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Abstract: Plants are a highly advanced kingdom of living organisms on the earth. They survive under
all climatic and weather variabilities, including low and high temperature, rainfall, radiation, less
nutrients, and high salinity. Even though they are adapted to various environmental factors, which are
variable, the performance of a crop will be compensated under sub/supra optimal conditions. Hence,
current and future climate change factors pose a challenge to sustainable agriculture. Photosynthesis
is the primary biochemical trait of crops that are affected by abiotic stress and elevated CO2 (eCO2).
Under eCO2, the C3 legumes could perform better photosynthesis over C4 grasses. The associated
elevated temperature promotes the survival of the C4 crop (maize) over C3 plants. In the American
Ginseng, the elevated temperature promotes the accumulation of phytocompounds. Under less water
availability, poor transpirational cooling, higher canopy temperatures, and oxidative stress will
attenuate the stability of the membrane. Altering the membrane composition to safeguard fluidity
is a major tolerance mechanism. For protection and survival under individual or multiple stresses,
plants try to undergo high photorespiration and dark respiration, for instance, in wheat and peas. The
redox status of plants should be maintained for ROS homeostasis and, thereby, plant survival. The
production of antioxidants and secondary metabolites may keep a check on the content of oxidating
molecules. Several adaptations, such as deeper rooting, epicuticular wax formation such as peas,
and utilization of non-structural carbohydrates, i.e., wheat, help in survival. In addition to yield,
quality is a major attribute abridged or augmented by climate change. The nutrient content of cereals,
pulses, and vegetables is reduced by eCO2; in aniseed and Valeriana sp., the essential oil content
is increased. Thus, climate change has perplexing effects in a species-dependent manner, posing
hurdles in sustainable crop production. The review covers various scientific issues interlinked with
challenges of food/nutritional security and the resilience of plants to climate variability. This article
also glimpses through the research gaps present in the studies about the physiological effects of
climate change on various crops.

Keywords: climate change; eCO2; photosynthesis; yield; nutrient; quality; sustainable agriculture

1. Introduction

Changing the climate scenario is imposing more challenges on crop production and
medicinal plant productivity due to its adverse impacts on soil and plant processes. A
detailed understanding of the mechanisms affecting these processes is highly pertinent for
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researchers, policymakers, as well as farmers. Consequently, in recent decades, widespread
research has been devoted to crop productivity under climate change involving field and
modeling experiments. We are focusing on plant physiological processes affected by climate
change scenarios. A meta-analysis of the literature for 55 rice and 60 wheat varieties showed
that the yield losses due to water deficit stress would be 25.4 and 27.5%, respectively [1].
Even though elevated CO2 (eCO2) can increase crop yield, such as soybeans, the effect
will be attenuated by intensified drought [2]. A combined stress experiment of eCO2 with
canopy warming of 2 ◦C in a rice-wheat rotation system exhibited multiple physiological
effects. An elevated temperature with CO2 (500 ppm) resulted in a significant reduction in
C:P and N:P ratios and an increase in the C:N ratio, indicating the altered nutrient status
of tissues [3]. Thus, climate change can indirectly influence the nutritional security of the
feeding population.

Climate change imposes abiotic stress in combination rather than in solitude. Experi-
ments in chickpeas under drought along with a high temperature showed that combined
stress impaired the membranes and stomatal conductance. Chlorophyll content, PSII ac-
tivity, and Rubisco activity were also severely compromised [4]. Several genotypes with
high and low temperatures and drought tolerance were identified in this crop. The gene
pyramiding of the corresponding Quantitative trait locus (QTLs) can impart multiple
stress tolerance in chickpeas [5]. Studies in sorghum showed that drought, in concert with
salinity stress, leads to reduced water retention, increased reactive oxygen species (ROS)
accumulation, afflicted pigment levels, and inhibited plant growth. For survival, plants
accumulated the compatible osmolyte proline [6]. Water logging can also act in concert with
salinity. A comparative study between two medicinal species, namely Plantago maritima
L. (salt-tolerant) and Plantago media L. (salt-sensitive), showed several adverse effects on
plant health in the sensitive type. In the tolerant variety, ascorbate peroxidase activity was
induced in addition to catalase-peroxidase [7].

Climate change has many antagonistic effects on plants by creating several stresses. Re-
search on the presence of various secondary metabolites recognizes medicinal and aromatic
plants. An elevated temperature influences the production of secondary metabolites, such
as volatile plant metabolites (VPM) [8]. Stress can alter different metabolic pathways, result-
ing in the production of different metabolites’ by-products. For instance, the ultraviolet-B
induces changes in the phenylpropanoid pathway and essential oil production in Curcuma
sp., namely, C. longa L. and C. cassia Roxb. [9]. In the medicinal crop Cornus officinalis Sieb.
et Zucc., bioactive compound accumulation strictly depends on weather conditions [10].
Similar is the case with the production of food grains [11] and grain legumes [12]. Thus,
climatic variability impedes crop productivity and quality (Table 1).

Despite the various stress effects, some crops are better adapted to changing climatic
scenarios than others. Their various indispensable metabolic activities are least affected
and make them better-suitable over others. These crops and some genotypes of susceptible
crops are the light in the darkness of climate change for feeding the world’s booming
population. For sustaining agriculture, food, and nutritional security, the selection of
crops which can be better adapted to changing climatic scenarios is essential. A thorough
understanding of the mechanisms underlying tolerance and susceptibility will lead us
in the direction of breeding climate-resilient crops and achieving the goal of sustainable
agriculture. This article clearly mentioned the pros and cons of different climatic and
weather factors on the morpho-physiological attributes of agricultural, horticultural, and
medicinal plants. The novelty of this paper is to examine and indicate the research gaps in
the field of climate change research. Very few attempts were made for the study of climate
change effect on high-altitude medicinal plant. So, in this review article, we addressed all
the benefits and drawbacks of climate change in the survival and productivity of diverse
crop plants of agriculture, horticulture and medicinally important.
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Table 1. The effect of various environmental conditions on physiological and biochemical attributes
at cellular and plant levels determines tolerance or sensitivity.

Trait Species Change (+/−) Effect of Change on the
Plant (+/−) Reference

Elevated CO2
Photosynthesis Legumes + + [13]
Photosynthetic acclimation Tomato + − [14]
Yield Wheat, rice + + [15]
Levels of PSI and PSII

P. kurroa
+ +

[16]Stomatal conductance + +

Lipid peroxidation A. balfourii,
A. hetrophyllum + − [17]

Antioxidant activity Soybean + − [18]
Productivity Maize; Sorghum − − [19]
Growth rate
Total biomass

S. barbata,
S. lateriflora + + [20]

Essential oil content T. vulgaris,
T. hyemalis + [21]

Iron assimilatory genes Soybean − − [18]

Nutrient content in edible produce Wheat, rice, legumes,
vegetables − [22]

Medicinally important metabolites, vitamins Herbal plant species + [23]

Elevated temperature
Photosynthesis Rice − − [24]
Respiration rate Rice + − [25]
Non-structural carbohydrate in stem Rice − − [26]
Activity of NADH dehydrogenase, cytochrome
c oxidase, ATPase Rice + + [27]

Photosynthesis P. quinquefolius − − [28]
Transpiration rate

P. hexandrum
+ −

[29]Water use efficiency − +
Canopy temperature depression Soybean − − [30]
Epicuticular wax Pea + + [31]
Dark respiration Wheat − + [32]
Respiration Cowpea + +

[33]Photorespiration + +
Electron transport rate

B. napus

− −

[34]
Carboxylation efficiency − −
Oil quality − −
Seed yield − −

Growth and multiplication P. polyphylla,
S. chirayita + [35]

Linalool concentration H. spicatum + [36]

Low temperature
Mitochondrial respiration Pea + − [37]
Malondialdehyde content

Rye grass (L. chinensis)
+ −

[38]Osmolytes + +
Antioxidants + +

Drought
Chlorophyll content P. polyphylla − −

[39]Light compensation point + −
Chlorophyll fluorescence V. trifolia + −

[40]PSII activity − −
Membrane stability index Rapeseed − −

[41]Malondialdehyde content + −
ROS accumulation Maize hybrids + − [42]
Oxidized/reduced glutathione ratio Chinese cabbage − −

[43]NADP/NADPH ratio − −
CAT and POD activities D. moniliforme + + [44]
Leaf and root protein content Picrorhiza sp. − − [45]
ROS homeostasis Mustard − − [46]

Salinity
Biomass and oil yield Canola − − [47]
Membrane stability index

Pistachio
− −

[48]Malondialdehyde content + −
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Table 1. Cont.

Trait Species Change (+/−) Effect of Change on the
Plant (+/−) Reference

Elevated CO2 + temperature
Yield Wheat, rice − − [15]

Drought + temperature

Photosynthetic rate H. spicatum,
V. jatamansi − −

[36]
Valerenic acid content V. jatamansi −

2. Impact of Climate Change on Various Physiological and Biochemical Attributes
2.1. Photosynthesis

The changing climate is associated with an increase in the concentration of greenhouse
gases (GHGs), having more significant implications on the major physiological processes
in plants. Among these, the effect on the plants’ photosynthetic rate is of profound impor-
tance as it directly contributes to the economic yield of the plant. Exposing C3 plants to
elevated CO2 increases photosynthesis primarily due to increased activity of the enzyme
Rubisco [49]. Despite the initial increase in photosynthesis at eCO2, various studies us-
ing growth chambers as well as FACE (Free Air CO2 Enrichment) facilities showed that
long-term exposure to eCO2 incurred in attenuation of photosynthesis by a process called
photosynthetic acclimation to elevated CO2 (PAC). Increasing N supply was found to
counteract the saturation effects of elevated CO2 on photosynthesis and the source-sink
imbalance in tomatoes [14]. An experiment was conducted on four perennial grassland
species from four functional groups (C3 grasses, C4 grasses, forbs, and legumes) exposed
to eCO2 (ambient + 180 ppm) over two decades in a Minnesota FACE facility (BioCON).
It showed that, among the four groups, the photosynthetic response of legumes was the
best and that of C4 grasses least under eCO2 [13]. However, C4 plants were found to re-
spond to long-term exposure to eCO2. The yields of wheat and rice were increased by CO2
enhancement, but higher temperatures reduced their grain yield [15]. Under unstressed
conditions, eCO2 caused increased photosynthesis, boosting growth, aboveground biomass,
and yield [50,51].

The carbon metabolism and photochemical reaction are the most affected plant pro-
cesses under high-temperature stress. The high-temperature-induced inactivation of the
PSII electron acceptor and donor leads to enhanced ROS production accompanied by a
reduction in Rubisco activity [52]. A rise in temperature as high as 45 ◦C would result
in complete inhibition of photosynthesis in rice and ultimately result in plant death if
such a condition is sustained for more than 24 h [24]. Generally, plants experience much
higher temperatures only for 1–2 h per day, and the leaf temperatures will be 5–10 ◦C lower
than the ambient air temperature [53,54]. Studies in rice genotypes showed no noticeable
change in the photosynthetic rate when exposed to 28, 34, and 38 ◦C but an increase in the
respiration rate with increasing temperatures. Contrary to this, a high night temperature
resulted in a significant yield loss in rice and wheat, which was attributed to higher dark
respiration resulting in increased consumption of photoassimilates, thereby reducing the
non-structural carbohydrates in the stem tissue [25,26]. Several findings show that C4
plants exhibit more tolerance than C3 plants to high-temperature regimes. The optimum
temperature for photosynthesis in maize was 40 ◦C which suggested the possibility of
overestimation of the negative impacts of global warming on the maize yield [55]. In hot
climates, the main yield declining factor in rice might not be photosynthesis exclusively.
For instance, rice under high temperatures exhibited higher respiratory enzyme activities
(NADH dehydrogenase, cytochrome c oxidase, ATPase), increasing energy production
efficiency at the onset of stress. The energy produced by enhanced respiration was supplied
to maintenance rather than growth, thus decreasing the energy utilization efficiency and
reducing yields [27].
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Plant species and environmental variables influence the magnitude of photosynthetic
CO2 uptake. Increased atmospheric CO2 at high temperatures promotes plant development
by increasing photosynthetic rates. One of the most significant effects of eCO2 is an increase
in the number of proteins linked to PSI and PSII. Conversely, increased atmospheric CO2
causes a decrease in stomatal conductance [16]. The photosynthetic rate of H. spicatum
Sm. and V. jatamansi Jones decreases modestly after 5 days (2 and 9%, respectively) due to
individual and combined heat and drought stress. It declined severely under combined
stress effects (89–95%) under drought (51–84%) and heat stress (64–77%) after 30 days of
exposure [36]. Photosynthesis is reduced in Panax quinquefolius L. under high heat condi-
tions [28]. In Sinopodophyllum hexandrum (Royle) Ying, 40 to 60% shade was found to be
ideal for photosynthesis in abiotic stress trials [56]. A soil moisture deficit lowers chloro-
phyll content and the photosynthetic rate. The light saturation points decrease gradually
while the light compensation point and dark respiration rate increase [39]. Differential
expression of proteins involved in photosynthesis, transcription, metabolism, protein syn-
thesis, defense response, signaling, transport, and cytoskeleton development was recorded
in P. kurrooa Royle. It was accompanied by a reduced photosynthetic rate [45].

The effect on S. hexandrum Roylewas exposed to control and increased (650 ppm) CO2
concentrations for four months in the open-top chamber (OTC) [57]. They observed that
the photosynthetic rate increased while transpiration and stomatal conductance decreased
dramatically. Using an OTC facility, [58] investigated the impact of eCO2 (800 ppm) on
the growth dynamics, structure, and function of Ocimum sanctum L. (Holy tulsi). The
increased CO2 concentration stimulates photosynthesis, intercellular CO2 concentration,
carboxylation efficiency, and mesophyll efficiency. The water use efficiency (in terms of
transpiration and stomatal conductance) decreased with respect to control. The physiology
of Gynostemma pentaphyllum Makino at two CO2 levels, namely at the control (360 ppm)
and elevated (720 ppm) levels [59]. A studied FACE technique on Isatis indigotica Fort.,
an important Chinese medicinal plant, with an effect of enhanced CO2 levels of 550 ppm,
significantly increased photosynthetic rates and water usage efficiency (WUE), compared
to controls, while the transpiration rate and stomatal conductivity decreased [60].

The optimum temperature for photosynthesis was estimated in alpine and temper-
ate populations of S. hexandrum Royle grown in environmentally controlled rooms with
variable photosynthetically active radiation (PAR) levels and temperatures. Nonetheless,
an increased transpiration rate and reduced water usage efficiency (WUE)were ascribed
to the decrease in photosynthesis at higher temperatures, demonstrating that the species
is susceptible to high temperatures [29]. Thus, the eCO2 condition that is expected in the
near future can provide yield increments in all crops. The detrimental effects come up
when the greenhouse affects the temperature that attenuates photosynthesis in C3 crops.
Stresses such as drought also cause yield deterioration as assimilation and partitioning are
affected. The combined stresses of high temperature and drought are most detrimental to
individual ones.

2.2. Canopy Temperature and Transpiration

The elevated CO2 and temperature have opposing effects on transpiration rates. Ele-
vated CO2 can reduce stomatal conductance, which in turn reduces the transpiration rates.
The result is amplified by the elevated temperature expected to happen due to elevated
CO2 [61]. The cowpea is a drought-sensitive pulse crop. Under water-limited conditions,
it could not restrict transpiration loss even beyond the soil moisture threshold. Specific
tolerant genotypes were able to minimize stomatal conductance and transpiration, which
help in their survival [62]. Studies from almond trees to elucidate the relationship between
the Crop Water Stress Index (CWSI), transpiration, and canopy temperature revealed that
water deficit stress increases proportionately with the transpiration rate and canopy temper-
ature [63]. Canopy temperature depression (CTD) is the difference in temperature between
the ambient microclimate and plant canopy, where a lower (more negative; cooler) value is
healthier than the higher one. The soybean crop yield was reduced by 273 to 304 kg/ha
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when exposed to a 1 ◦C increase in CTD. The CTD and transpiration rate can estimate crop
yield under elevated temperatures [30]. In pea plants under drought, the epicuticular wax
was increased in tolerant varieties that reduced the associated heat stress due to reduced
transpiration cooling [31].

Under high-temperature conditions, plant metabolism is prone to drastic changes.
With the rising temperature, maintenance respiration costs rise [64,65], and plants attain
more excellent whole-plant respiration rates on a daily basis. Plants that survive in low-
light situations may become more reliant on non-structural carbohydrate reserves (NSC)
under high temperatures [66,67]. The imposition of drought in Vitex trifolia L. increased
chlorophyll fluorescence and impaired PSII activity [40]. Drought stress also caused a
differential expression of proteins involved in metabolism, photosynthesis, transcription,
protein synthesis, defense response, transport, signaling, and cytoskeleton development in
P. kurrooa [45]. Thus, we can infer from diverse species that drought and high temperatures
can cause reduced transpiration in the long run, which can cause increased canopy temper-
atures and CWSI. As shown in soybeans, every degree in temperature has a proportionate
compromise in stable crop productivity. Medicinal plants are susceptible to climate change.
They contain many volatile aromatic compounds subjected to the alteration of secondary
metabolite components, and in the concentration of secondary metabolites—the drought
and upsurge of heat negatively influence medicinal plants. Only eCO2 has a beneficial role
in medicinal plant growth and other traits.

2.3. Stability of Membranes

Under heat stress, the membrane fluidity is affected, and the effects are more severe
with the damage to thylakoid membranes. The major factor that reduces maize yield under
high temperatures is damage to chloroplast membranes [68]. Water stress resulted in a
decreased Membrane stability index (MSI) in the spring rapeseed which was clearly shown
by a higher malondialdehyde content [41]. It was demonstrated in canola that drought
and salinity affect growth, biomass, and oil yield [47]. In pistachios, there is a significant
increase in malondialdehyde content and poor membrane stability that attenuated its
growth under salinity [48]. In fact, sodicity is a significant threat to crop production over
salinity, as shown in quinoa [69].

The study shows that a low temperature-induced transitions in the membrane lipid
phase, which lead to a loss of membrane stability and physiological dysfunction. The
revelation is that chilling stress elicits a complex membrane retailoring response that leads
to enhanced fluidity at lower temperatures. Membranes change their physical features,
having a function in cold stress tolerance. Poor membrane integrity may potentially play a
role in the development of irreparable harm during low-temperature stress (Figure 1). It
would have a comparable effect with the senescence processes by free radicals on tissues
owing to increased membrane rigidity [70]. Malondialdehyde is a stress sensitivity marker
to recognize lipid peroxidation. It is an indicator of the extent of membrane damage [71].
The effect of eCO2 on two high-altitude medicinal plant species (Aconitum lethale Griff.
and A. hetrophyllum) exhibited increased lipid peroxidation [17]. Salinity, water deficits,
and high as well as low temperatures are causing adverse effects at sub-cellular levels by
affecting membrane fluidity. Reduced membrane fluidity hampers all the cellular vital
functions, especially in chloroplasts and mitochondria. Accumulation of ROS and lipid
peroxidation negates the tolerance mechanisms and crop production.
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Figure 1. Depicting the effects of climate change (in the form of the different factors, such as
heat, cold, ultraviolet rays, flood, drought, and salinity stress) on the medicinal plants resulted in
morpho-anatomical and physio–biochemical changes, which further lead to the ROS production.
ROS production is sensed by ROS sensors which will activate the ROS signaling network. ROS
generation is harmful to the plants, and ROS finally leads to the death of the plants (created with
BioRender.com).

2.4. Photorespiration and Respiration

There is no conclusive evidence on the relation between eCO2 and the respiration
rate in plants, and it remains unaffected, declines, or increases depending on the species.
Experiments correlating with eCO2 and photorespiration showed a decrease in the latter.
Nevertheless, this relation is not linear as the regeneration step of the Calvin cycle becomes
saturated [72]. High temperatures affect photosynthesis by affecting the structure of
thylakoids, altering the excitation energy distribution, and influencing the activity of the
Calvin cycle and other metabolic processes such as photoinhibition, photorespiration,
and product synthesis [73]. Numerous studies proved that short-term exposure to eCO2
increases photosynthesis by minimizing energy wastage in photorespiration [50].

Under elevated temperatures, both respiration and photorespiration are increased.
In cowpeas, the increase in these pathways helps the plant to survive extreme weather
conditions [33]. Similar observations on the hike in mitochondrial respiration and photores-
piration were observed in wheat under high temperatures (40–60 ◦C) [74]. Field-grown
wheat exposed to 25 ◦C was acclimated to reduce dark respiration, leading to lesser yield
loss [32]. In pea seedlings, drought stress led to a significant reduction in mitochon-
drial respiration, and its recovery was hastened by chilling stress of 15 ◦C [75]. Thus,
global warming can bring down the net carbon gain by rising plant respiration rates [37].
Even though respiration is not significantly affected by eCO2, photorespiration is negated.
Conversely, a high temperature causes a hike in respiration and photorespiration. Photores-
piration provides ample protection against environmental stresses, though its benefits on
sustainable crop production must be explored.

2.5. Redox Status

The redox status of a plant cell and tissue is determined by the accumulation of ROS
and its counteraction by antioxidant enzymes and scavengers.ROS is categorized into
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two, namely non-radicals and free radicals. Non-radicals are stable or relatively stable
compounds. They generally have stable valency as there are paired electrons in their orbital.
They can react with molecules and leading to the formation of free radicals. Free radicals
are highly reactive unstable molecules owing to an unpaired electron in their outermost
orbital [76] (Table 2; Figure 1).

Table 2. Types of most common reactive oxygen species (ROS) generated in plants (adopted from [76]).

Molecule Name Formula Half-Life

Non-radicals
Hydrogen peroxide H2O2 Stable
Singlet oxygen 1O2 10−6 s
Ozone O3 Stable
Organic peroxide ROOH Stable
Hypochlorous acid HOCl Stable (min)
Hypobromous acid HOBr Stable (min)

Free radicals
Superoxide O2

•− 10−6 s
Hydroxyl radical OH• 10−10 s
Alkoxyl radical RO• 10−6 s
Peroxyl Radical ROO• 17 s
Nitric oxide NO• 2 ms
Nitrogen dioxide NO2

•

Studies on three maize hybrids subjected to different water statuses (100, 80, 60, and
40% of field capacity) showed that drought conditions caused oxidative stress, which
elevated ROS production, reducing the growth and yield of all maize hybrids studied [42].
Antioxidant activity in soybean roots was negatively affected by eCO2 (800 ppm), as shown
by the downregulation of 10 different putative peroxidase genes, one FERI gene, and glu-
tathione pathway genes (GSTU4, 7, 8, and 19) [18]. Low-temperature stress exposure to rye
grass (Leymus chinensis Tzvelev) resulted in elevated malondialdehyde content and cellular
damage. To counteract the effects, osmolytes and various antioxidants were accumulated.
The osmolytes can save the cells from reducing the water potential, while antioxidants will
maintain redox homeostasis [38]. The water deficit stress showed a significant alteration
in ROS homeostasis in mustard that curtailed its yield [46]. Similarly, when exposed to
drought stress, Chinese cabbage resulted in a decrease in oxidized/reduced glutathione
and NADP/NADPH ratios [43].

Specific findings [17] reported the effects of eCO2 on two high-altitude medicinal
plant species (A.lethale and A. hetrophyllum),increasing antioxidant activity. Under eCO2,
increased carbon availability may enhance the concentration of antioxidant molecules,
which can possibly ameliorate the defense mechanism against oxidative damage [77,78].
The activity of the Superoxide dismutase (SOD) enzyme was enhanced under eCO2 in two
Aconitum species studied. Conversely, peroxidase (POD) activity under eCO2 decreased
in two Aconitum sp. In A. lethale, there was a decline in POD activity (81%) under eCO2,
whereas, in A. heterophyllum, the decline recorded (35%) was much lower [17]. Antioxidant
concentration in plants is a conventional criterion for evaluating a plant’s therapeutic
potential. Stress stimulates the generation of ROS, and antioxidant enzyme activity rises
to counteract these hazardous molecules. The inactivation or denaturation of enzymes
may cause inhibition of enzyme activities under high heat conditions. Catalase (CAT) and
POD activities of Dendrobium moniliforme Sw., a widely grown medicinal crop, were signifi-
cantly elevated during the early stages of drought stress to protect the plants against ROS
damage [44,76] (Figure 2). These studies confirm that various types of ROS are accumu-
lated from various cellular compartments under abiotic stresses. The action of antioxidant
enzymes and metabolites counterbalances its uncontrolled accumulation. Compared to
sensitive crops, tolerant crops can maintain ROS homeostasis and cellular physiology.
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Figure 2. Depicting the changes in plant cellular metabolism. Climate change influences the produc-
tion of ROS. Osmolytes (proline, glycine betaine) and antioxidant enzymes (SOD, POD, CAT, and
APX), and water-soluble sugars help to denature ROS (created with BioRender.com).

2.6. Yield

Studies in wheat by [79] on the effect of eCO2 (605 ppm) on grain yields recorded an
increase in grain number and yield by 26%. Experiments in the FACE facility on eighteen
C3/C4 crops for studying the effects of temperature, drought, ozone levels, and nitrogen
treatments spreading across 14 sites from five continents revealed metadata of physiological
and yield responses. A comparative increase in yield of 18% by an elevation of 200 ppm CO2
when no other stresses were given was recorded. In the C4 crops—maize and sorghum—,
lower productivity was observed only under eCO2 conditions, though, in combination
with drought stress, it availed relatively stable productivity [19]. Global warming can lower
the net carbon gain by amplifying plant respiration rates, which would lead to a decline in
the production/yield of crops and could even cause the invasion of weeds, pathogens, and
pests [37,80]. For instance, in the case of wheat, an increase in temperature by 1 ◦C could
decline the yields by 3 to 10% [81]. In paddies, the moisture deficit situation can directly
link to the drop in yield [82]. As a direct effect of climate change, the cereal yield is affected
by heat and water stresses, with a significant influence on fertilizer supply, pathogens, and
pests indirectly [83].

An evaluation of the effect of two temperature statuses (23 and 29 ◦C) and water levels
(90 and 30% water holding capacity) and their combinations in Brassica napus L., in different
stages of growth, showed that the electron transport rate and the carboxylation efficiency
significantly lowered under heat stress. Decreased seed yield by 85.3 and 31% under
heat and drought stress, respectively, was recorded. It dictates that heat stress negatively
impacts yield and oil quality more than drought stress [34]. In rice, drought stress at
the flowering stage strongly influenced the physiological traits and yield by reducing the
grain yield by more than 20% [84]. A similar trend was seen in seven maize hybrids,
where the detrimental impact of drought on yield was well illustrated [85]. A decrease
in grains in safflower occurred when different levels of water stress, by altering the time
of irrigation, were imposed. The decreased test weight proportionately went with the
increasing irrigation interval [86].

Experiments [20] on Scutellaria barbata D. Don. and S. lateriflora L. with CO2 concentra-
tions of 400, 1200, and 3000 ppm found that eCO2 of 1200 ppm resulted in an increase in
the growth rate and total biomass in both species when compared to 400 and 3000 ppm.
Growth and morphogenesis in the O. basilicum L. (great basil) plant, where CO2 enrichment
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improved growth dynamics (plant height, collar diameter, branches, leaves number, root
length, above and below-ground biomass) and structure (leaf shape, size, area, and leaf
area index) were investigated when compared to ambient [58]. Leaf and root proteome
studies in Picrorhiza sp. under drought stress showed an array of perturbations. It reduced
leaf protein content by 24 and 37% on a fresh and dry weight basis, respectively. Drought
stress increased root protein content by 12% on fresh weight and decreased by 9% on dry
weight basis [45].

For flowering and blooming, several therapeutic herbs require a chilling temperature.
The secondary metabolite output from therapeutic herbs is reduced with rising tempera-
tures. Under elevated temperatures, the production of Delphinium himalayai Munz. was
significantly hampered. P. polyphylla prefers warmer temperatures to flourish, and there
was a positive trend in output, indicating that climate change has a favourable impact.
The population of Swertia chirayita H. Karst. with an increased temperature has risen in
recent years [35]. Drought stress during the first year of plant growth significantly raised
the amount of valerenic acid in V. jatamansi Jones, whereas combined heat and drought
stress significantly decreased it. Heat stress reduced valerenic acid production in the aerial
component, implying organ-specific changes in the plant metabolism under stress. The
Linalool concentration in H. spicatum increased modestly in drought and several folds
with increased exposure to heat stress [36]. Thymus vulgaris L. and T. hyemalis R. Morales
showed an increase in essential oil content when exposed to 500 ppm CO2 [21,87]. These
findings show the negative impacts of abiotic stresses on yield, irrespective of species. The
compromised traits can be revamped by eCO2 in varying degrees.

2.7. Quality

The eCO2 resulted in decreased nutrient content in C3 plants such as wheat (N, Ca, S,
Mg, Mn, Al, Fe, Zn), rice (N, S, Fe, Zn, Mn, Cu), legumes (S, Fe, Zn, Cu), and vegetables
(N, Mg, Fe, Zn) resulting in the dietary deficiency of nutrients [22]. Under eCO2, the
tissue nutrient content was found to be diluted. In addition to the excess carbon becoming
fixed in the biomass disproportionately, the transpiration-driven mass flow of nutrients is
hampered, reducing the concentration of nutrients [88]. On the assessment of the effect of
eCO2 (800 ppm) in soybeans by [18], the expression of iron assimilatory genes and various
nutrient transporters was downregulated, which resulted in a lower mineral concentration
inthe leaf and seed. The eCO2 (655 ppm) in aniseed (Pimpinella anisum L.) resulted in
increased essential oil content in mature seeds as the production of precursors, namely
shikimic and cinnamic acids, was induced [23]. Similarly, eCO2 (627 ppm) was found
to improve the levels of soluble sugars, starch, organic acids, phenol content, flavonoids,
and vitamins A and E in several herbal plant species [89]. Rice was exposed to flooding
and drought stress, and there was no significant impact on the nutritional quality but was
compromised with kernel chalkiness in grains [84]. Chemical content variations in food
crops may pose more implications for human health than are typically recognized [90,91].
Increased environmental pressures may cause changes in chemical content in some species,
potentially altering the quality or even the safety of medical products.

The temperature considerably influences chemical composition, for instance, in Arnica
montana L. [92]. On the other hand, the relationship between altitude and the chemical
content in bush tea does not appear to be related to temperature [93]. Medicinal quality will
not necessarily improve if montane species whose chemical content is impacted by temper-
ature migrate to higher elevations and hence remain in the same temperature regime, but
populations that persist at their original altitudes may fall in quality. Further research must
fully comprehend the links between therapeutic potency and elevation in different species.
As proven for American ginseng, high temperatures, akin to drought stress, can result in
an elevated concentration of secondary metabolites due todrastically lower biomass [28].
When compared to ambient circumstances, eCO2 increased the essential oil content of
V. jatamansi(17.7%) while the elevated temperature lowered (4.3%). Under Himalayan
conditions, an increase in air temperature may not be advantageous to the essential oil
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content and quality of V. jatamansi in the near future [94] (Figure 1). Nutritional security
in terms of mineral and metabolite content is the next level of focus after attaining food
security for agronomic, horticultural, and medicinal crops. The eCO2 can give contrasting
results in various species, as the bioactive compounds and oils are increased, while mineral
nutrient levels are reduced. Developing crops with higher secondary metabolites with
lesser compromise in mineral element content can ensure promising sustainability from
agricultural fields.

3. Conclusions

In this article, we illustrated the effect of climate change on various types of cultivated
crops. The diverse climatic and environmental attributes have a bearing on the primary as
well as secondary metabolism. Understanding the mechanisms underlying tolerance and
susceptibility is key to achieving sustainable agriculture. The increased concentration of
CO2 in the atmosphere produces a fertilization effect on crops. The metabolites of medicinal
value and oil content increased under eCO2 conditions. Conversely, the nutritional quality
in terms of mineral nutrient content is compromised. The eCO2 can raisethe atmospheric
temperature in future climatic scenarios. The hike in temperature can reduce the growth
and yield of cereals, pulses, and oil seed crops. Yet, certain medicinal plants such as P.
polyphylla and Swertia chirayita H. Karst. flourish better under increasing temperatures. The
plant adapts several mechanisms to survive under high temperatures. Increased deposition
of epicuticular wax, transpirational cooling, increased photorespiration, etc. are some of the
strategies employed by plants to suit the changing climatic parameter. Low temperatures
can damage the membrane by affecting its fluidity and associated lipid peroxidation. The
plant tries to cover up the damage by accumulating compatible osmolytes and antioxidants
and maintenance of membrane fluidity.

Drought stress also poses a multitude of biochemical and physiological effects on
plants. It affects the chlorophyll content, photosynthesis, and yield in all crop species.
Water deficits also afflict the oil content and protein. Salinity also imparts similar outcomes
in various crops. A major issue in the changing climate is the simultaneous exposure to
multiple abiotic stresses. The photosynthesis and metabolite yield of different medicinal
plants have been afflicted under drought stress acting together with high temperatures.
The mechanisms of survival under such situations are yet to be deciphered. The various
QTLs associated with tolerance to abiotic stresses have been identified. Pyramiding those
QTLs can assist in the development of climate-ready crops for the future.

4. Further Research

The literature survey showed that there is significant paucity in the understanding of
multiple abiotic stresses [95]. This poses a serious research gap in developing climate-ready
crops. Under natural systems, drought is associated with higher canopy temperatures;
waterlogging precedes drought; salinity comes alongside drought; and low temperature
with water scarcity, among several others. Hence, such studies need ample research
attention. The crosstalk between various responses to climate-change-associated abiotic
stresses is not entirely understood. These areas can be explored for the research activities of
research graduates and scientists globally.

The use of microorganisms may boost plant growth in adverse environmental con-
ditions. Microbial applications can stimulate plant growth, antioxidant production, and
nutrient uptake, leading to organic farming in the future world [96]. From the previous
works performed by Patni et al. research team [97–100], climate change has many influences
on the secondary metabolites production, upregulation, modifications, and alterations. On
the other hand, all the secondary metabolites have some role in medical research, pharma-
ceutical, cosmetics, and organic products. So, advanced biotechnological approaches and
metabolite studies using different climatic factors can boost those industries. Studies are
less abundant on climate change effects on medicinal plants. The high-altitude plants are
less known to researchers. The collection of high-altitude plants is also challenging. Mostly,
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high-altitude medicinal plants are endangered plants. Fewer attempts were performed on
their metabolic profiling and other physiological parameters. Ultimately, such efforts pave
the way for sustainable agriculture upon incorporating the traits in popular cultivars in a
location-specific manner.
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