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Abstract: Drought is a major constraint of global crop production. Given that drought-induced crop
losses can threaten world food security, it has been and continues to be the focus of a large body of
interdisciplinary research. Most drought experiments are conducted under controlled environmental
conditions, where maintaining accurate soil moisture content is critical. In this study, we developed a
simple, Arduino microcontroller-based, semi-automated, lysimeter that uses the gravimetric method
to adjust soil moisture content in pot experiments. This method employs an Arduino microcontroller
interfaced with a balance as part of a portable lysimeter and irrigation system which can weigh and
record the mass of plants growing in pots, determine water loss due to evapotranspiration, and
adjust soil moisture automatically to a desired relative soil water content. The system was validated
with a greenhouse pot experiment using a panel of 50 early-maturity Canadian soybean varieties.
Drought was induced in the experiment by adjusting soil moisture content to 30% field capacity
while maintaining control pots at 80%. Throughout the experiment, the two moisture levels were
efficiently maintained using the Arduino-based lysimeter. Plant physiological responses confirmed
that plants in the drought treatment were under physiological stress. This semi-automated lysimeter
is low-cost, portable, and easy to handle, which allows for high-throughput screening.

Keywords: drought; soil moisture; lysimeter; field capacity; Arduino microcontroller; moisture
adjustment; water deficit

1. Introduction

Drought is the foremost abiotic stress that reduces plant growth and crop production
throughout the world [1,2]. As the world population is predicted to surpass 9.5 billion [3]
and drought risk and severity are predicted to increase due to climate change [4], future
global crop production will be under significant pressure to keep pace with food demand.
To supply this demand, research on drought stress is needed to improve crop resiliency
and increase food production.

A wide variety of interdisciplinary studies have shown that plants exhibit a vast array
of mechanisms to tolerate drought stress [5–11]. However, to study these mechanisms it is
crucial to accurately maintain soil moisture content [12]. As it is challenging to maintain
precise soil moisture in the field, most drought experiments are conducted under controlled
environmental conditions. Small pot or tube-based laboratory experiments are commonly
used to explore plant drought stress [13–17] and numerous methods were developed
to adjust soil moisture content including dual-probe heat pulse, electromagnetic (e.g.,
time-domain reflectometry (TDR) and time-domain transmission (TDT) techniques) and
gravimetric methods [18–25]. However, the most popular, direct, and accurate method
used to measure soil moisture content is the gravimetric method [24,26]. The usage of other
indirect methods for measuring soil moisture content depends on accuracy, cost, response
time, ease of installation, and durability of the instruments [26].

Gravimetric-based soil moisture content is the ratio of the mass of the moisture present
in a soil sample to the dried soil sample mass [26]. Gravimetric methods are usually more
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time-consuming and labor-intensive than other methods, but there is no need for expensive
equipment [24], and drawbacks can be reduced by integrating computer-based automation
techniques along with computational methods [21,27]. Gravimetric-based methods are used
to measure evapotranspiration in pot experiments and to adjust soil moisture content to
target levels [21,27–31]. These methods involve frequently measuring the mass of pots and
replacing transpired water to maintain a targeted soil moisture content [21,23,31]. However,
the higher cost and complexity of the previous computer-based automated systems have
limited their wider use for adjusting soil moisture levels in pot-based experiments.

Here, we developed a simple, low-cost, Arduino microcontroller-based lysimeter to
gravimetrically adjust soil moisture content in pot experiments without the need for special-
ized facilities or equipment. The system measures soil moisture deficit and automatically
adjusts the soil moisture content to a targeted level. We then demonstrated the effectiveness
of this system with a drought experiment using a panel of 50 early-maturity Canadian
soybean varieties. Ultimately, this system will reduce costs and help researchers efficiently
conduct drought-related experiments.

2. Materials and Methods
2.1. Lysimeter System
2.1.1. Design and Components

In this system (Figures 1 and 2; Table 1), water loss due to transpiration and evapo-
ration in each pot is determined and recorded based on mass, and soil moisture content
automatically adjusted to a targeted moisture level. A balance was made with two load cells
(20 kg HX711AD pressure sensor modules; SZYT, Shenzhen, China) attached to a 10 cm
diameter plastic tray, which served as a platform to place pots A and Figure 2A). Two load
cell amplifiers (HX711 load cell amplifiers; SZYT, Shenzhen, China), one per load cell, were
used to amplify the signal generated from the load cells (Figure 2B). A standard breadboard
(MT Technology Co., Ltd., Shenzhen, China) (Figure 2C) was used to connect the load
cell amplifiers, a 1-channel 5 V relay module, and an Arduino R3 USB microcontroller
(Arduino, A000066; Arduino SRL, Torino, Italy) (Figure 2D) which was used to control
the irrigation system. The 1-channel 5 V relay module was used to connect the Arduino
to the submersible water pump (ultra-quiet, 12 V, 4.2 W; ANSELF, Shenzhen, China) and
power supply (1 A 12 V DC power adaptor with US plug type; ELECAPITAL, Shenzhen,
China). Following the signal given by the Arduino, the relay (Figure 2E) connects or breaks
the circuit, which turns on or turns off the water pump, respectively. A compact wire
wiring connector (VENSTPOW, Shenzhen, China) was used to connect the submersible
water pump and the power supply. This compact wire wiring connector was used to avoid
manual soldering. The wiring diagram of the lysimeter system is illustrated in Figure 2.
The submersible water pump (Figure 2H) was placed in a reservoir and pumped water via
a flexible silicone hose (8 mm diameter; UXCELL, Shenzhen, China) (Figure 1D) to the pot
following the signal given by the Arduino. A ring stand with a burette holder was used to
direct the hose to the pot (Figure 1E). To avoid water damage, the Arduino, breadboard,
and relay were placed in a water-resistant plastic container (Figure 1B). The system was
connected via a USB cable (YCDC, Shenzhen, China) (Figure 1F) from the Arduino to
a laptop computer (Figure 1C) to record the respective pot identification numbers and
weights. For easy mobility, the entire system can be placed on a trolley and moved between
locations within and between greenhouses (Figure 1). All components including their
specifications and sources are listed in Table 1 and Supplementary File S1, respectively.
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Figure 1. Arduino-based lysimeter. (A) Load cell and the pot holding tray, (B) Plastic water-resistant 
container holding the circuitry, (C) Laptop computer, (D) Hose from water reservoir, (E) Ring stand 
with burette holder, (F) USB cable to connect the system to the laptop, (G) trolley. 

 
Figure 2. Wiring diagram of the Arduino-based lysimeter. (A) Two 20 kg load cells, (B) HX711 load 
cell amplifier, (C) Breadboard, (D) Arduino Uno microcontroller board, (E) One channel 5 V relay, 
(F) Compact wire wiring connector with lever, (G) 12 V DC power supply, (H) Submersible water 
pump (quiet, 12 V, 4.2 W). 

Figure 1. Arduino-based lysimeter. (A) Load cell and the pot holding tray, (B) Plastic water-resistant
container holding the circuitry, (C) Laptop computer, (D) Hose from water reservoir, (E) Ring stand
with burette holder, (F) USB cable to connect the system to the laptop, (G) trolley.
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cell amplifier, (C) Breadboard, (D) Arduino Uno microcontroller board, (E) One channel 5 V relay,
(F) Compact wire wiring connector with lever, (G) 12 V DC power supply, (H) Submersible water
pump (quiet, 12 V, 4.2 W).
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Table 1. Lysimeter components and specifications.

Component Component Image Specifications Number of Units Required

Arduino Uno R3 USB Microcontroller
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Material: Silicon  
Main Color: Clear  
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1 

Microcontroller: ATmega328
Operating Voltage: 5 V

Input Voltage (recommended): 7–12 V
Input Voltage (limits): 6–20 V
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Table 1. Cont.

Component Component Image Specifications Number of Units Required

Transparent Box Case Shell for
Arduino UNO R3
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Length: 1 m/3.28 ft 

1 

20 kg pressure 
sensor + HX711AD 
module weighing 

scale 
 

20 kg  
Tray diameter 10 cm  

Operating voltage DC 5 V  
HX711AD (24-bit conversion) 

2 

Solderless 
Breadboard 

 

400 tie points in total, 100 in 2 power rails, 
300 in a 30 × 10 matrix  

Transparent plastic, with black legend. Col-
ored power rails  

For wires 21 to 26 AWG  
2-sided peelable adhesive tape 

1 

Dupont Jumper 
Wire 

 

Length: 30 cm  
Package: 20 wires per each category 1 Length: 30 cm

Package: 20 wires per each category 1

Lab Trolly
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Table 1. Cont.

Component Component Image Specifications Number of Units Required
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2.1.2. Software and Code

To set up the system, Arduino IDE (https://www.arduino.cc/en/Guide/Windows,
accessed on 21 November 2021) and PuTTy (https://www.putty.org/, accessed on 21
November 2021) were installed on a laptop computer. PuTTy is used as the console as it
has the capability of recording the data from the Arduino directly into a text (.txt) file. Data
can also be saved to the cloud by configuring PuTTy if needed.

The Arduino Uno board was coded using C++. A specific algorithm was created
to carry out the moisture adjustment. The HX711_ADC library was used with the algo-
rithm to calibrate and measure weight data from the load cells. The given calibration
example code was used to find the calibration values of the load cells, and those values
were included in the main algorithm at the coding stage (Supplementary File S2). As
this system consisted of two load cells, the pot weight was determined by adding the
two load cell readings. Before starting the watering process, the user should upload the
algorithm to the Arduino by selecting the correct code and pressing the upload button in
the software. After uploading it once, the Arduino will keep the algorithm in its memory
for all the other trials. The relevant C++ codes are listed in Supplementary File S2 and
GitHub (https://github.com/IshanChathuranga/Arduino-Irrigation-system-for-plant-
moisture-management-researchers, accessed on 21 November 2021).

2.2. Operating the Lysimeter System
2.2.1. Determining Soil Water Holding Capacity

Before experiments begin, soil water holding capacity needs to be determined. Here,
we used field capacity as a proxy for soil water holding capacity. Field capacity is defined
as the amount of soil moisture or water content retained in the soil when all excess water
has drained away [32]. For this experiment, 6.52 L plastic pots were filled with a mixture
of sand (QUIKRETE® Premium Play Sand, QUIKRETE, Atlanta, GA, USA) and growing
mix (Sunshine Mix #4 Gro Professional, SunGro, Vancouver, BC, Canada) (1:3 volume
basis) until a final constant weight was reached (e.g., 4500 g). The bottom of each pot was
lined with a coffee filter (12” Mother Parkers Coffee Filters, Mother Parkers Tea and Coffee,

https://www.arduino.cc/en/Guide/Windows
https://www.putty.org/
https://github.com/IshanChathuranga/Arduino-Irrigation-system-for-plant-moisture-management-researchers
https://github.com/IshanChathuranga/Arduino-Irrigation-system-for-plant-moisture-management-researchers
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Mississauga, ON, Canada) to prevent soil loss. The initial weight of the dry soil (Dw) was
measured after drying the soil in an oven at 80 ◦C until a constant weight was reached [21].
The pots were watered slowly until the soil was saturated and water drained out from the
holes in the bottom. The top of the pots was covered with aluminum foil and then kept
for 24 h until water no longer drained from the bottom. The final saturated weights of
the pots were recorded (Sw). Field capacity was calculated as FC = Sw − Dw. From here,
treatment weights can be calculated for a well-watered (W) and a drought (D) treatment.
These treatment values (W, D) are then supplied to the algorithm using the Arduino IDE
prior to the start of the experiment.

2.2.2. Applying Soil Water Treatments

To initiate the process, the correct Arduino code file (Supplementary File S2) has
to be opened using the Arduino IDE (integrated development environment). Once the
upload button is pressed in the Arduino IDE, it will upload the algorithm to the Arduino
board. Then the plastic tray has to be placed on the load cells and the PuTTy console
software opened on the laptop. This will run the algorithm on the Arduino Board and
will open a monitor on the laptop screen which will be used to show the outputs and
to send the input values to the Arduino board, also a pre-saved data entry text (.txt) file
(Supplementary File S3) is opened in the laptop. The algorithm will then initiate the load
cells and tare the reading with the weight of the tray. Once this operation is completed,
the system will consider the weight of the tray as zero or the tare point and will ask the
user to place the first pot on the tray. Once the pot is on the tray, the algorithm will start
monitoring the weight readings of the load cells and will identify the peak value readings
by determining the point at which the load cell readings will increase and, subsequently,
slightly decrease. A minimum threshold weight value was included in the algorithm
to improve the accuracy of this operation. If the user accidentally touches the pot or
hits the trolley while keeping the pot on the tray, it may affect the load cells and cause
the algorithm to read an incorrect peak value. However, the threshold will prevent the
algorithm from reading such false peak values before it hits the actual peak weight. Once
the algorithm successfully determines the initial weight of the pot, it will ask the user to
enter the pot identification number on the laptop. The algorithm will identify whether
the user has started typing the number of the pot or not, and it will wait until the user
starts typing the pot number. For example, the pot number will denote as 010W4 or 010D4,
wherein the first three numbers represent the numerical number given to the pot and the
W or D character represents whether it is a well-watered or a drought conditioned pot,
respectively. The coding can be modified to assign more than two moisture treatments as
well (Supplementary File S4). Finally, the last number will represent the replicate number
of the pot. Once the pot identification number is typed on the laptop screen, the algorithm
will count the number of characters in the given pot number, then run a loop to search
whether there is W or D character in the pot number. The algorithm will identify both
capital and simple representations of W and D as valid characters. If it finds a W character,
then it will input the prescribed weight corresponding to a well-water conditioned pot in
the algorithm. Similarly, if the algorithm finds a D character, it will input the prescribed
weight corresponding to the specific drought condition pot in the algorithm. If more
than two treatments are needed, the algorithm is available in supplementary methods
(Supplementary File S4). Additionally, if the user mistakenly entered any other character
or forgot to enter any character in the pot number, the algorithm will show a notification to
check the pot number and will give space to re-enter it. This loop will run until the user
enters a valid pot number.

Once a valid number is entered, the algorithm will check whether the pot weight is
below the prescribed weight value (e.g., 5000 g for the well-watered condition and 3000 g
for the drought condition). If the weight is equal to or higher than the prescribed value, the
program will ask the user to remove the pot, and the data will be saved in a database. If
the weight of the pot is below the prescribed value, the program will switch on the water
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pump. The algorithm will continue monitoring the weight of the pot, where once the pot
weight reaches the prescribed value it will switch off the water pump. Once the water
pump is switched off, a portion of the residual water in the tube will fall into the pot, each
user must determine the weight of this residual water prior to using this system (e.g., We
measured this as 40 g) and update in the coding (Supplementary File S4). The program
will terminate the water pump as soon as the weight scale hits the value of the prescribed
weight minus the residual water weight (e.g., 40 g). The laptop display will show the initial
weight and the final weight of the pot, and the data will be saved in the text (.txt) file. It
is important to note that the weight of the residual water (e.g., 40 g) needs to be added to
the final weight as the software only records the weight before adding this residual water
to the pot. At the next step, the algorithm will ask the user to remove the pot and wait
until the system is ready for the next iteration. This step will take around 1–2 s. However,
if ≥100 g of water spilled on the tray in the previous iteration, the system will pause this
step until the tray is cleaned and placed on the load cells. If <100 g of water spilled into
the tray, the user can either remove the spilled water from the tray before going to the next
iteration or the system will automatically tare the scale with a new tare point accounting
for the weight of the spilled water. Thus, it is only necessary to clean the tray after each
iteration if ≥100 g of water spilled on the tray. The algorithm is also equipped with the
capacity of the water reservoir. It is advised to fill the water reservoir completely prior to
the start of data collection. The algorithm will notify the user when the water reservoir is
almost empty (i.e., when 2 kg of water remains), which will prevent interruptions in the
water supply while the pot is being watered. This will improve the life span of the pump
as it will prevent the pump from running without water in the reservoir. A demonstration
of the system operating is provided in Video S1.

2.3. Validation of Arduino-Based Lysimeter

The lysimeter was tested using a greenhouse pot experiment with two soil moisture
treatments maintaining the final soil moisture content at 80% and 30% field capacity (FC).
The soil was mixed as above, and field capacity determined. Based on the FC data, final
weights corresponding to 80% FC (well-watered) and 30% FC (drought) were calculated as
5363.4 g and 4025.9 g, respectively.

The greenhouse pot experiment was conducted using a variety panel of 50 early
maturity Canadian soybean varieties. Pots were prepared as described above. Surface
sterilized soybean seeds were planted at a depth of 2.5 cm in each pot (three seeds per
pot; two pots per variety) and supplied with sufficient water to germinate. Plants were
grown at 24 ± 2 ◦C with supplemental lighting (range: 500–600 µmol m−2 s−1 at the top
of the canopy, Fortimo LED Line, High Flux VO), maintaining a photoperiod of 16:8 h
light:dark. One week after germination, seedlings were thinned, leaving one per pot.
Seedlings were inoculated with 2 mL of Bradyrhizobium japonicum USDA 110, adjusted
to a rhizobial density of OD600 = 0.1 [33]. Bradyrhizobium japonicum form root nodules in
soybean and fix atmospheric nitrogen, making it available to host soybean plants. Plants
were supplied with quarter strength N-free Hoagland’s nutrient solution (HOP03-50LT,
Caisson Labs, Smithfield, UT, USA) weekly (100 mL per pot). After three weeks of plant
growth, two treatments were applied (80% FC (well-watered) and 30% FC (drought)) using
the lysimeter system. One pot of each of the 50 lines was used in each treatment (n = 50 per
treatment). The drought treatment was induced by withholding water until pots reached
30% FC. Moisture adjustment in all the pots was carried out based on the gravimetric
method using the lysimeter until six weeks of plant growth (i.e., 3 weeks after treatments
were applied).

Cumulative evapotranspiration during the drought-imposed period was calculated
based on the moisture deficit (g) between the consecutive irrigation events (amount of
water supplied). In addition, plant physiological traits, including photosynthesis, stomatal
conductance, and transpiration, were measured using an LI-6400XT portable infrared gas
analyzer (LI-COR, Inc., Lincoln, NE, USA). To measure the physiological traits, a photon
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flux density of 500 µmol m–2 s−1 and CO2 concentration of 400 mol m–2 s−1 inside the
chamber were maintained. Data were collected on a single fully expanded young soybean
leaf on each plant in each treatment (n = 50 per treatment).

All statistical analyses were performed using GraphPad Prism Software (v9, Graph-
Pad Software, San Diego, CA, USA). We compared the leaf photosynthesis, stomatal
conductance, transpiration, and evapotranspiration between the drought and well-watered
treatments with paired t-tests.

3. Results and Discussion

The semi-automated lysimeter accurately maintained soil moisture levels in both the
80% and 30% FC treatments (Figures 3 and S1). Over the course of 3 weeks, pots were
weighed every 2–5 days depending on the rate of evapotranspiration, and soil moisture
content was adjusted back to the targeted FC levels (Figure 3) based on the pot weight
(Figure S2). The error variance under each irrigation event may be due to differences in
plant size, where the larger genotypes depleted soil water more quickly than the smaller
plants. Plants in the 30% FC treatment had significantly lower stomatal conductance
(Figure 4B), transpiration (Figure 4C), and evapotranspiration (Figure 4D). However, there
was no significant difference in leaf photosynthesis between the 30% and 80% FC treatments
(Figure 4A). Soybean plants’ response to drought stress in terms of leaf stomatal conduc-
tance, transpiration, and evapotranspiration is well studied and our results corroborate
previous findings [34–38]. Our results confirmed that the semi-automated lysimeter was
effective in inducing and maintaining drought and well-watered soil conditions. There-
fore, this system could be applied to other studies aimed at examining plant responses to
different soil moisture levels.
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Figure 4. Plant physiological parameters and evapotranspiration under drought (30% field capacity)
and well-watered (80% field capacity) conditions in soybean. (A) Leaf photosynthesis, (B) Stomatal
conductance, (C) Transpiration, (D) Evapotranspiration. Box plots show the median (horizontal line),
first and third quartiles (the lower and upper bounds respectively), and whiskers above and below
the box plot indicate the range. FC; field capacity. **** indicates p < 0.0001.

Mini-lysimeters are portable, accurate, and effective in measuring evapotranspiration
in pots [39,40]. Although other mini-lysimeters were developed to simulate drought
stress in pot-based experiments [21,27], this newly described system is more portable and
economical to build. All the components can be purchased for less than 200 USD and will
run with a standard laptop that most research groups already have. The data collected
can be automatically saved in the cloud, making it easier to handle and access. This semi-
automated system is very user-friendly and does not require high technical competence
to set up and operate. In the current experiment, it took ca. 1 min to complete a single
pot, which included the time to bring the pot to the lysimeter, enter the pot identification
number on the laptop, supply the water to the pot, and return the pot to the greenhouse
bench. This time will vary depending on different greenhouse arrangements but is quite
efficient. One limiting factor can be the time required to fill the reservoir when the water
level is low, but this can be overcome by using a larger reservoir and having a water supply
close at hand. On average, we were able to adjust the moisture content in 50 pots per hour,
so in 5 working hours in the greenhouse, ca. 250 pots can be adjusted. The current system
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was created to implement two treatments (well-watered and drought) only; however, we
supplied the necessary code (Supplementary File S4) to increase the number of treatments.
Users can set up any number of soil moisture treatments while using the Arduino RAM
memory efficiently.

There are some limitations associated with this Arduino-based lysimeter. This semi-
automated system is not fully water-resistant as its housing was made using a commonly
available plastic box. It will withstand small water splashes, but to make the system fully
water-resistant, a custom-made housing compartment with water barrier passages for
the wires to pass through could be made. Another alternative solution would be to use
two separate and independent systems for the weight measuring load cell section and
the data processing Arduino section. However, in this setup, power must be supplied
separately to the two units and wireless technology would be needed to transmit the weight
data to the Arduino circuitry. This would minimize the complexity of making the whole
system water-resistant; however, it would increase the complexity of the system as wireless
connectivity would be essential on both devices.

In the validation experiment, we did not consider the weight of the plants for adjusting
the FC as the plants grew over time. To make the FC values more accurate, extra pots of
plants can be grown and shoot biomass destructively measured at each water adjustment
period and added to the final target weight (e.g., 80% FC = 5363.4 g + shoot biomass;
30% FC = 4025.9 g + shoot biomass) [21]. In the future, it is possible to increase the
efficiency and functionality of this system. The laptop could be replaced with a small LCD
display and a wireless keyboard which could make the system more user-friendly (but
potentially increase the technical competence to set up the system). A barcode reader or
a QR code reader could also be attached to the system to identify the pot identification
numbers, improving the accuracy of the data collection and making the process more
efficient [41]. To make the system fully portable, the current wall power connector could be
replaced with a rechargeable battery module

4. Conclusions

Maintaining accurate soil moisture content is critical in drought experiments. This
semi-automated Arduino-based, lysimeter, irrigation system is an economical and high-
throughput system for moisture adjustment in pot experiments. It can be further developed
to minimize human errors and to reduce the cycle time, which will increase productivity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12020349/s1, Figure S1: Field capacity adjustment
in pots growing soybean plants using the semi-automated Arduino-based lysimeter,
Figure S2: Gravimetric moisture adjustment in pots growing soybean plants using the semi-automated
Arduino-based lysimeter, Supplementary File S1: Orginal source of different components of the irri-
gation system, Supplementary File S2: C++ Code for Arduino, Supplementary File S3: Weight data
recording .txt file, Supplementary File S4: C++ Code for Arduino with dynamic watering conditions,
Video S1: A video of the Arduino-based lysimeter system in operation.
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9. Janiak, A.; Kwaśniewski, M.; Szarejko, I. Gene Expression Regulation in Roots under Drought. J. Exp. Bot. 2016, 67, 1003–1014.

[CrossRef]
10. Jabbari, M.; Fakheri, B.A.; Aghnoum, R.; Nezhad, N.M.; Ataei, R. GWAS Analysis in Spring Barley (Hordeum Vulgare L.) for

Morphological Traits Exposed to Drought. PLoS ONE 2018, 13, e0204952. [CrossRef]
11. Tarawneh, R.A.; Alqudah, A.M.; Nagel, M.; Börner, A. Genome-Wide Association Mapping Reveals Putative Candidate Genes for

Drought Tolerance in Barley. Environ. Exp. Bot. 2020, 180, 104237. [CrossRef]
12. Marchin, R.M.; Ossola, A.; Leishman, M.R.; Ellsworth, D.S. A Simple Method for Simulating Drought Effects on Plants. Front.

Plant Sci. 2020, 10, 1715. [CrossRef]
13. Gorim, L.Y.; Vandenberg, A. Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated

Lentil. Front. Plant Sci. 2017, 8, 1129. [CrossRef] [PubMed]
14. Gorim, L.Y.; Vandenberg, A. Root Traits, Nodulation and Root Distribution in Soil for Five Wild Lentil Species and Lens Culinaris

(Medik.) Grown under Well-Watered Conditions. Front. Plant Sci. 2017, 8, 1632. [CrossRef] [PubMed]
15. Lehnert, H.; Serfling, A.; Friedt, W.; Ordon, F. Genome-Wide Association Studies Reveal Genomic Regions Associated with

the Response of Wheat (Triticum Aestivum L.) to Mycorrhizae under Drought Stress Conditions. Front. Plant Sci. 2018, 9, 1728.
[CrossRef] [PubMed]

16. Shirinbayan, S.; Khosravi, H.; Malakouti, M.J. Alleviation of Drought Stress in Maize (Zea mays) by Inoculation with Azotobacter
Strains Isolated from Semi-Arid Regions. Appl. Soil Ecol. 2019, 133, 138–145. [CrossRef]

17. Turner, N.C. Imposing and Maintaining Soil Water Deficits in Drought Studies in Pots. Plant Soil 2019, 439, 45–55. [CrossRef]
18. Blonquist, J.M.; Jones, S.B.; Robinson, D.A. Standardizing Characterization of Electromagnetic Water Content Sensors: Part 2.

Evaluation of Seven Sensing Systems. Vadose Zone J. 2005, 4, 1059–1069. [CrossRef]
19. Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low-Cost Soil Water Content

Sensors. Sensors 2017, 17, 208. [CrossRef]
20. Campbell, D.I.; Laybourne, C.E.; Ian, J. Blair Measuring Peat Moisture Content Using the Dual-Probe Heat Pulse Technique. Aust.

J. Soil Sci. 2002, 40, 177–190.
21. Earl, H.J. A Precise Gravimetric Method for Simulating Drought Stress in Pot Experiments. Crop Sci. 2003, 43, 1868–1873.

[CrossRef]
22. Kojima, Y.; Shigeta, R.; Miyamoto, N.; Shirahama, Y.; Nishioka, K.; Mizoguchi, M.; Kawahara, Y. Low-Cost Soil Moisture Profile

Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor. Sensors 2016, 16, 1292. [CrossRef]
23. Ortiz, D.; Litvin, A.G.; Salas Fernandez, M.G. A Cost-Effective and Customizable Automated Irrigation System for Precise

High-Throughput Phenotyping in Drought Stress Studies. PLoS ONE 2018, 13, e0198546. [CrossRef] [PubMed]
24. Susha Lekshmi, S.U.; Singh, D.N.; Shojaei Baghini, M. A Critical Review of Soil Moisture Measurement. J. Int. Meas. Confed. 2014,

54, 92–105. [CrossRef]
25. Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A Review of Advances in Dielectric and Electrical Conductivity

Measurement in Soils Using Time Domain Reflectometry. Vadose Zo. J. 2003, 2, 444–475. [CrossRef]

http://doi.org/10.1175/1520-0477-83.8.1167
https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html.Html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html.Html
http://doi.org/10.1038/nature11575
http://www.ncbi.nlm.nih.gov/pubmed/23151587
http://doi.org/10.12688/f1000research.7678.1
http://www.ncbi.nlm.nih.gov/pubmed/27441087
http://doi.org/10.3390/agronomy8110241
http://doi.org/10.2134/agronj2003.6880
http://doi.org/10.1016/j.agwat.2011.04.017
http://doi.org/10.1093/jxb/erv512
http://doi.org/10.1371/journal.pone.0204952
http://doi.org/10.1016/j.envexpbot.2020.104237
http://doi.org/10.3389/fpls.2019.01715
http://doi.org/10.3389/fpls.2017.01129
http://www.ncbi.nlm.nih.gov/pubmed/28706524
http://doi.org/10.3389/fpls.2017.01632
http://www.ncbi.nlm.nih.gov/pubmed/28993782
http://doi.org/10.3389/fpls.2018.01728
http://www.ncbi.nlm.nih.gov/pubmed/30568663
http://doi.org/10.1016/j.apsoil.2018.09.015
http://doi.org/10.1007/s11104-018-3893-1
http://doi.org/10.2136/vzj2004.0141
http://doi.org/10.3390/s17010208
http://doi.org/10.2135/cropsci2003.1868
http://doi.org/10.3390/s16081292
http://doi.org/10.1371/journal.pone.0198546
http://www.ncbi.nlm.nih.gov/pubmed/29870560
http://doi.org/10.1016/j.measurement.2014.04.007
http://doi.org/10.2136/vzj2003.4440


Agronomy 2022, 12, 349 13 of 13

26. Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A Review of the Methods Available for Estimating Soil Moisture and Its
Implications for Water Resource Management. J. Hydrol. 2012, 458, 110–117. [CrossRef]

27. Chard, J.; van Iersel, M.W.; Bugbee, B. Mini-Lysimeters to Monitor Transpiration and Control Drought Stress: System Design and Unique
Applications; Utah State University: Logan, UT, USA, 2010.

28. Gebre, M.G.; Earl, H.J. Effects of Growth Medium and Water Stress on Soybean [Glycine Max (L.) Merr.] Growth, Soil Water
Extraction and Rooting Profiles by Depth in 1-m Rooting Columns. Front. Plant Sci. 2020, 11, 487. [CrossRef]

29. McCauley, D.; Levin, A.; Nackley, L. Reviewing Mini-Lysimeter Controlled Irrigation in Container Crop Systems. Hort Technol.
2021, 31, 634–641. [CrossRef]

30. Gebre, M.G.; Earl, H.J. Soil Water Deficit and Fertilizer Placement Effects on Root Biomass Distribution, Soil Water Extraction,
Water Use, Yield, and Yield Components of Soybean [Glycine Max (L.) Merr.] Grown in 1-m Rooting Columns. Front. Plant Sci.
2021, 12, 581127. [CrossRef]

31. Wright, D.E.J.; Cline, J.A.; Earl, H.J. Physiological Responses of Four Apple (Malus × Domestica Borkh.) Rootstock Genotypes to
Soil Water Deficits. Can. J. Plant Sci. 2019, 99, 510–524. [CrossRef]

32. Ahuja, L.R.; Nachabe, M.H.; Rockiki, R. Soils: Field Capacity. Encycl. Water Sci. Second Ed. 2008, 2, 1128–1131.
33. Thilakarathna, M.S.; Moroz, N.; Raizada, M.N. A Biosensor-Based Leaf Punch Assay for Glutamine Correlates to Symbiotic

Nitrogen Fixation Measurements in Legumes to Permit Rapid Screening of Rhizobia Inoculants under Controlled Conditions.
Front. Plant Sci. 2017, 8, 1714. [CrossRef]

34. Liu, F.; Jensen, C.R.; Andersen, M.N. Hydraulic and Chemical Signals in the Control of Leaf Expansion and Stomatal Conductance
in Soybean Exposed to Drought Stress. Funct. Plant Biol. 2003, 30, 65–73. [CrossRef] [PubMed]

35. Liu, F.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Stomatal Control and Water Use Efficiency of Soybean (Glycine Max L. Merr.)
during Progressive Soil Drying. Environ. Exp. Bot. 2005, 54, 33–40. [CrossRef]

36. Ohashi, Y.; Nakayama, N.; Saneoka, H.; Fujita, K. Effects of Drought Stress on Photosynthetic Gas Exchange, Chlorophyll
Fluorescence and Stem Diameter of Soybean Plants. Biol. Plant. 2006, 50, 138–141. [CrossRef]

37. He, J.; Du, Y.L.; Wang, T.; Turner, N.C.; Yang, R.P.; Jin, Y.; Xi, Y.; Zhang, C.; Cui, T.; Fang, X.W.; et al. Conserved Water Use
Improves the Yield Performance of Soybean (Glycine Max (L.) Merr.) under Drought. Agric. Water Manag. 2017, 179, 236–245.
[CrossRef]

38. Medina, V.; Gilbert, M.E. Physiological Trade-Offs of Stomatal Closure under High Evaporative Gradients in Field Grown
Soybean. Funct. Plant Biol. 2016, 43, 40–51. [CrossRef] [PubMed]

39. Misra, R.K.; Padhi, J.; Payero, J.O. A Calibration Procedure for Load Cells to Improve Accuracy of Mini-Lysimeters in Monitoring
Evapotranspiration. J. Hydrol. 2011, 406, 113–118. [CrossRef]

40. Meena, H.M.; Singh, R.K.; Santra, P. Design and Development of a Load-Cell Based Cost Effective Mini-Lysimeter. J. Agric. Phys.
2015, 15, 1–6.

41. Walden-Coleman, A.E.; Rajcan, I.; Earl, H.J. Dark-Adapted Leaf Conductance, but Not Minimum Leaf Conductance, Predicts
Water Use Efficiency of Soybean (Glycine max L. Merr.). Can. J. Plant Sci. 2013, 93, 13–22. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2012.06.021
http://doi.org/10.3389/fpls.2020.00487
http://doi.org/10.21273/HORTTECH04826-21
http://doi.org/10.3389/fpls.2021.581127
http://doi.org/10.1139/cjps-2018-0276
http://doi.org/10.3389/fpls.2017.01714
http://doi.org/10.1071/FP02170
http://www.ncbi.nlm.nih.gov/pubmed/32688993
http://doi.org/10.1016/j.envexpbot.2004.05.002
http://doi.org/10.1007/s10535-005-0089-3
http://doi.org/10.1016/j.agwat.2016.07.008
http://doi.org/10.1071/FP15304
http://www.ncbi.nlm.nih.gov/pubmed/32480440
http://doi.org/10.1016/j.jhydrol.2011.06.009
http://doi.org/10.4141/cjps2012-178

	Introduction 
	Materials and Methods 
	Lysimeter System 
	Design and Components 
	Software and Code 

	Operating the Lysimeter System 
	Determining Soil Water Holding Capacity 
	Applying Soil Water Treatments 

	Validation of Arduino-Based Lysimeter 

	Results and Discussion 
	Conclusions 
	References

