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Every new tool gives humankind a new capability or capabilities, as a new tool finds
a range of applications. For example, the production of a magnifying lens allowed a new
look at the natural world. Every generation of scientists since has accessed some new tool
allowing a different view of the same subjects, from a compound microscope to a confocal
microscope and beyond. Each new view enables new interpretations.

This evolution also applies to agricultural applications. On a dairy farm, the pro-
duction of every cow can now be monitored daily, and the herd can be managed at the
level of the individual beast. In a wheat field, a satellite-acquired vegetation index map
can be used for a variable-rate fertilizer application program. However, until now, fruit
production has been based on a per-orchard basis rather than a per-tree basis. Technol-
ogy advances, however, are throwing up a range of capabilities that allow for change in
orchard management.

Agriculturalists are both an inventive and adaptive lot. They are inventive in the sense
that technology advances sometimes come from agricultural applications and are then
applied elsewhere. For example, the field of near-infrared spectroscopy was pioneered in
the 1960s context of an agricultural product quality control by Karl Norris of the United
States Department of Agriculture. The technology soon flourished in other application areas
and is heavily used today in a range of disciplines, from petrochemical to pharmaceutical,
as well as agricultural industries such as diary, forage, and grain. Its use in the assessment
of intact fruit, both on fruit pack lines and in the orchard, using handheld devices came
later, beginning in the 1990s.

However, agriculturalists are more commonly an adaptive lot, taking advantage of
technologies developed for other applications, particularly from the medical, space, and
defense sectors, given the well-funded R&D programs in those areas. Yield forecasts based
on satellite- or drone-assessed vegetation indices are now commonplace for broadacre
crops. Such technology-enabled forecasts of tree fruit harvest timing and load are yet
to be widely commercially implemented, although advances in a range of technologies,
including machine vision, image processing, LiDAR, and spectroscopy, hold promise for
in-orchard assessment of various fruit crop attributes.

The need to forecast tree fruit harvest timing and load has increased due to scale and
distance factors. Scale refers to the increase in size of fruit production systems, with a
time-poor orchard manager relying on forecasts in harvest resourcing decisions. Distance
refers to the increasing length of global value chains, with the managerial need to forecast
harvest timing and volume increasing with the complexity of the value chain.

Relevant technologies used in the controlled environment of the packhouse are being
shifted to use in the field environment of the orchard to address these needs. Examples
include near-infrared spectroscopy (NIRS), used in assessment of fruit attributes relevant
to the estimation of the optimum harvest timing, and machine vision techniques that allow
for automated assessment of the flowering stage and level and fruit detection, sizing, and
counting. These tools can inform farm management decisions on flower thinning, harvest
timing, harvest resourcing (labour and materials), and marketing.
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1. Contribution of the Special Edition

The Special Issue “In-Field Estimation of Fruit Quality and Quantity” presents a
collection of eight articles. The topic is reviewed by Anderson et al. [1] with attention to the
use of temperature monitoring and non-invasive NIRS assessment of fruit attributes in the
forecasting of harvest timing, the use of in-field machine vision for a direct assessment of the
fruit load, and UAV or satellite multispectral imaging, or extrapolation of historical yield
data, for an indirect assessment of fruit load. Given that the different technologies measure
harvest timing and load in different ways, the various estimates are complimentary.

An example of the use of NIRS technology is provided by Goke et al. [2], in a study in-
volving the assessment of pear fruit dry matter content in the context of the pruning regime.
NIRS is a relatively mature technology, established in commercial pack-line use for over
two decades and instrumentation advances allowing its use in the orchard environment
of variable light and temperature in recent years (Walsh et al. [3]). Attention is therefore
moving from the development of the technology, per se, to its application uses.

In contrast, the introduction of deep learning (convolutional neural networks) to image-
detection tasks is relatively recent, and the publication focus remains on the development
of the method. For example, several papers in the Special Issue explored the use of machine
vision in the estimation of either flowering or fruit load. Koirala et al. [4] reported on the
machine-vision-based detection of mango flower panicles at three developmental stages
and demonstrated a time course of the quantification of stages, using orchard images
collected weekly. This is a step towards automation of the detection of flowering ‘events’
in an orchard, with heat units tallied from this date in forecast of fruit harvest maturation.
Koirala et al. [4] also reported on the use of augmented image sets, although it was noted
that the addition of rotated bounding boxes did not improve the training.

The primary limitation in use of in-field machine vision to estimate the fruit load is
that the camera does not ‘see’ all fruit on the trees, especially for dense canopied trees.
Anderson et al. [5] and Villacres and Cheein [6] both report issues with fruit occlusion in
their respective documentation of the performance of machine-vision-based estimation
of the fruit yield of whole cherry and mango orchards (Figure 1), respectively. Anderson
et al. [5] documented the improvement in yield estimates made using a muti-view approach,
involving multiple images per tree and tracking of fruit between images, over a ‘dual-view’
approach. The impact of the canopy architecture on yield estimates was also documented.
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Figure 1. The technique of in-field machine is now being applied to assessment of fruit and flower
load of whole farms. Colours refer to fruit density, from green (low) through yellow to red (high).

Koirala et al. [7] explored the use of techniques to correct for occluded fruit, for
example, by the use of a machine-vision-based measure of the fraction of partially occluded
to non-occluded fruit. None of the proposed techniques were recommended for adoption,
and this topic remains open.

However, the fruit number is only part of the harvest load story, with the fruit size also
being critical. The estimation of size requires information on distances, with several relevant
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candidate technologies being available. Neupane et al. [8] reported on an evaluation of
depth cameras in the context of this application, while Mendez et al. [9] report on the use of
LiDAR for fruit sizing, fruit counting, and canopy modelling. The application of LiDAR for
fruit counting was also compromised by fruit occlusion in dense canopies, and acquisition
time was also an issue, given the need for a high-density point cloud.

2. Conclusions

This collection thus presents a snapshot of the currently available techniques for the
in-field estimation of fruit quality (maturity) and quantity. As for the NIRS technology,
over the next five years, the machine vision and LiDAR techniques will mature, with the
focus shifting from the assessment of the technology to the use of the technology to aid
agronomic decision-making. As noted in the review by [1], “this is an exciting period to be
involved in the development and application of tools for the forecast of tree fruit load and
harvest timing”.
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