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Abstract: Heat stress (HS) is a serious environmental stress that negatively affects crop growth and
productivity across the globe. The recent increase in atmospheric temperature caused by global
warming has increased its intensity, which is a serious challenge that needs to be addressed. Plant
growth and development involves a series of physiological, metabolic, and biochemical processes that
are negatively affected by heat-induced oxidative stress, disorganization of cellular membranes and
disturbed plant water relations, nutrient uptake, photosynthetic efficiency, and antioxidant activities.
Plant tolerance to abiotic stresses can be substantially increased by the application of bio-stimulants,
without posing a threat to the ecosystem. Melatonin (MT) is a multi-functional signaling molecule
that has the potential to protect plants from the adverse impacts of HS. MT protects the cellular
membranes, maintains the leaf water content, and improves the water use efficiency (WUE) and
nutrient homeostasis; thereby, improving plant growth and development under HS. Moreover, MT
also improves gene expression, crosstalk of hormones, and osmolytes, and reduces the accumulation
of reactive oxygen species (ROS) by triggering the antioxidant defense system, which provides better
resistance to HS. High endogenous MT increases genes expression and antioxidant activities to confer
HS tolerance. Thus, it is important to understand the detailed mechanisms of both exogenous and
endogenous MT, to induce HS tolerance in plants. This review highlights the versatile functions
of MT in various plant responses, to improve HS tolerance. Moreover, we also discussed the MT
crosstalk with other hormones, antioxidant potential of MT, and success stories of engineering MT to
improve HS tolerance in plants. Additionally, we also identified various research gaps that need to
be filled in future research using this important signaling molecule. Thus, this review will help the
readers to learn more about MT under changing climatic conditions and will provide knowledge to
develop heat tolerance in crops.
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1. Introduction

The global climate is drastically changing, and this is significantly affecting crop pro-
ductivity [1]. Extreme weather events, particularly rising temperatures and inconsistent
rainfall, pose a serious threat to the successful cultivation of crops, to meet the needs
of an ever-mushrooming population [2]. Heat stress (HS) is a serious issue, owing to
the rise in global temperature, and it significantly affects the plant growth, development,
and productivity of field crops [2,3]. The continuous rise in global temperature owing
to anthropogenic activities is a serious worry for mankind and will significantly affect
crop productivity and food security in coming years [3,4]. HS significantly disrupts plant
photosynthetic efficiency, owing to the production of reactive oxygen species (ROS) [5],
which also cause damage to major molecules, including proteins, lipids, and DNA [2,6–11].
ROS also adversely affects the membrane integrity and enzymatic activities, and resul-
tantly alters growth and development and causes yield losses [12–18]. HS also alters the
carbohydrate metabolism in plants by changing the expression of genes involved in this
metabolism [19]. Moreover, high temperature shortens the time needed for anthesis and
grain filling and reduces pollen fertility, the development of pollen tube grains, seed setting,
and grain weight; therefore, resulting in a significant loss in final productivity [20–23]. HS
also denatures proteins and enzymes, and reduces nutrient and water uptake, which is also
a major reason for the reduction in plant growth under HS [2]. Plants possess an excellent
antioxidant defense system to cope with the damaging effects of heat-induced ROS [2,4].
Additionally, plants also accumulate various osmolytes (proline, glyciene-betaine), soluble
sugars (fructans, mannitol, and raffinose trehalose), and hormones to counter the effects of
HS [2]. Plants with a higher accumulation of sugar and hormones show better tolerance
against abiotic stresses [19].

Melatonin (MT) is an important hormone that plays a significant role in plant growth
and development, under a wide range of abiotic stresses. MT is an important signaling
molecule that maintains plant physiological functioning and protects the plants from dif-
ferent abiotic stresses [24–28]. MT works as an important molecule to scavenge ROS [29],
and it also protects the photosynthetic apparatus from oxidative stress and improves plant
photosynthetic efficiency [25,30]. MT regulates the opening of the stomatal and improves
the synthesis of chlorophyll, RuBisCo activity, and efficiency of the photosystem (PS-I and
PS-11); thereby, improving plant photosynthetic performance under HS stress [25,31]. MT
also improves the activities of the antioxidant system, maintains membrane stability, plant
water relations, and enhances HS tolerance in wheat [32] and tomato [33,34]. It also in-
creases the expression of stress responsive genes that support the photosynthetic machinery
and increase the tolerance against HS [32].

MT is also involved in different processes, ranging from growth to fruit ripening,
leaf senescence, and mitigation of stress-induced oxidative damage [25,35]. It also shows
interaction with different signaling molecules and hormones, to counter the effects of
abiotic stresses [31,36–39]. Additionally, MT also reduces ROS, cell damage, and elec-
trolyte leakage, and resultantly improves plant growth and biomass production under
stress conditions [39,40]. Recently, the role of MT in plants grown under HS has been well
explored. Therefore, in this review, we systematically presented the different mechanisms
of MT-induced HS tolerance in plants. Moreover, we also discussed the MT-mediated an-
tioxidant system and engineering of MT biosynthesis to improve the HS tolerance in plants.
Additionally, we also provided detail about MT crosstalk with different osmolytes and
hormones and future research directions, to demonstrate its importance for HS tolerance
in plants. Thus, this review will provide new insights to readers about the role of MT in
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plants under HS. This information will be of great significance to develop cultivars with
improved MT synthesis, for better heat tolerance.

2. Plant Responses to Heat Stress

Plants are sessile organisms exposed to different abiotic stress that negatively affect
their growth and development. HS is a serious abiotic stress that has deleterious impacts
on plants during their life cycle (Table 1). Seed germination is the first stage of any plant,
and HS significantly reduces seed germination by restricting water and nutrient availability
and disrupting the enzymatic activities [41,42]. HS also reduces the root length and leads
to poor seedling growth and stand establishment; therefore, causing significant yield
losses [43,44]. Moreover, HS also reduces cell numbers, cell size, growth, and biomass
production [45,46] and induces diverse morphological changes in plants, including stem
and leaf burning, leaf scorching, fruit discoloration, leaf rolling, senescence, abscission,
chlorosis, and necrosis [47,48].

Table 1. Effects of different heat stress levels on the growth, physiology, and yield of different crops.

Crop Species Heat Stress Stage of HS Major Effects Reference

Rice 45 ◦C
HS was imposed at

reproductive stage for
six hours.

HS reduced seed setting rate, grain
quality, and reduced chlorophyll contents. [49]

Wheat 28 ◦C HS was imposed at grain
filling stage of crop.

HS reduced grain size, grain width, grain
moisture, and protein and phenolic

contents.
[50]

Maize 45 ◦C HS was imposed at seedling
stage for twenty minutes.

HS decreased the photosynthetic activity,
chlorophyll fluorescence, and electron

transport, and induced oxidative stress.
[51]

Soybean 36 ◦C HS was imposed for twenty
seven days.

HS reduced seed oil concentration,
protein concentration, CO2 assimilation,
stomatal conductance, efficiency of PS-II,

and seed protein contents.

[52]

Brassica 32/22◦C
DNT

HS was imposed for seven
days at first open flower stage.

HS decreased the number of branches,
pod number, and seed yield, chlorophyll

contents, stomata conductance, pollen
viability, and harvest index.

[53]

Barley 35 ◦C HS was observed at
anthesis stage.

HS reduced grains size, grain number and
pod number, chlorophyll contents, RWC,

and grain weight.
[54]

Groundnut 32 ◦C -
HS decreased photosynthetic activity,
damage to thylakoid membrane, and

reduced seed setting rate and seed weight.
[55]

Tomato 38 ◦C Plants were exposed to HS for
four days at seedling stage.

HS significantly reduced the stomatal
conductance, chlorophyll contents,

transpiration rate, photosynthetic rate,
carotenoid content, and biomass.

[56]

Lentil 33 ◦C HS was imposed after
50% flowering.

HS damaged cell membranes and reduced
chlorophyll contents, chlorophyll
fluorescence, photosynthetic rate,

and grain protein contents.

[57]

DNT: day and night temperature.

HS also affects the plant osmotic adjustments (Figure 1) by increasing the evapotranspi-
ration, which affects the solute production in plants that plays an important role in osmotic
adjustments [2]. HS also decreases the rate of photosynthesis, while it increases respiration
and photo-respiration, which in turn reduces assimilates production and causes a reduction
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in growth and biomass production [58]. Moreover, HS also disturbs cell metabolism, due to
hampering the water balance created as a result of a reduction in water uptake by roots and
an increase in water loss from plant leaves [59]. HS also reduces the cell water potential and
induces the production of ROS that damage the cellular membrane and increase electrolyte
leakage, and, therefore, cause significant yield losses [60,61].
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Figure 1. Effect of HS stress on plants. HS disturbs cell membranes, plant physiological functioning,
photosynthetic efficiency, reduces assimilate production, alters source–sink relationships, root growth,
nutrient and water uptake, and results in reduction in growth and yield. Moreover, HS, also dustups
enzymatic activities, ionic homeostasis, antioxidant activities, and induces production of ROS, which
causes huge growth and yield losses.

Heat stress also decreases the uptake of both nutrients and water, which is a major
reason for heat induced reductions in growth and yield [62]. Heat stress also alters the
plant source–sink relationship and nutrient accumulation in plants [63]; however, this
reduction in nutrient uptake depends on the plant species and soil nutrient status and
stress conditions. HS also disturbs the enzymes involved in nutrient metabolism; therefore,
decreasing the uptake and accumulation in plants [64,65]. Moreover, HS also reduces the
nutrient acquisition, owing to a reduction in root growth, root biomass, and nutrient uptake
by roots [2]. Additionally, HS also depletes labile carbon and restricts the translocation of
carbohydrates from shoot to root; and the functioning of proteins and causes a significant
decrease in nutrient uptake [63].
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Photosynthesis is one of the most important processes in plants that are considered to
be very sensitive to HS [66]. HS strongly affects the photosynthetic efficiency in both C3 and
C4 plants [67]. Heat injury affects the carbon metabolism and thylakoid reactions and causes
alterations in chloroplasts and disorganizes the thylakoid; therefore, all these changes result
in a significant reduction in photosynthesis under HS [48,68]. HS also reduces the activities
of PS-II, Fv/Fm ratio, synthesis of photosynthetic pigments, stomata conductance, leaf
water contents, and intercellular CO2 concentration, which also contributes to a reduction
in photosynthesis [69–71]. High temperature also reduces the activities of source and sinks
and causes a significant reduction in growth and biomass production [2].

HS affects the plant source and sink relationships by reducing the carbon assimilation
and partitioning and distribution of C and N in plants [72]. These alterations negatively
affect the leaf protein and starch metabolism, which is considered a cause for the reduction
in final production and quality [67]. All stages of plant life are sensitive to HS; however,
the reproductive stage is considered the most sensitive stage and an increase of a few
degrees in temperature at this stage can cause significant yield losses [73]. HS at the
reproductive stage reduces floral buds and causes abortion of flowers, which depends on
plant species and the severity of stress [74]. Moreover, HS at the reproductive stage also
reduces the fruit setting and decreases the grains retained by stigma, which causes seed
sterility and consequently reduced final production [75].

Respiration is significantly increased with increasing temperature up to 50 ◦C; how-
ever, after 50 ◦C, respiration is significantly decreased, due to heat induced damage to
respiratory mechanisms [76]. HS also reduces ATP production and causes a significant
increase in ROS that damage cellular membranes, protein, lipids, and DNA, and dena-
tures enzymatic activities [77]. However, plants activate an antioxidant defense system
comprising different antioxidant enzymes (APX, CAT, GR, DHAR, POD, SOD) to cope
with the heat-induced ROS production [2]. Plants also accumulate various osmolytes,
such as sugars, proline, glyciene-betaine, and different hormones to counter the effects of
HS [74]. The accumulation of these osmolytes improves plant survival by protecting the
cellular membrane, antioxidant activities, and maintaining membrane stability and plant
water relations [2]. Plant hormones play a crucial role in plant responses to different stress
conditions. HS clearly influences the synthesis, degradation, and allocation of hormones
to different plant organs, which indicates that they also play a significant role in plant
responses to HS [2].

3. Melatonin Biosynthesis in Plants

Tryptophan (TP) is a precursor of MT, and the entire process starting from TP to MT
is completed by four different enzymes (Figure 1). The first enzyme, named tryptophan
decarboxylase (TDC), converts the TP into tryptamine, and after that, another enzyme
(tryptamine 5-hydroxylase T5H) converts tryptamine into serotonin (ST) [78], which is
considered the main pathway of ST biosynthesis in plants. However, another biosynthesis
pathway of ST is present in plants such as St. John’s wort (Hypericum perforatum) and it
is the same pathway that involves MT biosynthesis in animals [79]. ST is converted into
N-acetyl-serotonin (NAS) by reaction of N-acetyltransferase (SNAT) or arylalkylamine N-
acetyltransferase (AANAT). After that, NAS is converted into MT with the help of N-acetyl-
serotonin methyltransferase (ASMT) or hydroxyindole-O-methyltransferase (HIOMT).
Moreover, SNAT also converts tryptamine into N-acetyl-tryptamine; however, T5H cannot
convert N-acetyl-tryptamine into N-acetyl-serotonin [80]. Additionally, ST can also be
converted into 5-methoxytryptamine (5MT) with the help of HIOMT and, finally, 5MT
is converted into MT by SNAT [81]. Recently, a reverse pathway of MT biosynthesis has
been discovered, in which NAS deacetylase catalyzes N-acetyl-serotonin into ST [82]. TP is
also a precursor of IAA (indole-3-acetic acid), and the TP pathway is one of the important
pathways of IAA synthesis. In this pathway, TP is catalyzed into tryptamine, after that
tryptamine is converted into IAA as an intermediate, with the help of indole-3-acetaldehyde
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as an intermediate [68]. This shows that MT might have similar impacts on plants such as
IAA [83].

4. Heat Stress-Induced Melatonin Biosynthesis in Plants

MT is an important signaling molecule and it plays a significant role in plants under
different stresses. The synthesis of MT occurs in plant chloroplasts and mitochondria [84],
and its synthesis has been reported in fruit trees, crops, and herbs [85,86]. The level
of MT in plants is influenced by seasonal, as well as circadian, rhythms [87]; however,
the endogenous MT concentration varies significantly in diverse plant species, plant organs,
stress conditions, and stages of plant development [88,89]. For instance, MT concentration
is significantly increased in tomato and morning glory plants during maturity stages [90].
Light conditions also significantly affect the endogenous MT, and tomato and rice plants
grown under field conditions accumulated more endogenous MT compared to plants
grown in growth chambers [86,91].

MT is an important antioxidant, and it interacts with ROS and reduces their con-
centration under stress conditions ([85]. This indicates that the increase in endogenous
MT under stress is linked with an increase in ROS production [85]. The concentration
of MT in grapevine, barley, and lupin was significantly increased after the imposition of
salt and osmotic stress [88]. Similarly, in rice plants, endogenous MT also substantially
increased upon exposure to HS [92]. N-acetylserotonin methyltransferase (ASMT) enzymes
effectively increased endogenous MT and protected plants from the damaging impacts
of HS by increasing the expression of heat shock protein [93]. In another study, [92] re-
ported that HS increased the synthesis of endogenous MT in plants, which was linked with
an increase in the activities of enzymes involved in MT biosynthesis [94]. Furthermore,
Phacelia tanacetifolia also showed a substantial increase in MT upon exposure to HS, which
protected the plants from HS-induced deleterious impacts by stimulating antioxidant ac-
tivities [95,96]. These findings indicated that stress conditions induced endogenous MT
biosynthesis, which indicates its role in plant responses under different stressful condi-
tions [96]. MT accumulation in plants is linked with gene expression and the activities of
enzymes involved in MT biosynthesis. The increase in expression of genes and enzymatic
activities involved in MT synthesis significantly increased the MT synthesis in plants grown
in stress conditions [86,92,97]. The concentration of MT is closely related to the availability
of precursor [97]; therefore, increasing precursor availability can increase MT synthesis
under stress conditions [98].

5. Melatonin a Promising Substance to Improve Plant Performance under HS

HS is serious abiotic stress, and its intensity in recent times has been substantially
increased due to global warming and climate change. HS is a serious concern, and it
induces leaf senescence; disrupts physiological, biochemical, and metabolic processes;
and, therefore, causes a substantial reduction in growth and final production [99]. MT is
an important signaling molecule that improves plant functioning and leads to substantial
increases in growth and development under stressed conditions [100–102]). Additionally,
MT is also a well-known antioxidant and scavenges ROS and protects plants from stress-
induced oxidative damage and improves plant performance [100,103,104].

5.1. Melatonin Modulates Plant Growth and Development

HS significantly reduces plant growth and development and causes a substantial
reduction in final production (Figure 2). MT is a naturally occurring molecule that sub-
stantially improves plant performance under stress conditions [31]. Seed germination
is significantly reduced under HS, which in turn reduces the stand established and the
desired population. MT application (1000 µM) improved germination by 60% in Arabidopsis
thaliana, owing to its stronger antioxidant activities under HS compared to the control [105].
MT also improved the root architecture, reduced leaf senescence, and led to a substantial
improvement in plant growth under HS [106–108].
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Figure 2. MT application protects the photosynthetic apparatus, and improves gene expression,
osmolytes accumulation, maintains metabolic processes, improves polyamines and hormones accu-
mulation, and decreases leaf senescence and ROS, resulting in a marked improvement in growth
under HS.

MT application appreciably detoxifies ROS and modulates antioxidant activities,
which reduces the heat-induced oxidative stress and improves plant growth and develop-
ment [107]. An exogenous supply of MT also increases the expression of HSPs and delta
1-pyrroline-5-carboxylate synthetase (P5CS) gene, which helps to detoxify ROS and leads
to an improvement in plant growth under HS [107]. Moreover, MT also improved the
concentration of polyamines (PAs: putrescine, spermidine and spermine) and amino acids,
and upregulated the expression of stress responsive genes, which consequently improved
the plant tolerance to HS [107,109]. Exogenous supplementation of MT also increased
endogenous nitric oxide (NO) contents, activities of nitrate reductase, and upregulated the
transcription of MYB and WRKy in tea; therefore, resulting in significant improvements
in growth and development [107,110]. In another study, it was noted that an exogenous
spray of MT (100 µM) significantly increased the photosynthesis and biomass production
by 28.10% and 10.20%, by increasing the expression of MT biosynthesis genes and the
accumulation of amino acids [109].
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HS stress induced the production of ROS, which cause damage to the photosynthetic
apparatus and cause a reduction in the overall photosynthetic efficiency of plants. The
exogenous application of MT (50 mM) reduced ROS production, MDA, H2O2, and elec-
trolyte leakage (EL), and increased the chlorophyll contents (Table 2) and protein contents,
by increasing the activities of antioxidant enzymes (CAT, POD, and SOD) and gene ex-
pression, resulting in a significant improvement in growth under HS ([111]. In another
study, it was reported that MT application (20 µM) significantly improved the root and
shoot growth and biomass production, by increasing the chlorophyll synthesis and total
soluble proteins (TSP), and decreased the MDA and H2O2 accumulation, by improving
the antioxidant activities (CAT, POD, and SOD) in tall fescue (Festuca arundinaceous) [112].
An exogenous supply of MT also maintains the nutrient and water uptake, which in turn
improves the photosynthetic efficiency and results in significant improvements in growth
and development [113].

Table 2. Effect of melatonin on growth and physiological attributes under heat stress.

Crop Heat Stress MT Application Effects References

Tomato
HS (42 ◦C) was

imposed at seedling
stage for seven days.

100 µM MT was
applied 7 days after

exposure to HS.

MT application improved the root and
shoot growth, biomass production,

membrane stability,
and chlorophyll contents.

[107]

Tomato
HS (38 ◦C) was

imposed 7 days after
fourth lead stage.

100 µM was applied
at fourth leaf stage.

MT reduced leaf senescence and leaf
yellowing, and enhanced photosynthetic

activity and chlorophyll contents.
[99]

Cherry Radish
HS (35 ◦C) was

applied at
seedling stage.

67.0 mg L−1 was
applied 7 days after
imposition of stress.

MT foliar spraying significantly enhanced
biomass chlorophyll contents,

RuBisCo activity.
[114]

Wheat
HS (40 ◦C) was

imposed at
seedling stage.

100 µM was applied
15 days after sowing.

MT improved growth rate, leaf area,
stomata conductance, photosynthetic and
transpiration rates, the photosynthesis rate,

and chlorophyll contents.

[5]

Ryegrass
HS (38 ◦C) was

imposed after 30 days
of sowing.

20 µM was applied
two days before

imposition of HS.

MT foliar spraying increased chlorophyll
contents, plant height, dry weight,

chlorophyll contents, photosynthetic rate,
membrane stability, endogenous
cytokinins, and reduced the ABA

accumulation.

[115]

Tall fescue
HS (42 ◦C) was

imposed at
seedling stage.

20 µM was applied
before imposition

of HS.

MT supplementation increased shoot fresh
weight, root fresh weight, chlorophyll, and

carotenoid contents
[112]

5.2. Melatonin Maintains Membrane Stability and Plant Water Relationships

HS significantly disturbs the conformation of membrane proteins, which affects the
integrity and functioning of the membrane system. The dysfunction of membranes in re-
sponse to HS is determined by measuring the EL from the cell membrane [116]. An increase
in EL indicates that membrane integrity has been significantly lost owing to the damaging
effects of HS [21,60]. However, MT appreciably maintains the membrane integrity and
reduces the EL upon exposure to HS. The application of MT substantially increased the
antioxidant activities and significantly reduced the EL and MDA accumulation by maintain-
ing membrane integrity [117]. In another study, it was noted that MT application (10 µM)
significantly reduced MDA and H2O2 accumulation by 68% and 49%, and appreciably
increased the membrane stability under HS [118]. The upregulation of transcripts and an-
tioxidant activity (APX and SOD) reduced the lipid per-oxidation; however, MT deficiency
can cause a significant increase in lipid peroxidation under HS [103,119].
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Plants exposed to HS showed a sharp increase in MDA, which damaged the membrane
and caused an increase in EL; however, MT decreased MDA and EL (Table 3) by repairing
the disrupted membrane and reducing the heat-induced oxidative damages by balancing
ROS in high-temperature conditions [107,120]. The foliar supplementation of MT (10 µM)
reduced the heat-induced photo-inhibition, by increasing the expression of ASMT gene,
which in turn reduced the EL and efficiency of PS-II, by increasing antioxidant activities [93].
Heat-induced water deficiency disturbs plant water relations and inhibits the growth and
photosynthetic efficiency of plants. MT application alleviates heat-induced oxidative
damage and improves the water uptake and reduces the water loss, thereby maintaining
higher RCW under HS and subsequently improving the thermo-tolerance of plants [121].

Table 3. Effect of melatonin application on various oxidative stress markers under heat stress.

Crop Heat Stress MT Application Effects References

Wheat
HS (42 ◦C) was

applied at
seedling stage.

100 µM was applied
for 7 days before

application of HS.

Melatonin supply improved membrane
permeability, and reduced the MDA and

H2O2 accumulation.
[32]

Tall fescue
HS (42 ◦C) was

imposed at
seedling stage

50 mM was applied
before imposition

of HS.

Exogenous MT application reduced
ROS level, MDA content, and

electrolyte leakage.
[111]

Tomato
HS (42 ◦C) was

imposed at fourth
leaf stage.

20 µM was applied
7 days after HS.

MT reduced ROS accumulation and
MDA accumulation. [119]

Soybean
HS (42 ◦C) was

imposed at
trifoliate leaf stage.

100 µM was applied
five days before

imposition of HS.

MT reduced H2O2 production, lipid
per-oxidation, MDA accumulation, and

electrolyte leakage.
[122]

Chrysanthemum
HS (40 ◦C) was

imposed at
seedling stage.

200 µM was applied
for 6 days before HS.

MT reduced MDA and H2O2 production
and rate of superoxide anion production. [123]

Creeping bentgrass

HS (35 ◦C) was
applied to
30-day-old
seedlings.

200 µM was applied
two weeks before
stress imposition

MT significantly increased membrane
stability and reduced the EL. [117]

5.3. Melatonin Improves Water Use Efficiency and Nutrient Uptake

The closing of stomata is considered the first line of defense against heat and drought
stress. Plant water use efficiency (WUE) is significantly decreased under HS, owing to
a reduction in stomata conductance. Any change in stomata movement affects the pho-
tosynthetic efficiency of plants, owing to denaturation of the proteins linked with the
photosystem [2]. MT application substantially improved the stomata conductance and
reduced the canopy temperature, which increased the water loss; therefore, maintaining
better WUE and photosynthetic efficiency under HS conditions [124]. HS also reduced
the transpiration, owing to a reduction in stomata movements; however, MT applica-
tion increased the rate of transpiration against heat-induced stomata closure; therefore,
maintaining a higher WUE in plants facing HS [103,113].

Nutrient absorption is necessary for plants because they play a significant role in
plant physiological, biochemical, and metabolic functioning. HS conditions diminish the
water influx through the roots, owing to a decrease in membrane fluidity that reduces
the turgor pressure of cells [125]. MT application improves the vapor pressure deficit
between the atmosphere and leaf surface, enabling the plant roots to take up more water
and nutrients under stress conditions [5]. The application of MT maintains the root activity
and improve water uptake, which in turn increases the uptake of N, P, Ca, K, and Mg and
improves the plant performance and plant tolerance against HS [126]. In another study,
it was reported that the application of MT appreciable increased Ca under HS. The increase
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in Ca uptake protected the cellular membranes and reduced the heat-induced MDA and
H2O2 accumulation in plants growing under HS conditions [127]. These authors also noted
that the application of MT appreciably improved the uptake of other nutrients, including K,
Mg, P, and N, resulting in a substantial improvement in growth performance and tolerance
against HS [127].

5.4. Melatonin Protects Photosynthetic Apparatus and Improves Photosynthesis

Photosynthesis is one of the most important plant processes that is negatively af-
fected by HS [2]. HS causes chlorophyll degradation and significantly disturbs chlorophyll
synthesis; however, MT application substantially detoxifies ROS and maintains optimum
chlorophyll synthesis and protects the chlorophyll from degradation under HS [128]. HS
reduced the concentration of chlorophyll and carotenoids content in tall fescue, but MT
foliar spray significantly improved the concentration of both chlorophyll and carotenoids
contents; evidenced by greener leaves in MT treated plants [112]. MT supplementation also
facilitates photosynthetic carbon assimilation in tomato plants by triggering the Calvin cy-
cle enzyme gene (sedoheptulose-1,7-bisphosphatase), resulting in significant improvements
in the photosynthetic efficiency of plants [33,77]. High temperature decreased the chloro-
phyll and carotenoid contents; however, exogenous supply of MT appreciably restored the
aforementioned photosynthetic pigments under HS compared to the control [100]. More-
over, MT supplementation also significantly increased chlorophyll fluorescence, electron
transport rate, the efficiency of PS-II, and photochemical quenching coefficient, resulting in
a significant increase in photosynthetic efficiency and plant growth [100].

An exogenous supply of MT can attenuate the heat-induced photo-inhibition by in-
creasing the sugar metabolism and upregulating MT biosynthesis [100]. The application of
MT increased the endogenous MT concentration and expression of MT biosynthesis genes
that might have increased the chlorophyll contents under HS [92,99]. RuBisCo is consid-
ered to be a rate-limiting enzyme for RuBP carboxylation, and it is the primary hub of any
stress conditions. HS significantly reduced the RuBisCo activities and expression of genes
(rbsL and rbcS) linked with RuBisCo activity. MT application significantly improved the
expression of these genes and maintained higher photosynthetic efficiency under HS [99].
HS significantly reduced the FBPase activity and led to a significant reduction in plant
photosynthetic performance under HS. MT supply improved fructose-1,6-bisphosphatase
(FBPase) activity and gene expression of its encoding enzyme, which in turn improved
the plant photosynthetic efficiency in plants growing under HS [99]. Chlorophyll fluores-
cence is considered an important tool to research plant photosynthetic properties under
different stress conditions [129]. Melatonin application reduced the adverse effects of HS,
by increasing qP and decreasing the nonphotochemical chlorophyll fluorescence quenching
(NPQ) under HS, which indicates that MT reversed the heat induced damage to the photo-
synthetic machinery [99]. An optimum photosynthetic electron transportation ensures the
optimum energy flow, which maintains plant growth and development under normal and
stress conditions [130]. An exogenous supply of MT maintains electron transportation and
sustains the plant’s photosynthetic activities, resulting in significant improvements in plant
growth under HS [99,103].

5.5. Melatonin Maintains Osmolyte and Hormone Crosstalk

The osmolytes play an important role in protecting plants from the damaging effects
of HS [2]. These osmolytes improve the physiological processes and plant acclimatization
under stress conditions. The application of MT increased the endogenous MT contents,
which contributed to a significant increase in the expression of photosynthesis genes and
the activity of PS-II [100]. MT application to Lolium perenne increased the endogenous MT
and cytokinin contents, while it reduced ABA accumulation and protected the proteins
from oxidizing and misfolding under HS [93,115]. The exogenous supplementation of MT
increased the biosynthesis of an enzyme related to nitrogen metabolism and nitrate contents,
and reduced the ammonium accumulation and provided protection to cucumber seedlings
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grown under HS [131]. In another study, it was noted that MT application significantly
increased the accumulation of total soluble proteins and led to significant improvements in
the growth of tall fescue under HS [112].

Exogenous supplementation of MT significantly increased the endogenous gibberellic
acid (GA) and decreased ABA accumulation in plants exposed to HS. The application of
MT repressed the transcript abundance of ABA biosynthesis and signaling genes; however,
it regulated the expression of MT and GA biosynthesis, which, therefore, led to an increase
in GA and MT, while there was a reduction in ABA accumulation [100]. An increased MT
and GA accumulation controlled the heat-induced senescence in plants [100]. ABA and sal-
icylic acid (SA) are important hormones that play a significant role in plant response under
stress conditions. ABA production in plant cells is linked with ROS formation, and ABA
accumulation leads to a significant increase in H2O2 accumulation [132]. Exogenous MT
has been shown to decrease ABA content and downregulate its biosynthesis gene (NCED),
while upregulating its catabolic genes, including CYP707A1 and CYP707A2 [115,133].
Many other authors also noted that MT application decreased the ABA accumulation and
increased the cytokinin biosynthesis content in plants grown under HS [115,134]. Plants
exposed to HS showed a significant increase in SA; however, SA started declining as stress
conditions were prolonged. MT application increased SA concentration by increasing the
expression of SA biosynthesis gene (PAL2) during HS and led to a significant increase in
plant tolerance against HS [122]. The exogenous supply of MT increased IAA and GA
contents, while MT application reduced the ABA accumulation [135]. MT also significantly
increased the accumulation of methyl jasmonate (MeJA), which resulted in a significant
reduction in H2O2 [136]. Nitric oxide (NO) is considered to play an important role in
cellular homeostasis [137], and MT application increases NO accumulation, which in turn
reduces the oxidative damage by increasing antioxidant activities [138]. Moreover, IAA
also has a positive association with MT, and it has been reported that IAA application
increased the endogenous MT [139].

In another study, Buttar et al. [32] noted that MT application increased the endoge-
nous MT contents and expression of stress responsive genes (TaMYB80, TaWRKY26,
and TaWRKY39) under HS stress [32]. Similarly, other authors also noted that exoge-
nous MT induced heat tolerance by increasing endogenous MT concentrations [93,94]. The
application of MT increases the expression of MT synthesis enzymes (N-acetylserotonin
methyltransferase); therefore, this leads to a significant increase in endogenous MT under
HS [93]. The application of MT also promotes the accumulation of osmolytes, to confer
heat tolerance to plants. For instance, it has been reported that MT treatment enhanced
the proline (Pro), trehalose (Tre), and total soluble sugars (TSS) accumulation in the roots
and sprouts of maize and promoted HS tolerance in maize plants [140]. In another study,
Manafi, et al. [141] reported that heat stress increased the Pro contents in strawberry plants,
which were further increased by MT (50 µM). The increase in Pro accumulation increased
the thermo-tolerance by increasing antioxidant activities [141].

5.6. Melatonin Regulates Accumulation of Secondary Metabolites

Secondary metabolites play a critical role in the signaling transduction of plants,
which is considered beneficial for counteracting the effects of different stresses [142]. Previ-
ously, different authors noted that MT has a positive-regulator impact on the development
of plants and abiotic stresses, by interacting with the polyamines (Pas) signaling path-
ways [143,144]. MT mitigates the heat-induced oxidative damages by interacting with the
PA and NO biosynthesis pathways. Exogenous supply of MT upregulates PAs biosynthesis
genes (ADC1/2, SAMDC1/2, SPMS, and SPDS1/2/3/5/6), which favors a better synthe-
sis of PAs under HS [107]. In another study, Alam et al. [111] stated that long-term HS
plants treated with MT showed a significant improvement in their heat tolerance, through
modulation of PA metabolism. MT along with NO has the potential to combat different
stresses through the L-arginine and PAs metabolic pathways. However, the nitric oxide
synthases (NOS) and nitrate reductase (NR) pathways are also regulated by PAs [145].
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The application of MT upregulates the NO contents, the activities of NOS and NR, and
expression of their genes, which indicates that MT promotes NO activity under HS [107].
The phenolic and flavonoid compounds possess excellent antioxidant and ROS scavenging
activities under stressful conditions. The application of MT significantly increased the total
phenolic (TFC), total flavonoid (TFC), and antioxidant (DPPH) activity, by 90.50%, 73.10%,
and 54.30%, respectively, under HS compared to controls [122], which increased the HS
stress in plants. An exogenous supply of MT significantly increased the level of free PAs
(putrescine; Put, spermidine; Spd, spermine; Spm) in plants and enhanced the HS tolerance,
by increasing antioxidant activities [107].

5.7. Melatonin Strengthens the ROS and Antioxidant Defense System and Detoxifies ROS

Heat-induced oxidative stress is one of the major damages to plants, and causes dam-
age to plant proteins, DNA, and lipids [11,146–149]. However, plants activate an excellent
antioxidant defense system to cope with the damage of heat induce oxidative stress [2].
Generally, CAT and GPX enzymes scavenge H2O2 at diverse cellular compartments and
are considered to be a major regulator of H2O2 homeostasis in plant cells. MT is considered
a dynamic antioxidant that widely stimulates cellular redox homeostasis by increasing the
activities of antioxidant under HS [104,150]. An exogenous supply of MT (70 µM) signifi-
cantly increased the activities of CAT, GR, and GPX, which in turn reduced the heat-induce
damaging effects in maize seedlings [140]. Similarly, other authors also noted that MT
directly scavenges ROS, by activating the antioxidant defense system [151,152]. MT works
as a signaling molecule and reinforces the activities of antioxidants in plants and, therefore,
improves the HS tolerance [140]. MT supplementation also maintained higher activities of
AsA, GSH, CAT, GPX, GR, and SOD and ratios of the AsA/(AsA + DHA) and GSH/(GSH
+ GSSG), reduced the production of ROS, and improved the thermo-tolerance [153].

In another study, Jahan et al. [107] noted that exogenous MT improved the activities
of APX, CAT, GPX, and SOD compared to the control and resulted in a significant improve-
ment in thermo-tolerance [107]. According to Wang et al. [154], exogenous MT application
increased endogenous MT and expression of MT biosynthesis genes and decreased the ROS
accumulation, by increasing the activities of APX, CAT, GPX, and SOD under HS stress.
MT foliar spraying improved the activities of AsA and GSH in plants, which suggested
that MT application improved the antioxidant activities under HS [155,156].

The AsA-GSH cycle represents an important way to eliminate the production of free
radicals in plants. MT application increased the production of AsA and GSH, which led to
lower production of H2O2 under heat and drought stress [157,158]. Buttar et al. [32] also
found that MT application improved the APX and GR (Table 4) activities and improved
GSH biosynthesis, which detoxified the ROS and reduced the MDA accumulation in
wheat plants grown under HS. Moreover, MT application also lowers the TBARS and
H2O2 content, which was linked with augmented antioxidant activities. The increase in
antioxidant activities also increased the photosynthetic and carbohydrate metabolism to
provide energy and a carbon skeleton to plants growing under HS [5]. Additionally, MT
treatments also activated APX, CAT, GSH, Gly-I, Gly-II, GR, and SOD, by increasing their
genes expression (Table 4), and subsequently improved the thermo-tolerance in plants [140].
The increase in the activities of antioxidant enzymes laid the foundation for the acquisition
of HS tolerance in plants. The activation of antioxidant defense system is one of the most
important physiological mechanisms of MT-induced HS tolerance in plants. Therefore, it is
suggested that there is a dynamic relationship between the MT and antioxidant signaling
pathways, which helps to develop HS tolerance in plants.
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Table 4. Effect of melatonin on the accumulation of various osmolytes, antioxidant activities, and
gene expressions under heat stress.

Crop Heat Stress MT Application Effects References

Strawberry
HS (40 ◦C) was

applied at
seedling stage.

100 µM was applied
two days before

imposition of HS.

MT supplementation improved the proline
accumulation and increased the activities of

APX, CAT, GPX, and GSH, and expression of
heat shock proteins.

[141]

Wheat
HS (42 ◦C) was

imposed at
seedling stage.

100 µM was applied
7 days before HS.

MT application increased the activity of
antioxidant enzymes, including SOD, CAT,

and POD.
[32]

Tomato
HS (40 ◦C) was

applied to 8 week
old seedling.

10 µM was applied
8 h before HS.

MT spray enhanced HSP expression to refold
denatured and unfolded proteins under

heat stress.
[93]

Kiwifruit
HS (45 ◦C) was

imposed at
seedling stage.

200 µM was applied
before HS.

MT application enhanced the carotenoid
biosynthesis and regulated the expression of

HSPs, to mitigate HS effects.
[159]

Pinellia ternata
HS (35 ◦C) was

applied at
seedling stage.

100 µM was applied
7 days after HS

imposition.

Exogenous application of MT increased
expression of HSPs, to confer heat tolerance. [134]

Tomato
HS (40 ◦C) was

applied at
seedling stage.

50 µM was applied 7
days after HS
imposition.

MT application increased the GR, MDHAR,
DHAR, GST, SOD, POD, and CAT activities

and increased the accumulation of NO
and polyamines.

[160]

Peppermint
HS (40 ◦C) was

imposed at
seedling stage.

30 mM was applied
after 40 days of

sowing.

MT alleviated adverse effects of HS by
increasing the activity of CAT, SOD, GST,

and POX.
[121]

5.8. Melatonin Up-Regulates the Defensive Genes

MT application appreciably improved the expression of stress responsive genes
(FaTHsfA2a, HSP90, and FaHsfB1a), to confer heat tolerance in plants [94]. For instance in
Arabidopsis, MT application significantly increased the expression of A1 heat-shock factors
(HSFA1s) [94]. Moreover, exogenous supply of MT also triggered the thermal responsive
genes transcripts (HSFA2, HSP90, and HSP101), which participate in inducing HS toler-
ance [94]. Heat shock protein (HSPs) has a close association with HS, and over-expression of
HSP-70 substantially improved the HS tolerance [161]. An exogenous supply of MT signifi-
cantly increased the expression of different HSPs (HSFB3, HSFA1a, HSFA2b, HSP23, HSP70,
HSP80, and HSP90), which in turn improved the thermo-tolerance in chrysanthemum
leaves [123]). HsfA2 and HSP90 are considered to be key regulators of ROS detoxification
through the H2O2-mediated signaling pathway. The application of MT upregulated the
activation of both HsfA2 and HSP90 and conferred HS tolerance in tomato seedlings [107].

A recent study also reported that HsfA2 plays an important role in H2O2 signal-
ing and improves HS memory subsistence, while HSP90 coordinates in DNA-binding
enhancement process and the whole of this process is linked with MT-induced HS toler-
ance [162,163]. In tomato seedlings, exogenous supply of MT increased the MT biosynthesis
and expression of HSP following a substantial increase in thermo-tolerance [93]. Similarly,
strawberry plants treated with MT showed an increase in the expression of FaTHsfA2a,
HSP90, and FaHsfB1a, which contributed significantly to improvements in HS [141]. The
MYB and WRKY transcription factors play an important role regulating complex and
dynamic characteristics under HS. An exogenous supply of MT improved the expression
of stress responsive genes (TaWRKY39 and TaWRKY26) and substantially increased the
thermo-tolerance in wheat plants [32]. Similarly, Du et al. [164] also noted that exogenous
MT increased the expression of TaMYB80 gene expression after six hours of HS and led to a
significant increase in HS tolerance [164,165]. Additionally, MT also increased the endoge-
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nous MT and expression of heat shock factor (HSP), which improved the accumulation of
HSPs following a substantial increase in HS tolerance [40,93].

6. Success Stories of Engineering Melatonin to Improve Heat Tolerance

The accumulation of various hormones and osmolytes improve the plant’s growth
and development under different stress conditions. Owing to the promising characteristics
of MT, efforts are underway across the globe to develop transgenic plants with enhanced
MT levels to confer HS tolerance. Both exogenous MT application, and endogenous MT
manipulation, reduce the ROS and maintain better plant growth and development under
stress conditions. For instance, a tomato line with over-expression of SlSNAT gene protected
the ribulose bisphosphate carboxylase and oxygenase proteins and improved the growth,
efficiency of PS-II, Fv/Fm and reduced the heat-induced injury [154]. In cotton, the over-
expression of GhM2H gene substantially improved the HS tolerance, by increasing the
antioxidant activities, endogenous MT, and reducing the ABA accumulation [166,167].
Moreover, the development of transgenic watermelon melatonin plants with ClCOMT1
genes produced a significant increase in endogenous MT contents, following a substantial
improvement in growth and tolerance against cold and heat stresses [168,169]. Moreover,
the development of apple plants with ASMT gene showed a significant increase in HS
tolerance. The apple plants, upon exposure to cold, drought, and heat stresses, showed
a significant increase in expression of ASMT genes, which increased the endogenous MT
biosynthesis and improved the tolerance against cold, drought, and heat, by increasing
antioxidant activities [170,171]. Ahammed et al. [103] developed MT-deficient tomato plants
by silencing the MT biosynthetic genes (COMT1; Caffeic Acid O-Methyltransferase-1).
These authors noted that COMT1 silencing increased the HS by inhibiting the light relations
and carbon fixation, as well as the efficiency of PS-II reactions and electron transport.
Nonetheless, MT application alleviated the heat induced photosynthesis inhibition, which
indicates that MT is essential for maintaining plant photosynthetic efficiency under stress
conditions [103]. Additionally, in mustard sprouts, an increase in the expression of MT
synthesis genes (BjTDC-1, BjTDC-2) and serotonin N-acetyltransferase genes (BjSNAT-
1) significantly increased the endogenous MT contents and HS tolerance, by increasing
antioxidant activities [172,173].

7. Conclusions and Future Prospects

Heat stress induces serious alterations in plant growth and development by disturbing
a wide range of physiological, biochemical, and molecular processes and antioxidant activi-
ties. However, MT application improves plant performance under HS, starting from seed
germination to senescence and providing adaptive immunity against HS. In light of the
aforementioned findings, it is concluded that MT application improves the membrane sta-
bility, water use efficiency, nutrient homeostasis, and synthesis of photosynthetic pigments,
and protects the photosynthetic system from heat induced oxidative damages; thereby,
improving plant growth under HS. MT application also improves the accumulation of sec-
ondary metabolites, osmolytes, and hormones, and improves antioxidant activities, which
protect plants from heat-induced oxidative damages, and plant performance under HS.
Besides this, MT also improves the expression of heat shock proteins and stress responsive
proteins, which also improves heat tolerance in plants. Additionally, increased endogenous
MT also enhances HS tolerance by different pathways, including improved antioxidant
activities, osmolyte accumulation, photosynthetic performance, and gene expression by
reducing ABA accumulation.

Despite recent progress, there are still many unanswered questions regarding the
MT signaling network and the resulting actions in different plant processes. The role of
MT in seed germination is poorly studied; therefore, future studies should be aimed at to
determine the role of MT in the different processes and mechanisms of seed germination.
MT is considered to be an unstable molecule; therefore, its transportation and accumulation
to different organs must be explored under HS conditions. The role of MT in nutrient
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uptake is poorly studied and only limited information is available in the literature on this
aspect. Thus, more studies are needed to explore the role of MT in nutrient uptake and
nutrient signaling under HS. Moreover, it would also be interesting to explore the role of
MT in ionic transporters and nutrients channels under HS. The role of MT in photosynthesis
under HS has been well explored; however, its role in stomata signaling is still unknown.
Therefore, it would be fascinating to explore the role of MT in stomata signaling and its
effects on the regulation of anion channels in guard cells under HS.

The role of MT in pollen viability, grain quality, and reproductive characteristics has
not yet been explored; thus, it is mandatory to explore the role of MT in these areas. ROS
are mostly produced in chloroplasts and mitochondria, and being a signaling molecule,
it would be interesting to explore inter-organelle MT signaling under HS. The role of MT
in hormones and osmolytes under HS is also poorly studied; therefore, more studies are
needed to explore the role of MT in different osmoregulating compounds and hormones
under HS. The complex relationships of MT with salicylic acid, indole acetic acid, gib-
berellic acid, cytokinin, ethylene, proline, and glycine-betaine must be explored at the
transcriptomic level. It would also be fascinating to explore the effect of MT on the genes
and enzymes linked with the biosynthesis of the aforementioned compounds under HS.
The role of MT is mostly studied under lab conditions, and there is a dire need to conduct
long-term studies under different climatic conditions. The effect of MT on defensive genes
and interaction with HS has not been well explored; thus, more studies are direly needed on
this aspect. Moreover, there is a dire need to elucidate the potential of modern techniques
to identify MT-related genes, proteins, and enzymes, to develop heat-tolerant genotypes.
The development of advanced omic techniques will allow us to explore MT-mediated HS
tolerance in plants at metabolomics, proteome, and transcriptome levels. Finally, engineer-
ing MT-mediated metabolic and signaling pathways will surely open a new window into
existing knowledge, to explore the MT-mediated HS tolerance mechanisms in plants.
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