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Abstract: This paper shows the work carried out to obtain a methodology capable of monitoring
the Common Agricultural Policy (CAP) aid line for the protection of steppe birds, which aims to
improve the feeding and breeding conditions of these species and contribute to the improvement
of their overall biodiversity population. Two methodologies were initially defined, one based on
remote sensing (BirdsEO) and the other on Machine Learning (BirdsML). Both use Sentinel-1 and
Sentinel-2 data as a basis. BirdsEO encountered certain impediments caused by the land’s slope
and the crop’s height. Finally, the methodology based on Machine Learning offered the best results.
It evaluated the performance of up to 7 different Machine Learning classifiers, the most optimal
being RandomForest. Fourteen different datasets were generated, and the results they offered were
evaluated, the most optimal being the one with more than 150 features, including a time series of
8 elements with Sentinel-1, Sentinel-2 data and derived products, among others. The generated
model provided values higher than 97% in metrics such as accuracy, recall and Area under the ROC
Curve, and 95% in precision and recall. The methodology is transformed into a tool that continuously
monitors 100% of the area requesting aid, continuously over time, which contributes positively to
optimizing the use of administrative resources and a fairer distribution of CAP funds.

Keywords: remote sensing; machine learning; copernicus; sentinel; common agricultural policy;
multispectral; radar; monitoring; land cover

1. Introduction

According to data from the Pan-European Common Bird Monitoring Scheme
(PECBMS) [1], farmland birds have suffered a significant population decline of over 50%
on average over the last 40 years. One of the main drivers of the sharp decline in bird
populations has been agricultural intensification, which has led to global biodiversity
loss [1]. One of the most affected groups is steppe birds that depend on the habitats where
agricultural activities occur, being very sensitive to the degradation of these environments.

The loss of fallow land has been linked to the decline of steppe bird populations in
Spain [2], because fallow land (agricultural land left unsown to allow the recovery of soil
nutrients) is vital, among other things, for the feeding and maintenance of the species. For
this reason, traditional extensive fallow management is considered beneficial for improving
biodiversity conservation, especially steppe birds, in agricultural environments.

Since 1960, the European Commission (EC) has aimed to provide a harmonized
framework for agriculture through the CAP by defining European cooperation policies and
managing support to enforce these rules. In addition, the EC has built a shared context for
all its members by using the numerous regulations to achieve a coherent framework for
the CAP development [3] with the applicability of the latest technologies. Tarjuelo et al. [4]
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propose a strategy to reconcile agriculture and biodiversity conservation, based on the
recovery of fallow land through CAP, to guarantee and conserve the future of steppe birds.

Farmers were not allowed support until the 2014-2020 CAP period, provided they met
three measures: maintaining permanent pasture, growing a minimum of three different
crops and establishing landscape features considered essential for biodiversity on 5% of
the farmland [5].

The new CAP, therefore, aims to promote the recovery of fallow land and thus also
promote the recovery of steppe birds, which have their feeding and breeding grounds
in cereal crops. Modifying certain traditional cultivation practices can lead to improved
feeding and breeding conditions for these species and thus contribute to improving their
population and biodiversity. The Autonomous Community of the Region of Murcia (CARM)
aid line for the protection of steppe birds aims to achieve this and sets out obligations
associated with the aid to use medium or long-cycle cereal varieties (wheat, spelt, barley,
rye, oats and triticale) for sowing and not to harvest before 15 July.

Regulation 1306/2013 [6] is the most recent CAP financing, management, and mon-
itoring law. It formed the basis for the beginning of the regulation of the uses of new
technologies, especially remote sensing: Sentinels satellites, unmanned aerial vehicles
(UAV), and georeferenced photographs (Regulation (EU) 2018/746 [7]).

Remote sensing has been incorporated into the agricultural sector as a helpful tool
for tracking and monitoring activities such as crop production, land use monitoring or
environmental protection [8,9]. The last challenge is its incorporation as an essential
tool in the CAP. The CAP wants to take advantage of the new Earth Observation (EO)
philosophy the European Space Agency (ESA) is developing in the 21st Century. Copernicus
Programme (CP), devised by ESA, aims to provide accurate, up-to-date and easily accessible
information to improve environmental management and understand and mitigate the
effects of climate change.

Some studies are concerned with analyzing the potential of Sentinel-1 (S1) data for
assessing different soil, and cereal parameters, such as the one proposed by Bousbih
et al. [10]. Other works conclude that the synergistic use of radar and optical data for
crop classification generates better information and thus increases classification accuracy
compared to optical-only classification [11].

The first remote sensing methodology used to study vegetation has been the oppor-
tunity to perform various operations with the bands of satellite images, where the result
can be converted into a spectral index. The first and most used index is the Normalized
Difference Vegetation Index (NDVI) [12,13]. The NDVI is an indicator of the greenness of
the biomass [14]. The NDVI has been used as: Tool for wheat yield estimation [15], time
series [16], and prediction model [17].

The Data Cube (DC) Concept is a data cube that describes a multi-dimensional array
of values of n-dimensions. This concept was begun used with hyperspectral images in
the 90s. The irregular time series cube (ITSC) is a data cube in which data are generated
with varying time intervals per spectral index. The ITSC are created from optical images:
Landsat [18], MODIS [19], Sentinel-2 (S2) and Sentinel-3 [20] due to cloud cover. However,
the use of S1 images has allowed to generation time series cube (TSC), a series of values
of a quantity obtained at successive times, often with equal intervals between them [21].
The use of the ITSC and TSC are ways to visualize and understand a cartographic time
series quickly.

The use of the DC has increased due to the development of computing, the cloud
infrastructures philosophy, and the Analysis-Ready Data (ARD) products. In compliance
with operational standards established by the International Organization for Standardiza-
tion (ISO) and the Open Geospatial Consortium (OGC), data cubes belong to the category
of coverages. The OGC Community Practice has defined such a data cube as “established
based on a Coverage with a specific grid system for geospatial data with at least one dimen-
sion of the spatial or temporal definition” [22,23]. The ARD is then fundamental to the EO
data cube, which integrates this data into one logical array multi-temporal thematic analy-
sis. The DC input on machine learning [24,25] allows for generating crop modeling [26].



Agronomy 2022, 12, 1674 3 of 24

In this work, the inputs to the generated DCs were multitemporal S1 and S2 images and
associated third-level products, such as polarization or vegetation indices, as well as digital
elevation model or land use data.

This work aimed to develop a methodology to establish whether applicants for aid for
the protection of steppe birds complied with the commitments established in this aid. To
this end, following the principles of CAP monitoring, use was to be made of the enormous
amount of data provided by the Copernicus Programme through the S1 and S2 ground
monitoring missions. In addition, monitoring had to be carried out for all the plots assigned
to the aid continuously over time. For each plot, a light traffic color had to be established,
whereby red indicated that the commitment was not being fulfilled, green that it was, and
yellow that it was impossible to make a clear judgment. Two methodologies were defined
and developed in parallel, the results of which were compared to assess which offered the
better solution. The first methodology presented a more traditional approach based on
remote sensing and finding a biophysical index to obtain an optimal solution. The second
methodology was based on Machine Learning and aimed to generate a model that would
offer a correct solution with good metrics.

2. Study Area

The study area corresponds to the areas where farmers have applied for aid in the
CARM. The different plots are located in the zone of the southwest and plateau of Murcia
Region. Cereal land cover (wheat, barley, oats) and fallow and plowed soils. The Murcia
Region is characterized by warm temperatures almost all year round. According to the
distribution of average temperatures in the region, they exceed 17 ◦C in the Murcia city
area, the Abanilla-Fortuna basin, and the coast reaching 20 ◦C around Aguilas town. In the
interior, it descends to 16 ◦C, 14–16 ◦C in the Altiplano, and 12 ◦C in the Northwest.

Altitude is another factor that increases temperature variations on a local scale, reach-
ing even lower values in the highest areas of Northwest Murcia. The annual thermal
amplitudes are 12–13 ◦C on the coast, 14–16 ◦C in depressions and interior valleys to rise to
17 ◦C in the Altiplano. The average rainfall of the basin can be estimated at 375 mm per
year [27], 472 mm at the head, and 317 mm at the bottom.

Figure 1 shows a map indicating the study area location of this work.

Figure 1. Study area in the Autonomous Community of the Region of Murcia.
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Finally, the height of the cereals cultivated in the study area does not exceed 50 cm
at the point of greatest vegetative development, which is a crucial characteristic to take
into account.

3. Materials

The materials used in this work come from various sources, such as vector and
alphanumeric information from help applications, satellite images or data on agricultural
land use, together with information on the terrain orography of the study area.

For the development of this work, a proprietary tool based on free software was
implemented. This tool was implemented in the Python programming language. It used
libraries such as rasterio or geopandas for GIS data processing, and for the functionality
linked to Machine Learning, it used scikit-learn. A PostgreSQL database with the PostGIS
spatial extension for data storage. The requests library and the Copernicus Open Access
API Hub were combined to access the satellite image repository.

Finally, the tool was deployed by an in-house server with Windows 2016 Server as the
operating system, 64 GB RAM, 4TB hard drive, and an NVIDIA RXT2080Ti graphics card.

3.1. Aid Declarations Data

The information related to the aid applications is included in the Aid Management
application of the Regional Ministry of Water, Agriculture, Livestock, Fisheries, and Envi-
ronment of the Region of Murcia.

The information we can find in this dataset is identifying the agricultural parcel re-
questing the aid, the code of the aid requested, and the enclosure’s geometry. The reference
system of the vector data is ETRS89 (EPSG:25830).

For the campaign under study, 2019, included in the study area, 1466 applications were
submitted, with 9690 hectares. Out of the total number of applications, a reduced number
is selected to elaborate the ground-truth matrix, which will be used later for learning
the model.

3.2. Remote Sensing Data

The satellite images used to carry out this work belong to ESA’s Copernicus Pro-
gramme [28] and, more specifically, to the missions focused on terrestrial monitoring, such
as S1 and S2. While S1 provides radar images, S2 provides optical images.

The main instrument of S1 is a synthetic aperture radar (SAR) in C-band. The main
advantage of this type of satellite is that it can provide images regardless of whether it is
day or night and in any weather conditions. The reference system in which these images
are provided initially is EPSG:4326. Relative orbits 8 (slices 24 and 25) and 103 (slices 2
and 3) provide coverage of the study area. The product used from the S1 was the Ground
Range Detected (GRD).

We did not use the native images provided in the ESA repository for this work, but
we carried out a processing [29] for further analysis. This processing applies a series of
standard corrections and consists of applying the following seven steps:

1. Apply Orbit File
2. Thermal Noise Removal
3. Border Noise Removal
4. Radiometric Calibration
5. Speckle filtering
6. Range Doppler Terrain Correction
7. Conversion to dB

From the last item in the above list, we get the VV and VH polarized backscatter
σ0_VV and σ0_VH, in decibels (dB) [30–34] with a damping value of 1 and a kernel size of
7 × 7 to minimize radar speckle in the pictures.

The VV and VH channels are used for the characteristic matrix and the VV+VH and
VV-VH dual polarizations.
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S2 carries a Multispectral Instrument (MSI), defined as a high resolution, wide swath
multispectral imaging system operating in 13 spectral bands at multiple spatial resolutions.
The product type used is S2MSI2A, whose main features are level 2A processing, orthorec-
tified and UTM geocoding, BOA, and multispectral reflectance [35]. All elements of this
time series had 0% cloud cover over the study area and were provided in the EPSG:32630
reference system. The S2 scene providing coverage for the study area is T30SWH.

All the bands offered in the S2 images were used to carry out this work. The Table 1
shows detailed technical information about these bands:

Table 1. Characteristics of S2 bands used.

Band Resolution (m) Wavelength (nm) Description

B1 60 0.443 Aerosol
B2 10 0.490 Blue
B3 10 0.560 Green
B4 10 0.665 Red
B5 20 0.705 Red edge 1
B6 20 0.740 Red edge 2
B7 20 0.783 Red edge 3
B8 10 0.842 Near infrared
B9 60 0.945 Water vapor

B10 60 1.375 Cirrus
B11 20 1.610 SWIR 1
B12 20 2.190 SWIR 2

Third-level products derived from S2 imagery were also used for this work. These
products are the vegetation indices NDVI [13], GNDVI [36], SAVI [37], and OSAVI [31].

In addition, we also used images from a unmanned aerial vehicle (UAV).

3.3. External Data

The Geographic Information System of Agricultural Parcels, SIGPAC [38], allows
the geographic identification of the parcels declared by farmers and livestock farmers
in any aid scheme related to the area cultivated or used by livestock. In addition to the
above information, SIGPAC provides the declared land use for each declared agricultural
enclosure. At a general level, the SIGPAC distinguishes 30 different agricultural land uses.
For this work, we did not have information on the specific crop of each of the studies
included in the study area but rather a typology in which they could be included.

The data on the orography of the terrain included in the study area is obtained
through the digital elevation model (DEM) provided by the National Center for Geographic
Information (CNIG) [39]. The digital model used in this work has a grid pitch of 5 m and is
presented in the ETRS89 geodetic reference system.

3.4. Field Data Campaign

The field campaigns were designed based on the information provided by the CARM.
The plots were documented by survey in Survey123, filled with a Samsung Galaxy Ta2
Tablet, and photographed with Canon EOS 70D camera installed on a tripod. In a random
way and based on the plot with the aid applications provided by the CARM, it was decided
in which plots the field radiometry would be carried out with an Ocean Optics radiometer.
Through these campaigns, a ground-truth matrix was created.

4. Methods

The work we are concerned with in this paper was approached through two different
methodologies, the results of which will be confronted at the end of the paper. These
methodologies were developed in parallel and aimed at determining whether aid declarants
complied with their obligations.
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The first methodology, BirdsEO, had a more traditional approach as it used earth
observation techniques based on satellite imagery or derived products. The objective was
to obtain an index derived from these satellite images to discern whether respondents
complied with their obligations.

The second methodology, called BirdsML, presented a somewhat more contemporary
approach, as it used Machine Learning techniques in combination with satellite imagery
from Sentinel missions 1 and 2. The objective of this methodology was to obtain a Machine
Learning-based model that would predict, based on probabilities, whether or not aid
applicants were compliant.

The project has a duration of three years. It began on 1 July 2019. The planning was
dynamic, and it changed with the evolution of the project. The activities schedule can be
consulted in Table A1.

4.1. BirdsEO

The project was planned as a decision tree, as shown in Figure 2, which inputs were
the images and outputs were the plots harvested before or after July 15. Decisions would
be made based on thresholds of spectral and polarization indices. First, we work with the
satellite images; for S2, we check the cloud cover and generate the spectral indices and, in
the same way, for S1, we develop the derived products and their corresponding polarised
indices. After this step, the previous results are incorporated into the time series. Then, a
trend analysis of the time series is carried out to check that there is a drop in the indices
as the plot is harvested [17]. Finally, because the images can only identify which plots are
harvested or not, it is necessary to identify which farmers have applied for aid; for this
reason, it is needed to compare with the CARM database to know which applicants do or
do not meet the aid requirements.

Figure 2. Planning according to decision tree.
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The first step was to make those responsible in the Ministry of Agriculture of the
CARM and the farmers understand the problems with protecting steppe birds in the
Region of Murcia and what needs to be covered. The field data campaigns were selected
from aid requested GIS, and they have three different aims: radiometry campaign, UAV
campaign (Figure 3), and getting data about crop type and phenology using Survey123.

(a) (b)

Figure 3. Field data campaigns. (a) Radiometry. (b) UAV.

The radiometry campaigns aimed to know the surface’s spectral response through
reflectance measures. The reflectance (R(λ)) was obtained according to:

R(λ) =
Lc(λ)
Lw(λ)

Cal(λ) (1)

Surface radiance (Lc(λ)), surface white reference radiance (Lw(λ)), and correction
factor white (Cal(λ)). The continuous spectra are transformed to discrete spectra according
to UAV and S2 bands:

RBi =

∫ ∞
o f b(λ)R(λ)dλ∫ ∞

o f b(λ)dλ
(2)

Spectral response functions of S2 and UAV bands ( f b(λ)), cover reflectance (R(λ)), and
cover reflectance of S2 and UAV bands (RBi).

The UAV flights were simultaneous to the radiometry campaigns above the same crop
areas. Acquired data were processed using Pix4Dmapper (Pix4D SA, Cheseaux—Lausanne,
Switzerland), where image calibration, point cloud densification, and ortho-photomosaics
(in WGS 84 UTM Zone 30 coordinate system) were calculated from each of the datasets [40].

The following biophysical indices were generated using the red, green and blue bands
of the S2 images: Normalized Green Red Difference Index (NGRDI) [40,41], Green Leaf
Index (GLI) [42], Red Green Blue Vegetation Index (RGBVI) [43], Visible Atmospherically
Resistant Index (VARI) [44] and Triangular Greenness Index (TGI) [45].

The Sentinels images were downloaded weekly from EarthExplorer ESA Hub Coper-
nicus. The S2 images were converted to 10 m spatial resolution using ESA free software,
the Sentinel Application Platform (SNAP) [46].

Each image’s bands were resampled to 10 m using SNAP [47] and calculated the
following spectral indices. However, there is a wide variety of them [44]: Normalized
Difference Vegetation Index (NDVI), Green Difference Vegetation Index (GDVI), Green
Normalized Difference Normalized Vegetation Index (GNDVI), Normalized difference near-
infrared/shortwave infrared Normalized Burn Ratio (NBR) and Normalized Difference
Infrared Index (NDII) [48]. Other spectral indices are proposed based on inverse reflectance
differences, such as Anthocyanin Reflectance Index (ARI) or Carotenoid Reflectance Index
(CRI550) [49]. However, most indices are based on reflectance in more than three bands.
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Some indices, such as the Soil Adjusted Vegetation Index (SAVI) [50] and Chlorophyll
Absorption Ratio Index (CARI) [51], are based on a transformation technique to minimize
the influence of soil brightness or the effects of non-photosynthetic materials, and they have
very complex forms. In addition, integrated indexes such as the Transformed Chlorophyll
Absorption Ratio (TCARI) and Optimized Soil Adjusted Vegetation Index (OSAVI) were
taken into account for this work [52]. The spectral index of each date was exported to ENVI
format. In ENVI v4.8, irregular time series spectral indices cube (ITSIC) was generated.

The S1 images used in this project were Ground Range Detected (GRD) Interferometric
Wide Swath (IW) products. The radar images were projected onto a standard 10-m grid in
GRD output using SNAP-free software from the ESA.

The polarization indices were calculated [30]: Polarization Ratio Index (PRI), Normal-
ize Difference Polarization Index (NDPI), and Polarization Index (PI). Finally, it is exported
to ENVI v4.8 format, and a time series polarisation index cube (TSPIC) was generated.

4.2. BirdsML

Figure 4 shows a summary of the workflow of the methodology defined to carry out
this work:

Figure 4. BirdsML methodology scheme.

In short, the objective of this work was to develop a methodology that, through satellite
data and other data from different sources and the use of Machine Learning techniques,
would make it possible to check whether the aid applicants complied with the obligations
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undertaken. Following the CAP monitoring process guidelines, the final result was based
on a traffic light system, with red indicating that the commitment was not fulfilled, green
that it was fulfilled and yellow that it is impossible to give a clear verdict.

4.2.1. Sentinel Repository

Using the Copernicus Hub API, a process was implemented that established a connec-
tion with the Hub and obtained the S1 and S2 images for a specific date after performing
the appropriate queries.

This same process was in charge of preprocessing the Sentinel images. On the one
hand, on the S1 images, applying the transformations indicated in that section. On the
other hand, it generated the third-level products derived from the S2 images, indicated in
the section with the same name.

Once the preprocessed Sentinel images were available, a cropping operation was
applied to adjust them to the study area. Other reprojection operations were applied so
that all the input data had the same reference system. In this case, the reference system
selected was EPSG:32630.

4.2.2. Input Data

In addition to the preprocessed Sentinel images, the implemented methodology used
information related to the ground-truth plot, agricultural land use according to SIGPAC,
and the digital elevation model.

In this part, the implemented process performed tasks related to the standardization
of the input data in order to make their combination possible. In this way, rasterization
was applied to the true-land parcel. The agricultural use information performed a spatial
cross-referencing with the true-land parcel and subsequent rasterization.

Once all the input data were in raster format, proceed with the resampling. They all
had a spatial resolution of 10 m and, finally, with a reprojection to the EPSG:32630 reference
system.

4.2.3. Ground-Truth Data

Theground-truth data used contained elements of two different classes. Class 1 indi-
cates that the obligation to help was fulfilled, and class 99 indicates that it was not. The
samples were generated through information obtained from field visits.

As a result, a sample of 43,096 pixels was obtained, which was distributed as shown
in the Table 2:

Table 2. Distribution among classes of the ground-truth data.

Class Pixels Percentage

Fulfill (1) 34,304 80
Not Fulfill (99) 8792 20

For the Fulfill class, utilizing field visits, a series of plots were selected that were going
to be cultivated with medium or long-cycle cereals and that had not applied for the aid
associated with the protection of steppe birds. In this way, it was possible to generate
ground-truth information that would not subsequently have to be predicted by the model,
thus avoiding, as far as possible, over-fitting and favoring better generalization by the
model, which translates into more accurate predictions. They were incorporated into the
ground-truth matrix as polygons.

For the Not Fulfill class, on S2 images, a series of polygons were digitized randomly
over areas where no cereals of the type included in the aid obligations were grown. These
polygons were located on areas with a similar appearance to the crops they intended to
identify and on areas with a completely different appearance.

The spatial resolution of the ground truth matrix was the same as that of the input
data (Section 4.2.2) so that each pixel was 10 × 10 m in size.
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Concerning the Sentinel images, as the objective was to infer whether the aid decla-
rations had complied with the requested aid obligations as of 15 July 2019 crop year, the
implemented process generated a time series composed of 8 images between March and
July 2019.

At this point, to discern how each input data contributed to the model’s performance,
the implemented process generated different learning matrices by combining these input
data. In addition to the input data indicated in the previous section, the developed process
incorporated, in the ground-truth matrix, features related to date and location. In this way,
the following datasets were generated:

Table 3 specifies the features and the number of bands that made up each of the
datasets generated:

Table 3. Features of the generated datasets.

Dataset S2 + Indices S1 + Indices Date Coords. SIGPAC DEM Features

S2 X 120
S2-COOR X X 122
S2-DATE X X 125

S2-OTHER X X X 122
S2-COOR-
OTHER X X X X 124

S1 X 32
S1-COOR X X 34
S1-DATE X X 37

S1-OTHER X X X 34
S1-COOR-
OTHER X X X X 36

S2-S1 X X 152
S2-S1-COOR X X X 154

S2-S1-
OTHER X X X X 154

S2-S1-COOR-
OTHER X X X X X 156

As a method of selecting training and test items, the traditional percentage division,
whereby a percentage, e.g., 80%, of the original dataset, goes to training and the rest to
testing, was discarded. Instead, K-Fold cross-validation was used to adjust and validate
the model [53], with k = 5. This method, for K times, mixes the dataset randomly and
then divides the dataset into K groups. One of the groups is taken as test data set, and the
remaining as training data. With the division done, it fits a model on the training dataset
and evaluates it with the test dataset. Once finished, the score of the selected metrics is
recorded, and the model is discarded. The final performance of the proposed model will
be the average of the K times the process has been run. Thus, we have a less optimistic
estimate of the model’s performance.

Finally, data normalization operations and balancing of the ground-truth matrix [54]
were applied to ensure that the evaluated models competed on an equal footing.

4.2.4. Model Selection

The implemented process evaluated the performance of several Machine Learning
classification models, including the classic KNN, Decision Tree (CART), Extra Trees (EXT),
Random Forest (RF), Bagging (BG), or more novel XGBoost [55] (XGB), and LightGBM [56]
(LGBM).

The dataset used for this part of the process was the one with the most features, labeled
S2-S1-COOR-OTHER.

The approach for developing this work was to have simple models initially and then
sophisticate the model with the best initial performance. For this initial step, it was decided
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to use the baseline of all the selected models to evaluate their performance. These baseline
models were created with the minimum possible definition and using the indispensable
parameters for their creation. The default definition established by the scikit-learn library
was used for all of them. This section aimed to contextualize and understand the datasets’
characteristics and the possible potential of the selected models with the created datasets.
K-Fold type cross-validation was used for the validation of the models, with k = 5, and the
selected metrics were Accuracy (ACC),Kappa, Precision, Recall, F1, and Area under the
ROC Curve (ROC-AUC Curve) [57].

4.2.5. Model Optimization

Once the model with the best performance was selected, it was optimized. For this
purpose, many hyperparameters with a wide range of possible values were selected. Again,
cross-validation was used for the combination of values. The hyperparameters selected
for optimization were the number of estimators, maximum number of features, maximum
depth, number of elements per leaf, or class weight. The Grid Search method was used
as an optimization method, which evaluates the model’s performance for every possible
combination that can be given, and finally, the combination with the set of values that offers
the best performance.

4.2.6. Model Validation

Again, cross-validation was the technique selected to validate the optimized model.
The metrics generated were the same as those in the Model Selection section. In addition,
the confusion matrix was generated, which, although not a metric in itself, is beneficial for
understanding the model’s performance. Learning and model validation curves were also
generated, along with a list of the importance of different features in making a prediction.

4.2.7. Prediction

In the final phase, the implemented process predicted the total surface of the study
area at the pixel level. It generated a raster in which, for each pixel, the predicted class and
the probabilities of belonging to the two existing classes were recorded.

On the other hand, to make a definitive judgment as to whether or not the declarant
complied with the aid obligations, based on the traffic light system, it was necessary to
move from a classification by pixel to a classification by an object, at the parcel level.

For this purpose, the algorithm obtained different zonal statistics between the raster
resulting from the Machine Learning classification and the parcel with the aid declarations.
At this point, generic statistics were stored, such as the mean, standard deviation, number
of pixels or majority, and other custom-created ones, such as the number of pixels per class
and the average probability of the prediction for each class.

Given the zonal statistics of the previous paragraph, to eliminate the influence of
non-target items found at the boundaries of the plots, an adjustment was made to analyze
the results obtained, excluding the pixels on the perimeter of the enclosure. Once these
pixels were excluded, the same statistical information was generated as in the previous
paragraph.

In short, this part of the methodology was used to generate many parameters to infer
whether or not an applicant complied with the requested aid obligations, regardless of the
metrics that can be extracted from the models.

Figure 5 shows, for a given part of the study area, the land use on a date close to 15 July
2019, and the plots applied for steppe bird protection aid. The orthoimage corresponds to a
true-color composition from the S2 image of 10 July 2019.

Figure 6a shows the prediction performed by BirdsML for the above area. Figure 6b
shows the results in the form of a traffic light once the classification at the object level
is obtained from the classification per pixel for each of the plots. To arrive at this object-
level classification, the pixels of the different classes are counted, excluding those on the
perimeter of the plots. To minimize the aids awarded when the obligations are not met,
a threshold of 70% is set for the parcel to be marked as fulfilled.
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Figure 5. BirdsML methodology scheme.

(a)
Figure 6. Cont.
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(b)
Figure 6. From pixel-level to object-level classification. (a) BirdsML prediction. (b) Results as traffic
light system.

5. Results
5.1. BirdsEO

In the first stage, the field data allowed the construction of a spectral library. Thanks
to using the ArcGIS Survey123 ESRI’s forms-based tool for creating, sharing and analyzing
surveys [58]. In this way, it has been possible to generate a library where, for each point,
all the information acquired during the different campaigns is visualized and thus obtain
a cube of irregular time series field data (ITSFDC). The ITSFDCs are converted to Google
Earth files to be visualized and located quickly and easily on any platform and computer.

The high spatial resolution of UAVs, in this case, is not a reasonable solution since it
requires a high number of flights and the processing of large amounts of files due to the
large extension of the study area.

A hyperspectral image is when there is an image of one wavelength in each layer for
a specific date. The ITSC was generated per each spectral index in several files because
its size was too large and could not be parsed because the pilot plot was scattered east of
CARM. Figure 7 illustrates a 3D cube of a hyper-temporal image as each layer corresponds
to a different date of the same variable.

Because the philosophy of the work is to study the trend and to see how the images
evolve before and after 15 July, an image before this deadline and one immediately after
it had to be available. In the trend analysis for a specific date, the information before and
after this date cannot be missing. The image immediately before 15 July was discarded
because it had cloud cover, as shown in Figure 8. It was impossible to analyze what type of
crop existed in each plot and its state of harvest.
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Figure 7. Example of the ITSSC file (in red the pilot areas).

The time series cubes σ0_VV(dB) and σ0_VH(dB), as well as the corresponding polari-
sation index cube (TSPIC), were generated. A suitable pixel was selected in each plot and
generated its time series. The radar images obtained by the Sentinel 1A and 1B satellites
have a periodicity or revisit for six days. In 2020, there is an image on 12 July and another
on July 18 of the study area. The last visit to the field was made on July 16, ending the field
campaign and understanding that the situation observed on that day would be the same as
that observed by the satellite on 18 July.

A first comparative analysis of the NDPVH-VV values of 12 and 18 July shows appar-
ent differences between both dates. These differences are observed in a grey range map
of the temporal difference map ∆(NDPVH-VV) (Figure 9), that is, the difference between
NDPVH-VV (After 15 July = 18 July) and NDPVH-VV (Before 15 July). (July = 12 July).
In the difference map ∆(NDPVH-VV), we obtain positive values for the areas that do not
change and negative values for the areas that change, as observed in the time series of the
areas in which the field monitoring has been carried out:

• ∆(NDPVH-VV) = NDPVH-VV(After 15 July)-NDPVH-VV (Before 15 July)
• ∆(NDPVH-VV) > 0→ No change (red) θ Not harvested
• ∆(NDPVH-VV) < 0→ Change (green) θ Harvested

Figure 9 shows that there are positive and negative values in the same plot. This is
because the slope and plant height influence the radar response, so there are no negative
pixels in plots with mostly positive pixels and vice versa.

Figure 10 shows the temporal evolution of σ0_VV of a harvested plot (a) and a non-
harvested plot (c), together with the temporal evolution of the NDPI, subfigures b and d,
where it can be seen that on the dates when harvesting takes place (before July 15) the slope
tends to be ascending and then descending.
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Figure 8. Example of the cloud cover with the pilot areas on 13 July 2019, the first image after the
deadline (15 July).

Figure 9. Map of ∆(NDPVH-VV) as a function of the change threshold.
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(a) (b)

(c) (d)
Figure 10. Time series of various covers. (a,b) Harvested Cereal. (c,d) Unharvested Cereal.

If we focus the analysis within the plots, we observe a corresponding heterogeneity
of values of ∆(NDPVH-VV). This heterogeneity is due to the radar signal and the Earth’s
surface. The first factor is the terrain relief, and the second is the scattering mechanisms of
the radar signal on vegetation.

The approach of developing a methodology that would allow an index to be obtained
from traditional techniques using images in the radar and optical range presented several
complications: in the optical range due to cloud cover and the radar range due to the slope
of the terrain and the height of the crop. For these reasons, all results obtained by this
methodology were considered inconclusive.

5.2. BirdsML

In this section, the metrics analyzed by each classifier and the results obtained by the
selected model for each dataset generated will be discussed in detail.

5.2.1. Best Model Selection

Once the ground-truth matrix was generated, the first task of the implemented tool
was to select the best performing Machine Learning model for the dataset with the most
features (S2-S1-COOR-OTHER), with its normalized or standardized data, balanced and
with the baseline definition of each of the models. The models selected for evaluation could
be divided between the classics, such as KNN or Random Forest, and the newer ones, such
as XGBoost or LightGBM.

The results and the standard deviation obtained for each of these selected models are
shown in Table 4:

To select the model that would pass to the optimization phase, we decided to give a
higher value to the metrics Kappa, Recall, F1 and AUC-ROC Curve. It was decided to give
less weight to the ACC metric score because we had an imbalanced dataset (Table 2). When
the distribution of the classes is highly skewed, it can become an unreliable measure. The
same strategy was chosen concerning Precision since this metric focuses more on detecting
the positive class. In this case, it penalized more the fact of not detecting a negative class
since it translates into an economic allocation to an applicant who did not comply with the
obligations associated with the aid.

The KNN, RF and LGBM models present very close results on these metrics. The
standard deviation in Table 4 is obtained from each of the iterations carried out in the
K-Fold cross-validation. Thus, the higher the standard deviation, the more significant
the difference in the K results obtained. Paying attention to this standard deviation, we
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observe lower values in the RF model, implying that the k results generated were more
stable, presenting more minor differences between them. It was finally decided to select
Random Forest.

Table 4. Metrics obtained during the model selection phase.

Model
Metrics (%)

ACC Kappa Precision Recall F1 AUC-ROC Curve

KNN 96.75 ± 10.39 93.37 ± 19.26 93.31 ± 17.43 93.89 ± 4.36 95.23 ± 13.54 95.55 ± 8.19

CART 93.44 ± 15.12 85.58 ± 25.66 88.97 ± 20.66 93.95 ± 16.75 88.99 ± 19.15 93.63 ± 12.43

EXT 96.36 ± 11.31 91.58 ± 22.42 94.47 ± 17.61 93.99 ± 12.85 93.70 ± 16.04 95.48 ± 11.48

BG 92.75 ± 15.13 83.87 ± 25.95 87.12 ± 21.51 93.60 ± 16.85 87.70 ± 19.36 93.08 ± 12.45

RF 97.40 ± 5.52 93.14 ± 11.10 94.98 ± 9.27 95.31 ± 6.51 94.75 ± 6.49 96.62 ± 5.70

XGB 96.63 ± 7.33 90.72 ± 19.47 93.67 ± 16.13 94.93 ± 15.55 92.63 ± 15.69 96.00 ± 8.98

LGBM 96.75 ± 5.45 92.64 ± 14.81 93.71 ± 13.65 95.06 ± 10.11 94.06 ± 11.35 96.12 ± 6.92

5.2.2. Data Analysis

Once the best-performing model was selected, the process adjusted the model and
validated it for each of the datasets generated after optimizing this model. Table 5 shows
the metrics obtained for each of the datasets generated:

Table 5. Metrics obtained by Random Forest for each of the generated datasets.

Dataset
Metrics (%)

ACC Kappa Precision Recall F1 ROC-AUC Curve

S2 95.28 ± 8.97 86.34 ± 24.49 90.02 ± 20.33 89.63 ± 19.13 89.32 ± 18.78 93.18 ± 12.47

S2-COOR 96.92 ± 8.13 91.49 ± 22.33 93.67 ± 19.17 93.91 ± 15.76 93.44 ± 17.17 95.80 ± 10.69

S2-DATE 94.06 ± 8.99 81.26 ± 26.05 91.32 ± 20.32 81.58 ± 23.03 84.80 ± 20.66 89.42 ± 13.75

S2-OTHER 95.12 ± 11.19 89.40 ± 21.05 90.83 ± 20.14 96.59 ± 6.03 92.24 ± 14.85 95.66 ± 8.42

S2-COOR-OTHER 97.84 ± 6.14 94.46 ± 14.44 95.04 ± 13.74 97.33 ± 6.43 95.81 ± 10.64 97.65 ± 6.05

S1 82.61 ± 8.46 26.73 ± 34.52 63.34 ± 35.36 26.11 ± 30.88 32.46 ± 32.44 61.59 ± 16.37

S1-COOR 92.85 ± 9.89 80.67 ± 24.82 88.14 ± 21.44 89.36 ± 22.30 84.62 ± 20.08 91.5 ± 11.69

S1-DATE 90.53 ± 9.97 16.73 ± 35.21 64.52 ± 36.11 18.38 ± 33.69 27.12 ± 37.28 57.64 ± 18.73

S1-OTHER 91.82 ± 12.59 82.40 ± 24.52 83.05 ± 24.56 97.03 ± 5.39 87.19 ± 17.41 93.76 ± 8.43

S1-COOR-OTHER 96.19 ± 7.48 89.87 ± 19.30 92.18 ± 17.18 96.05 ± 15.07 92.05 ± 15.47 96.13 ± 8.45

S2-S1 94.92 ± 9.33 84.81 ± 24.04 92.43 ± 19.48 85.38 ± 17.23 87.87 ± 18.24 91.37 ± 11.77

S2-S1-COOR 96.43 ± 8.25 90.38 ± 21.21 93.70 ± 18.71 92.88 ± 14.59 92.60 ± 16.05 95.11 ± 9.96

S2-S1-OTHER 95.10 ± 11.27 89.44 ± 21.17 94.79 ± 20.17 97.33 ± 5.75 95.67 ± 14.92 97.61 ± 8.44

S2-S1-COOR-OTHER 97.77 ± 3.09 94.29 ± 7.26 94.79 ± 6.90 97.33 ± 3.25 95.67 ± 5.35 97.61 ± 3.04

After finding that the date-related features of the Sentinel images did not contribute
positively to improved model performance, it was decided to remove them from successive
datasets. From the table above, it can be seen that the best performing dataset was the one
that incorporated all the features (S2-S1-COOR-OTHER).

5.2.3. Optimized Hyperparameters

The relationship of the values established for each of the hyperparameters that were
taken into account in the optimization phase of the Random Forest model is shown below:

• Number of trees in the forest (n_estimators): 800
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• The minimum number of samples required to split an internal node (min_samples_split): 35
• The minimum number of samples required to be at a leaf node (min_samples_leaf): 60
• The number of samples to draw to train each base estimator (max_samples): 0.9
• The maximum depth of the tree (max_depth): 60
• The function to measure the quality of a split (criterion): gini
• Weights associated with classes (class_weight): balanced

5.2.4. Features Importance

Figure 11 shows the importance of the characteristics in the final performance of the
model, grouped by type. It can be seen that the S1 features were of little importance and
that the S2 bands were the most important.

Figure 11. Importance of characteristics grouped by typology.

In Figure 12, the relevance of each time series data in the generated model can be consulted.
We can see how the initial dates had little impact on the final performance of the model.

Figure 12. Relevance of time series dates.
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5.2.5. Learning Curve

Figure 13 shows the learning curve of the model generated in this work, in which the
relationship between the number of samples and accuracy can be seen. It shows how a
plateau was reached towards the end of the number of available samples.

Figure 13. Learning curve of the model.

6. Discussion

The objective of satellite image monitoring is to carry out a periodic and continuous
control that verifies the status of an activity observed through a time series of images.
This work has aimed to propose a methodology to automatically monitor the aid line for
the protection of steppe birds promoted by the CAP, using Sentinel 1 and 2 missions and
derived products that improve the decision-making process on granting aid. As part of
the methodology, a traffic light map was developed to indicate which applications comply
with the aid requirements (green) and which do not (red) [24].

To achieve our objectives, we needed to use images from S1 and S2. Two methodologies
with different approaches were proposed to choose the most suitable for the achievement
of the proposed objective at the end of the process:

• BirdsEO: proposes a strategy based on using more traditional remote sensing to
combine different indices to see if the helpline conditions are met.

• BirdsML: proposes combining ML algorithms with satellite imagery, mainly S1 and
S2, and derived products (vegetation or polarised indices).

To achieve our goal, it was necessary to collect data for BirdsML from S2 without
cloud cover; specifically, eight days were chosen. After selecting the images, different
ML models were evaluated, RF was the one with the best metrics. Once the model was
established, the model was optimized, finally obtaining values between 95–97% for all the
monitored metrics. In the prediction phase, a pixel-level classification was obtained, then
translated into a plot classification to get results like a traffic light. A threshold of 70% of
predicted pixels was set with class 1 or Fulfill to establish which plot met the obligations.
Furthermore, the BirdsEO methodology was inconclusive due to the crop typology, as the
plant height did not allow results to be obtained using traditional remote sensing. The
confusion created by satellite images to determine the plant’s height is due to the slope of
the surface or the inclination of the plant caused by the wind. This problem is typical in
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radar images and S1 images too [59–61] . Therefore the methodology finally proposed as a
solution to the problem was BirdsML.

Different proposals in the literature address the issue of detecting crops such as cereals
using ML models. Paper [62] applies the use of time series on SAR S1 data, valid for the
classification of several types of crops and determining that cereals have a different time
signature than the rest of the crops. In paper [63] they demonstrated that estimation of
cover crop biomass is feasible using only VIs, as well as integrating optical remote sensing
and SAR. Finally, paper [64] presented a novel technique based on deep learning for crop
type mapping, using NDVI time series for crop type mapping and compared with other
advanced supervised learning techniques.

The BirdsML methodology can establish which applicants meet the conditions for this
type of aid. These mechanisms represent progress in the digital transformation of public
administrations, as it reduces the time spent on administrative tasks, improve efficiency
in the management and granting of aid and generates savings in field trips or on-site
controls. As weaknesses, we can highlight that the ground-truth dataset was unbalanced.
For this reason, it would have been possible to develop further the application of techniques
to balance it and check its repercussion on the model artificially. In addition, we could
stop using traditional ML models and explore more carefully other more recent models
such as LightGBM, XGBOOST, or even neural networks. The main idea is to improve the
methodology during future campaigns by strengthening its weak points.

7. Conclusions

This work aimed to generate a methodology to discern whether applicants for aid
for the protection of steppe birds complied with their commitments. These commitments
include sowing medium or long-cycle cereal varieties and not harvesting before 15 July.

Two methodologies have been proposed to achieve the objective, one with a more
traditional approach based on remote sensing (BirdsEO) and the other using Machine
Learning (BirdsML). The first one used satellite images from the S1 and S2 missions to try
to obtain an index as a solution. The second was based on combining data from different
sources, such as time series of satellite images with their associated products, land uses
and the aid applicant plots. This data was processed by applying Machine Learning
techniques to judge whether an applicant was complying with the required obligations. In
this way, we would end up with two results, and the final solution could be either of the
two methodologies or a combination of both.

About the so-called BirdsEO methodology, certain impediments were encountered,
mainly related to the land’s slope and the crop’s height. Therefore, the results were
inconclusive, as they did not allow us to discern whether any medium or long-cycle cereal
varieties were grown on the plots that applied for assistance.

In BirdsML, up to 14 different datasets were generated, and seven different Machine
Learning classifiers were evaluated. The classifier that presented the most optimal results
on the dataset with the highest number of features and the baseline definition was Random
Forest, with 97% in metrics such as accuracy, recall and ROC-AUC Curve, and 95% in
precision and recall. The LightGBM model also gave excellent results. As for the datasets
generated, the one with the best metrics had the most significant number of features, called
S2-S1-COOR-OTHER, which had a total of 156 independent variables, including a time
series of satellite images S1 and S2, from 8 different dates.

At a more detailed level, it was found that the S1 data did not provide good metrics.
On the other hand, contrary to what one might initially think, incorporating date-related
features for each time series element into the Sentinel images did not help the model
generalize better. Incorporating information related to the geographic location of the data
offered a slight improvement in the model metrics.

Focusing on the importance of the features grouped by typology, it was observed that
S2 data, grouping images and derived vegetation indices, summed about 70%, and S1 data
(images + indices) only 4%. Characteristics related to land use and geographic location
evenly distributed the remaining percentage.
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Regarding the S2 time series dates, it was observed that the initial dates, when the
crop is less developed, have little relevance to the model’s predictions.

Finally, we observed that a plateau phase was reached in the model learning curve
towards the end of the maximum number of available samples, but it was not observed.

Among the improvements of this line of research is introducing the concept of feature
engineering, whereby a compromise between dimensionality reduction of the ground-truth
matrix and model performance would be sought, or whereby new relevant features such
as agroclimatic information would be introduced [65]. Another option could be working
more deeply with the LightGBM model or neural networks.
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Appendix A

The workflow followed during this project is shown in Table A1.

Table A1. Activity schedule.

Activity Methodology Activity Period

State of Art BirdsEO, BirdsML July-2019 & September-2019
Radiometry Campaigns BirdsEO July-2019 & September-2019

UAV Campaigns BirdsEO July-2019 & September-2019
Survey123 Campaigns BirdsEO, BirdsML July-2019 & September-2019

S1&S2 Download BirdsEO, BirdsML July-2019 & September-2019
S1&S2 Indices Generation BirdsEO, BirdsML July-2019 & September-2019

S1&S2 Indices Analysis BirdsEO, BirdsML July-2019 & September-2019

Machine Learning BirdsML January-2020 &
December-2021

Paper and Report BirdsEO, BirdsML January-2022 & June-2022
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