LSD) with a Bonferroni p-adjustment to p < 0.05 in R
package ‘agricolae’ (version 1.3.3) [17].
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3. Results and Discussion
3.1. Machine Vision Method Validation
3.1.1. Repeatability and Time of Day

In a test of method repeatability, two rows of orchard 30 were imaged twice in the
same night. Fruit count for these rows were recorded at 12,902 in the first pass and 13,008
in the second pass, a difference of 106 fruit (0.1% of total). Repeated estimates of orchard
28 were also made through a day on which sunrise occurred at 05:04 and sunset at 18:30.
The 08:00, 10:00, 12:00, 15:00, 16:00, 18:00, 20:00 and 21:30 h counts were 37, 49, 47, 54,
53, 48, 98 and 102% of the count at 21:00 h (44,419 fruits). The night repeatability results
were equivalent to that achieved by [2,10]. The poor daytime result was ascribed to a
higher dynamic range of lighting under sunlight than artificial lighting, and over-exposure
when the sun was imaged due to low sun angles in morning and afternoon. Further, the
MangoYOLO model had been trained on images collected at night using LED floodlighting,
with fruit differentiated from foliage more by intensity than color [4].

The current multi-view imaging system thus achieves good repeatability but is re-
stricted to night-time use. Repeatability has rarely been reported in past studies, but it is
recommended as a performance criterion to be included in future reports.

3.1.2. Impact of Canopy Management on Machine Vision Estimation

Stein et al. [2] remarked on the uncertainty of the stability of a ratio of visible to
total fruit between trees of an orchard and recommended use of the multi-view over the
dual-view method on the basis that multi-view was not dependent on use of an occluded
fruit correction. In the mango orchard in which their work was based, the multi-view
method achieved view of all fruit on tree, and they called for future work to validate this
in other orchards. The current study addresses this call.

Two types of error in multi-view estimation of fruit load varied with canopy type: (i)
failure to observe fruit due to occlusion by foliage; (ii) double counting if fruit were seen
from the other side of the canopy but not sufficiently differentiated by image size to be
rejected by the image size filter.

Multi-view machine vision estimates were compared to harvest counts for trees grown
to four canopy architectures at the Walkamin Research Facility. In the trellised system
(Figure 2), fruit were seen from both sides of the canopy without differentiation by image
size, causing a machine vision overcount (Figure 3, top panel). The NMBP1243 tree over-
estimate was most severe in the high-density planting systems (e.g., PE of 32 and 47%
for hedge and trellised systems, respectively; see Appendix A). The trellis treatment was
therefore removed from the statistical analyses of cultivar and density treatments (Figure 3,
middle and bottom panel). For the other canopy systems, tree density did not significantly
impact multi-view results (Figure 3, middle panel), although variation in PE was larger in
the high than in lower density systems (higher SD, Figure 3, middle panel). This variation
was ascribed to variation in foliage density, and thus variation in level of fruit occlusion. PE
was significantly different for the three cultivars, with best results for the Keitt trees, which
have a relative open canopy structure, followed by Calypso® and NMBP1243 cultivars
(Figure 3, bottom panel).

The multi-view technique is therefore recommended for fruit load estimation of
orchards using the canopy management systems of conventional, hedge and single leader,
but not trellised canopies.
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Figure 3. Average percentage error of multi-view count of fruit per tree relative to harvest count,
presented by training system for all cultivars and densities (top panel); by tree density, for all cultivars
and training systems except trellis (middle panel); and by cultivar, for all densities and training
systems except trellis (bottom panel). Bars represent ± SD, significant differences denoted with
letters a, b and c to p < 0.05. Associated data is presented in Appendix A.

3.1.3. Down Sampling for Machine Vision Estimation of Fruit Load

A useful discussion of sampling requirements for fruit load estimation is provided by
Koirala et al. [4], Wulfsohn [18]. Given that the required number of trees for an accurate
estimate of orchard fruit load under a simple random sampling strategy was typically
<100 trees for a given orchard Gongal et al. [1,12], it appears redundant to acquire machine
vision estimates of all trees in each orchard for an estimation of orchard fruit load. Driving
fewer rows also reduces the time and labor requirement of this task, increasing practicality
for farm implementation. The statistical estimate of required tree number was, however,
based on random sampling, while the machine vision method involves driving of complete
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rows, i.e., systematic sampling. More frequent spatial sampling also provides the additional
benefit of providing information on the spatial distribution of fruit load.

The variation in average number of fruits per tree side was assessed using the multi-
view method for rows within each of five orchards (Table 1). A high SD on fruit number per
tree was generally associated with a high SD on row averages for a given orchard, except
for orchard 31, i.e., variation in fruit load across rows was greater than in the direction of the
rows in orchard 31, such that row averages were similar. For orchard 8, the percentage error
of the average fruit load of all rows were within ±10% of the orchard average (Table 1). In
this case imaging any single row would provide a reasonable estimate of orchard fruit load.
High between-row variation in orchard 23 was associated with an increased number of
rows with more than 10% of rows above or below the orchard average (Table 1).

Average fruit number per tree side was estimated with down sampling of row data
from five orchards. Data was down sampled to use of every second, third or up to every
ninth row, for all possible start rows for each sampling frequency. An estimate error that
was >±10% of the whole orchard estimate occurred with down-sampling to every 6th row
or less in orchard 23 (Table 1).

Imaging of every third row is recommended as a compromise between sample number,
task effort and provision of a map showing spatial variability in fruit load. For example,
with sampling of every third row, a 50,000-tree farm was imaged in 20 h, i.e., across
two days (see Section 3.3).

Table 1. Characterization of five orchards varying in location and cultivar in terms of number (#) of rows and tree, mean
and SD of machine vision estimated fruit number per tree side, SD of the average fruit count per tree side for individual
rows, the number of rows for which the fruit count per tree side was >±10% of the average value of the entire orchard, and
the number of iterations of a given down sampling interval that were >±10% of the orchard average value. Detail is also
given for the case of sampling every 6th row, for all start row possibilities. Iterations which exceeded ±10% of the whole
orchard estimate are marked by a (*).

Orchard 8 23 28 31 38
Region NT NQLD CQLD SQLD SQLD
Cultivar Caly Keitt HG Caly HG

# rows 18 24 8 20 36
# trees 3474 1406 2128 4650 3068
Mean (fruit #/tree side) 41.8 50 29.6 45.7 36.8
SD (fruit #/tree side) 13.9 21.9 11.8 17.8 15.7
SD of row average (fruit #/tree side) 2.3 8.9 3.4 3.9 6.8

# rows > ±10% of orchard fruit #/tree side 0 13 3 1 25

Row sampling interval # estimates > ±10% of row mean (fruit #/tree side)
every second row 0 0 0 0 0
every third row 0 0 0 0 0
every fourth row 0 0 0 0 0
every fifth row 0 0 0 0 0
every sixth row 0 1 0 0 0
every seventh row 0 0 2 0 0
every eighth row 0 2 2 0 0
every ninth row 0 2 3 0 0

# fruit/tree side

Sampling every 6th row, given start row:
1 42.1 49.8 28.3 44.7 34.3
2 42.6 46.1 27.0 46.3 37.3
3 40.4 48.0 32.5 44.1 39.2
4 40.5 50.8 30.1 46.6 39.0
5 42.6 55.9 * 32.0 47.7 37.4
6 42.7 52.3 28.6 45.3 33.4
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3.1.4. Crop Timing

The object size limit used in the machine vision method places a constraint on the size
of fruit that will be detected and counted. For example, Figure 4 presents images from
orchard 12 of a single tree at weekly intervals, with the number of fruits detected increasing
as fruit increased in size. This trend is also evident across the whole orchard (Figure 5).
For orchard 28 in 2020–2021, multi-view counts appeared to plateau then increased by a
further 29% of the final tally. The final count was 106% of the packhouse count (see also
Section 3.2.1). Thus, a time-series machine vision assessment of a given orchard allows
insight into the spread of crop maturity.
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Figure 5. Top panel: Fruit count per tree by dual-view machine vision at 10 and 16 weeks (left and
right panels, respectively) from flowering for orchard 12 (2018–2019). Each dot represents a tree side,
with color indicating fruit number. Bottom panel: Time course of fruit count for the same orchard
(orange) and for orchard 28 (2020–2021 season) (blue). Harvest occurred 6 and 4 weeks after the last
assessment, respectively. Packhouse count for orchard 28 is shown at time 0.
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Repeated machine vision estimates of fruit load are therefore required in seasons with
extended flowering events which result in multiple harvest events. Appropriate timing of
imaging could allow estimation of the fruit load associated with separate harvest events.

3.2. Orchard Estimates
3.2.1. Method Comparisons 2019–2020

Four methods of fruit load estimation were compared to the packhouse record across
multiple orchards (Table 2). Across the nine orchards for which results for all methods
were available, the FARM, CAL, MV-Raw and MV-CAL methods achieved an APE on
packhouse counts of 26, 13, 11 and 17%, with SD of 4, 11, 8 and 11%, respectively, with
significance differences at a 95% level (Table 2). The MV-raw technique provided the lowest
APE, although it was not significantly different to the CAL result (Table 2). For these
nine orchards, the R2 of the linear correlation between orchard fruit load estimates and
packhouse count was 0.929, 0.988, 0.984 and 0.972 for FARM, CAL, MV-raw and MV-adj
estimates. Across all 20 assessed orchards, the MV-Raw technique achieved an APE of
11% (Table 2, Figure 6). These results compare favorably to the few available published
estimates of whole orchard yield (e.g., APE of 2 to 84% on yield of 15 mango orchards
Sarron et al. [11], 6 and 15% for two kiwifruit orchards [10], 5 to 15% across five mango
orchards [4], 0 to 28% for five mango orchards [13] and a MAPE of 18% for 20 apple trees
Gongal et al. [1]).

Table 2. Packhouse fruit count and the absolute percentage error of fruit load estimates made by (i) farm management as a
manual count of a systematic sample of trees (FARM), (ii) a manual count of calibration trees multiplied by tree number
(CAL), (iii) the raw machine vision count (MV-Raw) and (iv) a machine vision count adjusted by an ‘occlusion’ factor
calculated of the calibration trees (MV-CAL). Calibration trees were located in the orchards highlighted by bold italic font
for a given management zone. Occlusion factors calculated from these trees were applied to other orchards of the same
management zone for calculation of CAL and MV-CAL. In orchards designated by *, packhouse fruit numbers represents
estimates based on tray numbers and tray sizes. Significant differences (p > 0.05) between treatment averages are denoted
with letters.

2019–2020

Zone Orchard Packhouse (#Fruit) FARM (%) CAL (%) MV-Raw (%) MV-CAL (%)

1 1 * 188,296 35 20
1 2 * 173,303 30 9
1 3 * 83,660 23 4
1 4 * 52,651 8 23
2 5 * 277,982 26 16
2 6 * 308,838 24 16 6 8
2 7 * 162,579 57 19
3 8 * 172,059 14 28 16 1
3 9 * 640,277 8 4
4 10 * 242,197 14 6 5 20
4 11 * 326,706 38 1 1 20
4 12 * 326,426 40 10 3 16
4 13 * 120,424 36 12 5 20

14 * 494,141 9 7 5 8
5 15 * 499,587 27 12 34 30
5 16 * 241,627 19 18

18 * 1,911,894 11 2
19 * 352,368 46 81
20 * 1,640,236 29 21 25 29
21 * 919,219 39 2
22 * 43,888 23 9 26
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Table 2. Cont.

2019–2020

Zone Orchard Packhouse (#Fruit) FARM (%) CAL (%) MV-Raw (%) MV-CAL (%)

23 * 71,596 42 2 5
24 190,966 28
25 60,416 17
26 87,750 28
27 252,870 1

28 * 68,572 5 19 5
30 * 97,480 8 53
31 194,511 26 9 13
32 149,145 10
33 151,740 9 18 6
34 233,546 26

35 * 84,635 10 9 15
36 * 101,766 34 10 15
37 * 264,801 32 10 14
38 * 104,642 26 8 8

Walkamin 87,240 8

AVG 26.7 17.9 10.5 16.4
STD 13.7 15.2 8.2 12.1

AVG (9 orchards) 25.7a 12.6ab 11.1b 16.9ab
STD (9 orchards) 11.3 8.2 11.4 9.7

2020–2021

Zone Orchard Packhouse (#Fruit) FARM (%) CAL (%) MV-Raw (%) MV-CAL (%)

1–16 * 3,039,052 35 17 32 9
18 * 1,814,684 23 22 20 23
19 * 1,533,868 14 10 24 19
20 * 1,263,408 22 25 36 23
21 * 1,206,123 35 24 26 13
24 23,807 41 41 76

28 * 80,333 7
30.1 * 76,531 12
30.2 * 59,461 19

31 186,234 2
32 142,798 31 1
33 223,608 8
34 223,608 17

35–36 191,902 46 27
37 91,998 41 5
38 89,389 27 10

40–41 589,800 2 7 4
42 2,052,195 17 17
43 199,656 28 3 3 6

AVG 27 23 17 22
STD 10 14 12 23

AVG (6 orchards) 26.2a 16.8a 23.5a 15.5a
STD (6 orchards) 8.2 8.8 11.6 7.3

The use of an occlusion correction factor calculated from the human count of the
calibration trees did not improve the orchard load estimate in comparison to the packhouse
count in 16 of 20 orchards in the 2019–2020 season, and MV-CAL estimates demonstrated
higher variability than the MV-Raw estimates (Table 2). This result indicates that the
correction factor for proportion of occluded fruit derived from count of the CAL trees was
not representative of the whole orchard. Use of the multi-view machine vision estimate
without correction is recommended, with the imaging method restricted to use in orchards
with open canopies.
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There remains a need to develop better tools for estimation of an occlusion factor
for a given orchard. Koirala et al. [16] unsuccessfully attempted estimation of a per tree
occlusion factor based on machine vision features such as the proportion of partly occluded
to non-occluded fruit. A random forest model on the ratio of machine vision to packhouse
count using inputs of various orchard attributes explained only 39% of the variance in the
ratio, with 10, 8, 6, 4 and 3% attributed to tree age, SD of tree crown area, mean of tree crown
area row spacing and tree spacing, respectively (Appendix B). Tree age is loosely related
to canopy size and density, and a high SD on tree crown area is likely to be associated
with higher variation in canopy size and density, and thus in the occluded fruit ratio. The
explained variance was, however, still too low to be of practical use.

The CAL manual count method achieved a reasonable estimate of orchard fruit load
in many cases (Table 2). In some cases, poor results were attributable to a poor relationship
between human count of fruit on tree and harvest count, e.g., for orchard 36 the FARM
APE was 34% and the percentage difference between on-tree count and per tree harvest
count of 18 trees was also 34% (data not shown). Errors in human count of fruit per tree
will propagate through to orchard fruit load estimates for any methods that uses human
counts as an input.

The FARM method under-performed relative to the CAL method, despite the count of
more trees. This result is ascribed to the sampling strategy used in the FARM method, a
pseudo systematic approach involving a single transect across each orchard. In compari-
son, the CAL method involved random sampling within a stratified sampling approach
involving classification to three classes on NDVI values.

3.2.2. Method Comparisons 2020–2021

The multi-view machine vision results were under-estimates of packhouse count for
several orchards in the 2020–2021 season. Based on farm observations, this result was
ascribed to an extended flowering period such that a single machine vision assessment
event occurring at the time of stone hardening of fruit from the main flowering event
failed to count later maturing fruit (see Section 3.1.4), rather than to a change in the canopy
occlusion factor between seasons. The relationship between the multi-view count and the
packhouse count (Figure 7) was characterized by a high R2 but a slope less than unity,
indicates that the proportion of crop that was late was similar in all orchards of this farm.
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A similar result was obtained on another farm of the same cultivar (slope of 0.77, R2 = 0.97,
data not shown).
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The APE of MV-Raw, MV-CAL, CAL and FARM methods across all orchards measured
in the 2020–2021 season was 17, 23, 22 and 27%, respectively (Table 2). For the six orchards
for which all methods were available there was no significant difference at a 95% confidence
level between methods. Manual count-based estimates (CAL, MV-CAL) exceeded the
machine vision estimate for orchards 1–16 as the manual count was made three weeks
after the machine vision estimate. Due to a prolonged flowering period, additional fruit
reached stone hardening stage in this period. In this case, the average percentage error
of the multi-view count was improved by use of a correction factor (PE of 32 and 9% for
MV-Raw and MV-CAL methods, respectively) (Table 2).

3.3. Use Cases

The machine vision method for estimation of tree crop load allows for assessment of all
trees in each orchard, at a drive time of approximately 21 min for a 3 ha, 1000 tree orchard,
compared to approximately 3 h for the manual count 18 trees. Data processing time was
equivalent to imaging time, allowing for same day provision of fruit load estimates to
inform farm planning

Machine vision fruit load estimates can also be used for purposes beyond an orchard
fruit load estimate. The multi-view method was based on continuous imagery of the row at
10 fps, with an estimate of fruit load per tree achieved from cumulative fruit counts taken
at the tree spacing interval, commonly 3 m. This data approximates a per tree estimate.
Three use cases of this data are documented below:

(i) Per tree fruit load can used to generate a frequency distribution of tree fruit load.
For example, Figure 8 displays the frequency distribution for a single orchard in two
seasons. The agronomic use of such information remains to be explored.
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Figure 9. Fruit load ‘heat map’ for a farm affected by frost at flowering (top panel), and of
early fruit in an orchard (bottom panel). Red ‘T’ denotes location of temperature sensors.
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(ii) A count increment at the tree spacing interval allows for display of a ‘heat map’ of
fruit load across a farm. In one farm this display was interpretable in terms of the
location and speed of operation of fans that had protected flowers on the farm during
a frost event, with the display used to guide the subsequent placement of additional
fans (Figure 9, top panel).

(iii) An imaging event early in the fruit development period captured the location of early
maturing fruit, associated with early flowering trees (Figure 9, bottom panel). This
information was used by farm management to guide a selective early harvest event,
responding to market demand.

4. Conclusions

The use of the multi-view machine vision method is recommended for mango fruit
load estimation, with restriction to use with orchards with trees with open canopies that
afford view of fruit from interrow positions. For example, reasonable estimates were
achieved on hedge, single leader and conventional systems across three cultivars and
three planting densities (APE of 3.4, 5.0 and 8.2%, respectively). The APE of multi-view
estimates of mango fruit load was generally lower ‘as-is’ than when corrected for the
proportion of occluded fruit as estimated from a sample of orchard trees. This result
indicates that the trees sampled for estimation of the occlusion factor did not adequately
represent the orchard. The need for repeat estimations during a season with an extended
flowering period was recognized, and down-sampling to imaging of every third inter-row
was recommended as a compromise between required effort and acquisition of information
on spatial variation in fruit load across the orchard. Additional value can be created by
imaging of whole orchards in terms of the spatial information on fruit load levels across
orchards, e.g., for selection of areas for early harvesting and for mapping of damaged areas.

Several sources of error for the packhouse record of harvested fruit number were
documented. It is recommended that researchers probe the accuracy of these values if used
as the reference value against which in-field fruit load estimates are compared.
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Appendix A

Fruit count per tree by multi view machine vision expressed as a ratio of harvest count
per tree (average and SD) for tree rows, in a factorial combination of three densities of
planting, four management canopy systems and three cultivars.

Table A1. 2019–2020 orchard characteristics. Cultivar abbreviations are Caly for Calypso®, HG for
Honey Gold and region abbreviations are NT for Northern Territory, NQLD for north Queensland,
CQLD for central Queensland and SQLD for south Queensland. ‘-’ represents data not available.
(Orchard numbering is tied to other tables).

Density System Cultivar MV/Harvest SD n (Rows)

High Hedge 1243 1.32 0.22 8
High Hedge Caly 0.85 0.18 8
High Hedge Keitt 0.96 0.18 8
High Trellis 1243 1.47 0.18 8
High Trellis Caly 1.16 0.11 9
High Trellis Keitt 1.21 0.29 10

Medium Single Leader 1243 1.22 0.16 6
Medium Single Leader Caly 1.13 0.14 10
Medium Single Leader Keitt 0.87 0.15 10
Medium Conventional 1243 1.22 0.23 7
Medium Conventional Caly 1.14 0.18 10
Medium Conventional Keitt 0.98 0.13 8

Low Conventional 1243 0.99 0.17 6
Low Conventional Caly 1.15 0.14 9
Low Conventional Keitt 0.98 0.10 7

Appendix B

Appendix B.1. Variable Importance for the Ratio of Multi-View to Packhouse Count

Appendix B.1.1. Method

A Geographic Object-Based Image Analysis (GEOBIA) approach was used for tree
crown delineation of individual mango trees. The method used spectral reflectance variabil-
ity as an attribute for discriminating features along with textural and contextual information
to delineate mango trees [19,20]. PAN sharpened WorldView-3 images of 0.31 m spatial
resolution was used in GEOBIA to delineate tree crowns using eCognistion Developer 8
software [21]. Tree Crown Area (TCA) statistics were then estimated for individual trees in
each orchard. TCA was utilized in analysis of variable importance of orchard attributes in
relation to the accuracy of fruit load estimates by machine vision, relative to packhouse
fruit counts. This analysis was undertaken for a subset of orchards for which satellite
imagery, machine vision data and orchard descriptors of cultivar, tree and row spacing and
tree age were available (Table A2).
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Table A2. 2019–2020 orchard characteristics. Cultivar abbreviations are Caly for Calypso®, HG for Honey Gold and region
abbreviations are NT for Northern Territory, NQLD for north Queensland, CQLD for central Queensland and SQLD for
south Queensland. ‘-‘ represents data not available. Orchard numbering is tied to other tables and is an extension of that
used in [12].

Orchard # Region Cultivar Tree Spacing (m) Inter Row
Spacing (m)

Tree Planting
Date

Average Tree
Crown Area (m2)

SD Tree Crown
Area (m2)

6 NT Caly 3 8 2010 8.65 2.73
8 NT Caly 3 8 2008 7.76 2.46
10 NT Caly 3 8 2010 8.64 2.31
11 NT Caly 3 8 2010 7.04 2.35
12 NT Caly 3 8 2010 7.55 2.70
13 NT Caly 3 8 2010 5.99 2.16
14 NT Caly 4 9 2003 15.88 4.99
15 NT Caly 3 8 2000 15.40 4.28
20 NQLD Caly 4.5 8 2007 13.48 4.12
22 NQLD R2E2 5 8 2001 18.35 5.90
23 NQLD Keitt 5 7.5 1996 9.46 3.46
28 CQLD HG 3 7 2001 - -
30 CQLD HG 3.75 7 2013 - -
31 SQLD Caly 3.5 9.5 2014 3.94 2.13
33 SQLD Caly 3.5 9.5 2014 4.98 3.16
35 SQLD Caly 4 9 2004 - -
36 SQLD Caly 4 9 2004 - -
37 SQLD Caly 4 9 2004 19.77 6.87
38 SQLD HG 4 8 2012 13.15 3.00

Walkamin NQLD multiple multiple multiple 2013 - -

Appendix B.1.2. Results

With the multi view machine vision method restricted to use with relatively open
canopies, it is important to be able to anticipate when an orchard is unsuited for the method.
To this end a Random Forest model was developed using 500 decision trees for the ratio
MV to packhouse fruit counts based on orchard attributes of tree age, SD of TCA, mean
TCA, row spacing and tree spacing for 15 orchards (from Table A2).

The model explained only 39% of the variance in the ratio, in terms of cross-validation
results (R2

cv = 0.39, RMSECV = 0.09), with the most important predictor being tree age
(Figure 1). This result is consistent with the observations that there is risk of double
counting of fruit from the two sides of the tree in young, small trees, while old, large trees
can have dense canopies, with risk of increased fruit occlusion. However, this relationship
can be altered by canopy management practices. It was hypothesized that trees with large
crown areas would also be associated with higher levels of occluded fruit, and thus a
decreased machine vision to harvest ratio. In practice, however, the standard deviation of
TCA was more important than the mean. Inter-row and tree spacing contributed relatively
little to the explained variance.

There remains a need to develop better tools for estimation of an occlusion factor for a
given orchard.
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