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Abstract: Continuous use of chemical fertilizers has deteriorated soil health and crop productivity.
Replenishing soil nutrients and microbial activity with eco-friendly soil amendments such as biochar
and manure is therefore necessary to sustain soil health for crop production. However, studies are
limited regarding the evaluation of biochar and poultry manure effects on soil health, attributed
mainly to microbial extracellular enzymes and respiration. Therefore, the present study was designed
to investigate the effects of poultry manure and biochar on soil physico-chemical and microbiological
properties and lettuce biomass accumulation in a pot experiment. The pots were amended with
poultry manure either alone and or in combination with low (10%) and high (20%) rates of biochar.
The treatments included were; (i) control, (ii) manure alone (M), (iii) manure plus 10% biochar
(M + B10, and (iv) manure plus 20% biochar (M + B20). Results revealed that soil extracellular
enzymes related to C, N, and P mineralization, soil basal (BR), and substrate induced respirations
(SIR) were significantly affected by applied manure and manure–biochar. However, there were
large differences observed for applied amendments regarding various soil and crop parameters.
Specifically, the manure combined with a high rate of biochar (M + B20) enhanced total carbon (TC)
content, dehydrogenase activity (DHA), BR, and all SIRs except Arginine-IR. On the other hand,
manure combined with a low rate of biochar (M + B10) resulted in enhanced lettuce aboveground
dry biomass (AGB-dry). The manure treatment alone (M), however, proved to be the most influential
treatment in improving soil enzymes (β-glucosidase, N-acetyl-β-D-glucosaminidase and phosphatase)
involved in C, N, and P mineralization compared to the other treatments and control. Thus, it was
concluded that the sole application of M and M + B20 improved both fertility and soil health, which
therefore could be a promising direction for the future to enhance soil quality and crop productivity.

Keywords: poultry manure; plant nutrients; extracellular enzymes; manure maturation; soil health

1. Introduction

In recent years, the decline in soil fertility and its quality has become a global threat.
In fact, Oldeman et al. [1] and Rashid et al. [2] estimated that nearly 30% of world’s
agricultural land will be converted to degraded soils in upcoming decades. This could be
attributed to increased globalization and a growing human population on the one hand
and to intensive agriculture and inappropriate management practices such as extensive
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tillage and indiscriminate chemical use, as well as low carbon inputs in the soil, on the
other [3–5]. Furthermore, more agricultural intensification and frequent biotic and abiotic
stresses induced by global climate change are known to impair soil fertility and crop
production. These causative factors are among the chief contributors to soil degradation
and contamination of groundwater quality. Soil, being the pedosphere, supports immense
ecosystem services, and any change in its quality is interrelated with the deterioration of
the whole environment. Therefore, there is a dire need to look for alternative strategies in
agricultural soils that could ensure safe crop production and boost its fertility and health.
Soil quality and fertility could be enhanced by increasing carbon inputs into the soil in the
form of organic amendment, such as manure, biochar, compost, and other forms of carbon.
By doing so, the soil nutrient-supplying capacity would be enhanced, soil health would be
improved, and crop production would be increased [6,7].

Biochar is a carbonaceous material obtained through the destructive pyrolysis of
organic materials (e.g., wood, manures, plant remains, food wastes), etc., in a low or zero
oxygen environment [8]. It is distinguished from other similar materials and charcoal by
virtue of its utilization as a soil amendment [9]. It is most often used to mitigate climate
change via sequestration of soil organic carbon in the soil [10]. However, recently it has
gained immense momentum for its use as a soil conditioner to improve soil fertility, reduce
nutrient losses (mainly nitrate leaching), improve soil water retention, alleviate biotic and
abiotic stresses in plants and enhance crop production [11,12]. In addition, a number
of reports have acknowledged its stimulating effects on microbial populations and their
activities in the soil [13,14]. Moreover, soil application of biochar has been considered as
one of the best ways to recycle nutrients and convert biowastes into a useful product with
agricultural benefits [8,9,13].

Biochar does so by altering the soil physico-chemical characteristics and by enhancing
the availability of limiting nutrients [15]. Despite the fact that biochar has a high potential
for improving soil properties, its application effects are further influenced by the type of
feedstock, pyrolysis temperature, and rate of application in the soil. For instance, Zheng
et al. [16] observed improved soil physico-chemical properties with the application of 0,
1, 2, 4, and 10% biochar. The authors reported an increasing trend of observed properties
(soil pH, porosity, N, P, K, and amount of soil organic matter) with increasing biochar rate,
suggesting a 10% biochar application rate as the best strategy for improving soil physical–
chemical health. Another study by Du et al. [17] reported that biochar application at the
rate of 1% enhanced microbial biomass and activity. However, Wang et al. [18] reported
low positive effects (0.5%) and negative effects of biochar on microbial properties at (1%)
biochar doses. Moreover, the pyrolysis of feedstock for biochar production have shown
negative effects on the environment. A soil–water–atmosphere (gas) cycle possibly occurs
during biochar production and transportation [19], which causes entry of biochar and its
derivatives in unwanted media. Moreover, biochar sometimes contains minute amounts of
primary environmental contaminants, such as heavy metals, poly aromatic hydrocarbons,
and volatile organic compounds, which upon addition might accumulate in the soil [20–22].
These issues, together with soil textural constraints, affect the suitability and efficiency of
biochar, which does not always result in positive effects. Therefore, the combination of
biochar with other organic amendments, such as manure, has been recommended.

Manures are rich in plant nutrients and are a cheap source for improving soil fertility.
Poultry manure production has been increased due to an increase in poultry production [23].
Poultry manure has been recognized as a rich source of nutrients especially N and C [24].
Its application in soil has been reported to enhance soil physico-chemical characteristics
and plant biomass [25]. However, direct application of poultry manure on soil results
in nitrate leaching and phosphorous runoff into freshwater bodies, which is one of the
main environmental concerns of its direct application [26]. To date, many studies have
been published on the sole utilization of biochar and/or poultry manure [25,27]. Little
information is available on how the addition of poultry manure together with biochar
impacts soil physico-chemical and microbiological properties. In particular, the role of
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manure in improving the efficiency of biochar under different rates has been the least
explored, which in the present study constitutes the novelty. Thus, the responses of soil
physico-chemical and microbiological health indicators through combined application of
poultry manure and different rates of biochar should be further explored. Therefore, in
the present study, we took advantage of a poultry rearing farm at Mendel University Brno,
Czech Republic, to procure poultry manure and mix it with the biochar produced through
the pyrolysis of organic wastes. Using such combinations could improve soil health and
be ecologically promising. We thus hypothesized that (i) the sole application of poultry
manure would enhance the soil physico-chemical properties, (ii) the combination of poultry
manure and biochar at different rates would not only result in increased nutrients and
plant biomass but also enhance the soil respirations; however, (iii) the differences in rates
of biochar would influence the end point results. Therefore, the specific objectives of the
present study were to (i) compare the effects of manure and manure–biochar amendments
on soil chemical and health traits and crop biomass accumulation, and (ii) analyze soil basal
and substrate-induced respirations and enzyme activities in order to track the changes
in microbial functions caused by applied amendments. The results obtained from this
work would essentially enhance our understanding of the amendment effects of poultry
manure and biochar (at different rates) on main soil health indicators (soil respiration and
extracellular enzyme activities), along with their potential for crop production.

2. Materials and Methods
2.1. Procurement of Manure and Preparation of Amendments

Poultry manure was produced at Mendel University in Brno. The biochar was in-
troduced to the manure during the experimental rearing of broilers in the doses 0 wt%,
10 wt%, and 20 wt% of used litter. Used biochar was produced at 650 ◦C from agricultural
waste (cereal bran and chaff, sunflower hulls, fruit peels, and pulp) (Sonnenerde GmbH,
Riedlingsdorf, Austria) and had the following basic properties: C 86.6%, N 0.3%, C:N 288.7,
pH 8.5, and BET specific surface 288.5 m2·g−1.

2.2. Pot Experiment and Design

The experimental soil was a mixture (1:1, w:w) of a silty clay loam (USDA Textural
Triangle) Haplic Luvisol (WRB soil classification) sampled (0–15 cm) near the town of
Troubsko, Czech Republic (49◦10′28′′ N 16◦29′32′′ E) and a fine quartz sand (0.1–1.0 mm;
≥95% SiO2). The following soil properties of Haplic Luvisol were determined before
the start of the experiment: total carbon (TC) 7.0 g·kg−1, total nitrogen (TN) 0.80 g·kg−1,
Phosphorous 0.049 g·kg−1, Sulphur (S) 0.073 g·kg−1, Ca (1.60 g·kg−1), Mg (0.118 g·kg−1),
and K (0.115 g·kg−1); soil reaction, pH (CaCl2) 7.3.

Fresh manure was matured in bags for 4 months at 14 ◦C ± 4 ◦C. Then, matured
manure was mixed and applied into 5 kg of soil at a dose of 30 g, equivalent to 10 t·ha−1.
The variants tested in the pot experiment and properties of matured manures are provided
in (Table 1). The resulting soil–manure mixture was dosed into 3 replicates per variant
(Table 1) and incubated in the greenhouse for 6 weeks before seeding. The incubation
conditions were 22/18 ◦C, 45/60% air relative humidity, and a 12 h photoperiod, with soil
moisture maintained at 60% of its water-holding capacity. After 6 weeks of incubation, the
soil from all pots of each variant was mixed together and divided into 1 kg batches that
were dosed into 1 L pots. All variants were prepared in 8 replications for the pot experiment.
All pots were placed in the greenhouse under the same conditions as the incubation and
sown with three sprouted lettuce seeds. The lettuce was grown for 7 weeks. At the end
of the experiment, the plants were cut at ground level and aboveground biomass (AGB)
was dried at 60 ◦C until a constant weight was obtained and then weighed gravimetrically
using laboratory analytical scales to determine the weight of dry above-ground biomass
(hereinafter referred to as AGB-dry).
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Table 1. The tested variants in the pot experiment and manure properties (in fresh matter).

Variant Variant Code pH [-] C [%] N [%] C:N [-]

I. Control without manure Control - - - -

II. Manure M 6.5 20.1 1.1 18.2

III. Manure + biochar 10% M + B10 6.9 26.4 1.5 17.4

IV. Manure + biochar 20% M + B20 7.1 35.9 2.0 17.5

2.3. Soil Analyses

Soil samples were sieved through a sieve with a mesh size of 2 mm. Air-dried
samples were used for pH (CaCl2) analysis [28] and for total carbon (TC) and total nitrogen
(TN) content determination using the Vario Macro Cube (Elementar Analysensysteme
GmbH, Langenselbold, Germany). Freeze-dried samples were assayed for enzymatic
activities—β-glucosidase (GLU), phosphatase (Phos), and N-acetyl-β-D-glucosaminidase
(NAG)—using methods based on spectrophotometric measurement of coloration evolved
from p-nitrophenyl-derivates of respective enzyme substrates [29]. The samples stored at
4 ◦C were used for determination of dehydrogenase activity (DHA)—using a standard
method based on triphenyltetrazolium chloride (TTC) [30]—and soil basal respiration
(BR) and substrate induced respirations (IR)—with inductors D-glucose (Glc-IR), L-alanine
(Ala-IR), L-arginine (Arg-IR) [31]—using a MicroResp® device (The James Hutton Institute,
Aberdeen, UK).

2.4. Statistical Analyses

To evaluate the effects of the applied amendments, the obtained data were statistically
analyzed using one-way analysis of variance (ANOVA). The Tukey HSD post hoc test was
used to compare treatment means (at a significance level of p = 0.05). Principal component
analysis (PCA) was performed to evaluate the mutual relationships between measured
variables and applied amendments.

3. Results
3.1. Effects of Amendments on Soil Properties and Plant Biomass

There were no significant changes in soil pH observed after the application of amend-
ments, namely, manure (M), manure + biochar 10% (M + B10), and manure + biochar
20% (M + B20). In all cases, the effect of applied amendments remained statistically non-
significant among each other and with control (Figure 1a). The application of M + B20
resulted in the highest total carbon (TC), which was statistically significant compared to
control (Figure 1b). This trend was followed by M + B10 and M alone treatments, but they
remained statistically non-significant relative to control (Figure 1b). Conversely, there was
no clear trend observed for TN contents under the applied amendments (Figure 1c). In the
same way, there were no significant differences observed for C:N under the applied amend-
ments (Figure 1d). The application of M + B10, however, yielded a slightly higher C:N ratio
compared to other amendments and in the control (Figure 1d). The aboveground plant dry
biomass (AGB-dry) was differently affected with the applied amendments. Seemingly, the
application of M + B10, M + B20, and M alone resulted in similar increases in AGB-dry as
compared to control soil (Figure 1e).



Agronomy 2022, 12, 2307 5 of 11
Agronomy 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 1. The effects of different amendments on: (a) soil pH; (b) total carbon; (c) total nitrogen; (d) 

carbon: nitrogen ratio; and (e) aboveground dry biomass of lettuce in a pot experiment. Different 

lowercase letters represent statistical difference at p = 0.05, (n = 3). 

3.2. Effects of Amendments on Soil Microbial Properties 

All three amendments yielded variable results regarding different soil enzyme activ-

ities. Dehydrogenase activity (DHA) was significantly higher in the soil amended with M 

+ B20 compared to other amendments and the control, while the effects of other amend-

ments remained statistically non-significant to the control (Figure 2a). The β-glucosidase 

(GLU) activity was significantly higher in the soil amended with M alone than in the soil 

amended with M + B10 and M + B20, respectively (Figure 2b). Likewise, the soil amended 

with M showed a significantly higher value for phosphatase (Phos) activity compared to 

control and other amendments. In the case of urease, the application of M and M + B20 

treatments yielded similar values, both of which were significant compared to control and 

M + B10 as well (Figure 2c). The M treatment also enhanced the activity of N-acetyl-β-D-

glucosaminidase (NAG), followed by M + B20 and M + B10 compared to control (Figure 

2d). 

 

Figure 1. The effects of different amendments on: (a) soil pH; (b) total carbon; (c) total nitrogen;
(d) carbon: nitrogen ratio; and (e) aboveground dry biomass of lettuce in a pot experiment. Different
lowercase letters represent statistical difference at p = 0.05, (n = 3).

3.2. Effects of Amendments on Soil Microbial Properties

All three amendments yielded variable results regarding different soil enzyme activities.
Dehydrogenase activity (DHA) was significantly higher in the soil amended with M + B20
compared to other amendments and the control, while the effects of other amendments
remained statistically non-significant to the control (Figure 2a). The β-glucosidase (GLU)
activity was significantly higher in the soil amended with M alone than in the soil amended
with M + B10 and M + B20, respectively (Figure 2b). Likewise, the soil amended with M
showed a significantly higher value for phosphatase (Phos) activity compared to control
and other amendments. In the case of urease, the application of M and M + B20 treatments
yielded similar values, both of which were significant compared to control and M + B10 as
well (Figure 2c). The M treatment also enhanced the activity of N-acetyl-β-D-glucosaminidase
(NAG), followed by M + B20 and M + B10 compared to control (Figure 2d).
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Surprisingly, the application of M + B20 resulted in the highest basal respiration (BR),
which was significantly different than other treatments and control (Figure 3a). Consid-
erable differences were observed for various substrate-induced respirations subjected to
different amendments. Specifically, in line with the results of BR, the amendment of soil
with M + B20 also enhanced the glucose-induced soil respiration (Glu-IR) and alanine-
induced (Ala-IR) which were statistically significant compared with other amendments and
control treatment (Figure 3b,c). This was followed by M and M + B10, but the effect of the M
+ B10 amendment remained non-significant compared to control (Figure 3b,c). Conversely,
in the case of arginine-induced respiration (Arg-IR), the significantly highest values were
recorded in soil amended with M compared to control. However, the amendment of soil
with M + B10 and M + B20 yielded similar but statistically significant differences from
control (Figure 3d). The association of Arg-IR in M treatment as shown by PCA further
supports this result (Figure 4).
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C:N, ratio of carbon to nitrogen; DHA, dehydrogenase activity; Glu, β-glucosidase activity; Phos,
phosphatase activity; NAG, N-acetyl-β-D-glucosaminidase; BR, basal respiration; Glu-IR, D-glucose-
induced respiration; Ala-IR, L-alanin-induced respiration, Arg-IR, L-arginine-induced respiration.



Agronomy 2022, 12, 2307 7 of 11

3.3. Results from Principal Component Analysis

The score and loading plots of observed parameters and variants are shown in (Figure 4).
Both the extracted components PC1 (hereinafter referred to as Dim 1) and PC2 (hereinafter
referred to as Dim 2) accounted for 62.8% variation in the dataset. The applied variants
were markedly separated as shown by different colors (Figure 4), showing the positive
effects of amendments on the observed attributes. The positive relationship was found
among the parameters (NAG, AGB-dry, Ala-IR, TN, Glu-IR, BR, DHA, TC, and C:N)
separated by principal component one. While, the principal component two separated
mutually positively related parameters (Arg-IR, GLU, Phos, and pH). This clearly shows
the displacement of observed parameters under the applied amendments.

4. Discussion
4.1. Effects of Amendments on Soil Physico-Chemical Properties and Plant Biomass

Biochar and manures have been recognized to enhance soil fertility, physical and
chemical soil health, and crop production. The soil reaction (pH) is an important soil
chemical property and is driven by changes in soil mineral composition, soil nutrient status,
and other microbiological characteristics [32]. In the present study, however, the applied
amendments, manure alone (M), and combined with various biochar levels as M + B10 and
M + B20, did not show any significant changes in soil pH compared to control (Figure 1a).
These results are in agreement with the previous results reported by Zahra et al. [33], who
reported no significant effects of biochar and compost application on soil pH due to the
higher pH of the soil than the pH of applied amendments. The role of biochar on changing
soil pH has been inconclusive. Different authors have reported enhanced or reduced pH
of the soil due to the application of manure and biochar. For instance, Rehman et al. [34]
reported a decreased pH of the soil under the application of manure and composted biochar,
while the pH was increased due to the addition of rice-straw- and cotton-stick-derived
biochars. This shows that the pH of the soil further depends on the nature and feedstock
of the applied biochar and/or manure. Organic amendments have been perceived as
enhancing the soil carbon and total nitrogen concentration in the soils [14,35]. We observed
enhanced TC content under the combined application of manure and biochar at both levels
(M + B10 and M + B20), with the highest increase being observed at the higher biochar
level (Figure 1b). The enhanced TC content in the present study might be the result of
the direct addition of soil organic carbon (SOC) through applied biochar and manure
amendments in the soil and due to the improved soil aggregation. Yang and Lu [36] found
that adding biochar to soil increased TC content. The authors argued increased TC content
is due to the improved soil aggregate stability and soil aggregation with the addition of
biochar. Furthermore, the higher TC content under a higher dose of biochar combined with
manure M + B20 can be attributed to the resistance of C in biochar, which resists microbial
decomposition after application in soil and thus appears in the TC pool of observed soil [37].
Our results of enhanced TC are in line with the findings of [38], who reported increased
C content under the applied biochar and compost amendments. This is consistent with
previous research that has established the role of organic amendments (biochar, compost,
and manure) in improving C buildup [39,40]. These results were further verified by the
strong association of TC with the M + B20 variant as depicted by PCA (Figure 4). In contrast,
in the present study, the positive role of amendments in improving TN content was not
verified (Figure 1c), and therefore no significant differences were observed for C:N ratio
(Figure 1d). We ascribe these changes to the relatively shorter duration of the experiment
and to the highly recalcitrant nature of biochar, which in combined treatments M + B10 and
M + B20 might have resulted in stabilized N forms and ultimately less mineralizable N in
the soil [41].

The present study revealed that the applied amendments positively affected the plant
biomass accumulation (Figure 1e). The highest average aboveground dry biomass (AGB-
dry) was observed in the pots amended with M + B10, followed by M + B20 and M alone
(Figure 1e). These observed effects suggest the positive role of combined application
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of chicken manure and biochar in improving plant production. Increased plant biomass
improves soil nutrient availability and uptake in plants via the combined use of biochar and
manure, as previously reported by Cao et al. [42] and Dubey et al. [43]. The enhanced plant
growth might also be the outcome resulting from improved soil physical conditions such
as water-holding capacity, soil structure, and soil aeration due to applied amendments [44].
This might be the reason for efficient plant biomass production under combined manure
plus biochar amendments in the present study.

4.2. Effects of Amendments on Microbial Properties

Organic amendments such as biochar and manures can maintain high microbial
biomass and result in higher microbial activities. We found considerable variations in the
measured soil enzyme activities subjected to different amendments. The dehydrogenase
activity (DHA) was highest in the treatment M + B20, which is suggestive of higher C
mineralization potential under this particular treatment. The results of enhanced DHA
activity in the present study (Figure 2a) are advocated by previous works of [14], who
reported enhanced DHA activity under the addition of biochar and humic substances
in the soil. We further ascribe this improved DHA activity to a manure plus biochar
mediated enhancement in SOM-degrading microbial communities, which under M + B20
amendment might have proliferated and raised the levels of DHA. In the present study, all
other enzymes showed the highest activities under the M amendment compared to control
(Figure 2b–d). This shows that manure alone (M) provided easily accessible substrates for
microbes, which resultantly enhanced enzyme activities in a pattern similarly observed
by [13]. Our results of enhanced C, N, and P acquiring enzymes under manure and, in some
cases, manure combined with biochar are in agreement with [45], who reported enhanced
soil enzymatic activities under manure alone and/or combined with a low or high dose of
biochar. Moreover, Irmak et al. [46] also confirm our results of enhanced microbial enzymes
under the application of manure and biochar. The differential responses of all enzymes
under manure combined with biochar treatments might be associated with the variable
substrate–enzyme interactions in the presence of biochar and to the chemistry of OC derived
from biochar and manure [47], which further depend upon biochar surface characteristics
and the rate of biochar applied. This is in line with Cardenas-Aguiar et al. [48], who stated
that the variations in the measured soil enzymes could be related to the changes in the
decomposition rate of the applied substrate (manure and biochar) in the present study.

Soil basal and substrate-induced respirations (SIR) are measures of microbial activity
and their potential to mineralize nutrients in soil. The exogenous supply of organic
amendments has been recognized to stimulate microbial respiration. In the present study,
manure and biochar combinations at different rates showed a stimulating effect on soil basal
(BR) and different substrate-induced respirations (Figure 3a–d). In all the cases (except for
Arg-IR), we observed the highest respiration values in the soils amended with manure and
high rates of biochar (M + B20). These results are in accordance with the previous results
by [49], who reported enhanced microbial respiration due to the interactive application
of manure and biochar. In line with our findings, another study by Trupiano et al. [40]
reported enhanced microbial respiration under the application of manure combined with
higher biochar doses. We ascribe these results to the enhanced microbial activity and
proliferation due to freshly available C sources in the simultaneous addition of manure [40]
and the shielding effect of biochar as the biochar is utilized by microbes as a niche [50].
Additionally, the enhanced sorption of organic substances on the biochar surface might
have increased the microbial population [51] and hence eventually resulted in enhanced
respiration (Figure 3) in the present study.

5. Conclusions

Soil degradation and a decline in its fertility have been recognized as a serious issue
in the face of global climate change. The role of biochar and manures in improving soil
productivity in this regard has gained momentum in recent years. This study concluded
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that all applied amendments, either sole manure, or combined with low and high doses
of biochar, differed in their potential to improve soil physico-chemical and biological
health indicators but not significantly in the biomass of crop sown in a pot experiment.
As predicted, M + B20 enhanced TC content, confirming the C sequestration potential of
this particular treatment. The same treatment enhanced the basal- and substrate-induced
respirations (except for Arg-IR), which was coupled with enhanced DHA activity. The
application of M alone enhanced all other soil enzymes, which is suggestive of the higher
nutrient-supplying capacity of M treatment. Moreover, the applied amendments enhanced
the AGB-dry of the crop at the same potential. Taken together, these findings suggest
that the choice of a suitable amendment is imperative for sustaining soil health and crop
benefits. However, the evaluation of direct mechanisms related to manure and biochar
surface chemistry and their effects on microbial activities, community composition, and soil
nutrient dynamics needs to be further studied under long-term studies in agroecosystems.
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