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Abstract: The development of varieties with strong tolerance is one of the important strategies to
diminish the negative impact of chilling stress during heading on the spikelet fertility and yield
formation of late-season rice. However, whether such genetic improvement has been made in inbred
late rice lines in China is not clear. In the present study, three late-season inbred rice varieties, Xiang-
wanxian2 (XWX2, released in 1988), Xiangwanxian8 (XWX8, released in 1998) and Xiangwanxian17
(XWX17, released in 2008) were subjected to moderate (20 ◦C) and extreme (17 ◦C) chilling stress
during heading, and the grain yield components and flowering-related traits of the three varieties
in response to different temperature were investigated. The results showed that the newly released
inbred late rice variety XWX17, demonstrated better chilling tolerance during heading than the
early released varieties with respect to higher grain filling percentage. The improved grain filling
percentage in XWX17 might be the results of increased spikelet fertility, which was attributed to the
increase in pollen viability, anther dehiscence length and anther volume. In addition, the SPAD value
and the chlorophyll a content of the flag leaf can be used as indicators to predict the rice spikelet
fertility when suffering from chilling stress during heading. The present study provides evidence that
the genetic approach has been made to improve the chilling tolerance of inbred late rice lines during
heading; however, further research is needed to explore the physiological and molecular mechanism
underlying the relationship between leaf characteristics and function with rice spikelet fertility.

Keywords: chilling stress; inbred late rice; spikelet fertility; grain filling

1. Introduction

Rice (Oryza sativa L.) is the most important crop in the world and the main food for
more than half of the population. It is also the main food crop in China. The Yangtze
River Basin is the major rice production region in China, of which the double-season rice
system is the dominant rice production system and is considered as an efficient system to
improve multiple-crop index and total rice production. In the double-season rice system,
the late-season rice is transplanted to the field in July after the harvesting of the early
season rice, and it is flowering in the middle of September, during which the temperature
is decreased rapidly. It has been reported that the daily mean temperature in the Yangtze
River Basin during September is 21.8 ◦C, and the cold dew (the duration of low temperature
that is below 20 ◦C and lasts for more than three days) frequently occurs in this area. The
low temperature would cause chilling stress to the late-season rice, resulting in heading dif-
ficulty, poor spikelet fertility, which inhibits the transportation of photosynthetic products,
and leads to the decrease in seed setting rate and yield reduction.

Rice originated in tropical regions and is extremely sensitive to temperature during
heading and flowering. It has been reported that ambient temperature equal to or lower
than 20 ◦C lasting for 3 days during flowering would seriously affect the seed setting rate
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for rice [1]. Jia et al. [2] reported that low-temperature treatment, at 17 ◦C, with cold water
irrigation at the booting stage significantly reduced rice grain yield. The negative effects
of low temperature during flowering on the grain filling percentage and grain yield were
mainly attributed to the decreased spikelet fertility, which might be the results of short
anther dehiscence, poor pollen grains, and low pollen germination on stigmas [3,4]. In
addition, the reduced panicle exertion was also reported to be responsible for the decreased
spikelet fertility under chilling stress [5]. In addition, the chilling stress might accelerate
the production of reactive oxygen species (ROS) [6] and induce the fast degradation of
chlorophyll in leaf [7,8], which ultimately reduce the production and translocation of
photosynthetic products from the leaf to rice grain.

To diminish the negative effects of chilling stress during heading on the grain yield
formation of late-season rice, it is of importance to select varieties with strong tolerance to
low temperature stress. Several studies have reported the varietal differences in rice against
temperature stress [9]. In general, indica species are more tolerant to high temperature;
in contrast, japonica species are more tolerant to low temperature stress [10]. In recent
years, the genetic approaches have been made to screen high chilling-tolerant germplasms
and to introduce chilling-tolerant genes into modern varieties via hybrid rice breeding.
Several hybrid late rice varieties that possess relatively high chilling resistance have been
successfully bred and adopted in the Yangtze River Basin of China. Nevertheless, it is
not clear whether the breeding progress of inbred late rice varieties has paid attention to
enhancing the chilling resistance at the heading stage of late rice. In the present study, three
late-season inbred rice varieties, Xiangwanxian2 (XWX2, released in 1988), Xiangwanxian8
(XWX8, released in 1998) and Xiangwanxian17 (XWX17, released in 2008) were subjected
to moderate (20 ◦C) and extreme (17 ◦C) chilling stress during heading in a greenhouse
experiment. The grain yield and flowering-related traits of the three varieties in response
to different temperature were investigated. The objectives of the present study were to
evaluate the variances in chilling tolerance among three inbred late rice varieties that
were released from different decades regarding grain yield, grain filling percentage and
flowering traits, and to explore whether the genetic improvement in inbred late rice has
been focused on the chilling tolerance during heading.

2. Materials and Methods
2.1. Plant Material

Three inbred rice varieties, Xiangwanxian 17 (XWX17), Xiangwanxian8 (XWX8), and
Xiangwanxian2 (XWX2), from the Yangtze River valley in China were selected as the test
materials, which were provided by Hunan Germplasm Resources Bank. The detailed
information for the tested varieties was shown in Table 1.

Table 1. The detailed information for the tested varieties.

Variety Name Growth Duration (d) Released Year

Xiangwanxian2 109 1988
Xiangwanxian8 118 1998

Xiangwanxian17 117 2008

2.2. Experimental Design

A pot experiment was conducted in 2020 at the Rice Research Institute of Hunan
Agricultural University. The rice seeds of the three varieties were sown in plastic seedling
trays with wet paddy soil on 28 June 2020. Three-leaf seedlings were transplanted in to
a plastic pot (22.5 cm height, 29 cm top diameter) on 23 July, which contains a mixture
of 7 kg clay soil. Phosphate fertilizer (1.00 g P pot−1) in the form of calcium superphos-
phate and potassium fertilizer (1.60 g K pot−1) were applied as basal fertilizer. A total
of 1.60 g N pot−1 was equally spilt three times as basal fertilizer, tillering fertilizer, and
panicle fertilizer, respectively. The potted plants were placed in a plastic greenhouse with
three replication, and each replication contained 10 pots. All the pots were watered with
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tap water, and the pests, diseases and weeds were strictly controlled during the entire
growing season.

In each variety, when 50% of the rice panicle started exertion and the exerted length
reached 1 cm, the exerted panicles of the rice plants were tagged, and the pots were then
transferred to three individual growth chambers for temperature treatments. The daytime
temperature was set as 22 ◦C, 19 ◦C and 25 ◦C from 6:00~18:00 for moderate chilling stress
(MCS), extreme chilling stress (ECS) and normal temperature control (NT), respectively,
whereas the corresponded nighttime temperature was set as 18 ◦C, 15 ◦C and 21 ◦C from
18:00~6:00, respectively. After 5 days of temperature treatment, all the pots were transferred
to the plastic greenhouse and grown to maturity.

2.3. Observations
2.3.1. Spikelet Fertility and Yield Components

At maturity, three plants from three pots were harvested. After the panicle numbers
were counted, all the grain were manually threshed and were then separated to filled grains,
half-filled grains, and empty grains using tap water and an air-flow machine. The spikelet
fertility, total spikelet numbers, grain filling percentage and 1000-grain weight was then
determined according to the methods reported by [11].

2.3.2. Pollen Viability

At 0 and 5 days after temperature treatments, six spikelets were collected from the
upper, middle and lower parts of one panicle and at least 20 panicles were selected in each
replication. Pollen viability was observed by dyeing with 1% I2-Ki solution. Abnormal
pollen grains with no staining, shallow staining, and partial staining, and shrunken or
hollow were recognized as sterile pollen, and dark and full round pollen grains were
recognized as fertile pollen [12].

2.3.3. Anther Characteristics

At 5 days after temperature treatments, at least 100 spikelets from each replication
were sampled, and the anther length, anther width and dehiscence length were measured
using a depth of field microscope (Zoom-Smart 5, Carl Zeiss AG, Oberkochen, Germany).

2.3.4. SPAD, Chlorophyll Assay

During the measurement, the instruments SPAD-502 Plus were employed, and flag
leaves were selected for the SPAD measurement. Five flag leaves of rice were randomly
selected to measure SPAD in each plot, and there were ten SPAD measurement data in the
same period for each treatment [13].

The leaf samples were mixed with sodium phosphate buffer (50 mM, pH 6.8) and
ground in an ice bath. The supernatant was mixed with 95% ethanol and kept in the dark
for 30 min before being centrifuged at 1000× g under 4 ◦C for 15 min. The absorbance
at wavelengths 665 nm and 649 nm was measured using a spectrophotometer (U-2900,
Hitachi, Tokyo, Japan) [14].

2.4. Statistical Analysis

A one-way analysis of variance was conducted to test the effects of low temperature
stress at flowering stage on flowering, fruiting, and physiology of three late rice varieties
using IBM SPSS Statistics 20 (IBM, Inc., Chicago, IL, USA). Different alphabetical letters are
used in figures and tables for showing significant differences.

3. Results
3.1. Yield Components

The variances in yield components of the three varieties in response to different tem-
perature treatment are shown in Table 2. The chilling stress during flowering progressively
decreased the grain filling percentage. When compared with normal temperature control,
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the grain filling percentage was decreased by 2.93–13.14% and 23.19–31.16% under 20 ◦C
and 17 ◦C, respectively. Meanwhile, significant variances were found among different vari-
eties responding to temperature treatments. The moderate chilling stress (20 ◦C) reduced
the grain filling percentage of XWX2 and XWX8 when compared with normal temperature
control (23 ◦C), but such effects were statistically insignificant (p > 0.05) in XWX17. In
addition, although the extreme chilling stress (17 ◦C) significantly reduced the grain filling
of the three varieties, such reduction was smaller in XWX17 than that in XW2 and XWX8.
In addition, no variance was found on panicle numbers, spikelet number per panicle and
grain weight among different varieties and temperature treatments.

Table 2. The grain yield components of three inbred late varieties under different temperature
treatments.

Variety Temperature
Treatments

Panicle Number
(No. plant−1)

Spikelet Per
Panicle

Grain Weight
(g)

Grain Filling
Percentage (%)

XWX2
NT 12.2 ± 0.97 a 120.1 ± 6.05 a 24.46 ± 0.54 a 75.13 ± 0.97 a

MCS 11.8 ± 1.80 a 108.2 ± 8.08 a 24.30 ± 0.48 a 65.26 ± 1.34 b
ECS 11.8 ± 1.43 a 101.0 ± 2.95 a 24.24 ± 0.84 a 51.72 ± 2.81 c

XWX8
NT 12.6 ± 0.98 a 126.0 ± 3.39 a 27.64 ± 0.45 a 77.44 ± 2.61 a

MCS 12.2 ± 1.43 a 123.2 ± 2.91 a 26.58 ± 0.53 a 69.87 ± 1.55 b
ECS 11.8 ± 1.16 a 114.2 ± 6.82 a 26.58 ± 1.10 a 57.96 ± 1.77 c

XWX17
NT 13.6 ± 1.57 a 136.6 ± 5.56 a 27.76 ± 0.59 a 81.29 ± 2.73 a

MCS 13.2 ± 1.24 a 131.0 ± 3.58 a 27.06 ± 0.64 a 78.91 ± 1.07 a
ECS 13.0 ± 1.22 a 131.6 ± 5.71 a 27.68 ± 1.22 a 62.44 ± 4.11 b

Note: The data were presented as mean value ± standard error (SE) of three replicates. Different lowercase letters
denote statistical differences between temperature treatments of a variety at the 5% level according to LSD test.
XWX2: Xiangwanxian2; XWX8: Xiangwanxian8; XWX17: Xiangwanxian17; NT: Normal temperature control;
MCS: Moderate chilling stress; ECS: Extreme chilling stress.

3.2. Spikelet Fertility

Significant variations in spikelet fertility were observed between varieties and tem-
perature treatments (Figure 1). In XWX2 and XWX8, both moderate (20 ◦C) and extreme
chilling stress significantly decreased the spikelet fertility. Compared with normal tempera-
ture control, the spikelet fertility was reduced by 6.29–21.07% and 17.32–31.39% at 20 ◦C
and 17 ◦C, respectively. In contrast, the XWX17 exhibited stronger tolerance to moderate
chilling stress, as the spikelet fertility at 20 ◦C showed no significant difference to that of
23 ◦C. Moreover, in addition, XWX17 showed a smaller decrease in spikelet fertility than
XWX 2 and XWX8 under extreme chilling stress.

3.3. Pollen Viability

The pollen viability of the three late rice varieties was inhibited after 5 days of chilling
stress treatments (Figure 2). When compared with NT, the pollen viability of XWX2, XWX8
and XWX17 was decreased by 3.67%, 11.83% and 2.96%, respectively, at MCS, and was
decreased by 24.32%, 19.64% and 17.93%, respectively, at ECS. In comparison with XWX8,
the XWX2 and XWX17 showed stronger resistance to MCS because the decrease in pollen
viability did not reach a significant level. In addition, although the pollen viability of the
three varieties was significantly reduced at ECS, the decreased level was lower in XWX17
than that in XWX2 and XWX8, as compared with NT.

3.4. Anther Characters

The changes in anther characters of the three late rice varieties under different tem-
perature treatments regarding anther width, anther length and anther dehiscence were
shown in Figures 3 and 4. The chilling stress reduced the anther dehiscence length of the
three late rice varieties (Figure 3). The varietal differences were similar to that observed in
spikelet fertility and pollen viability. The anther dehiscence length of XWX2 and XWX8
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was significantly reduced by 5.00% and 11.31%, respectively, at MCS, as compared with
NT, but such a reduction did not reach a significant level in XWX17. In addition, the anther
dehiscence length of XWX17 was decreased by 11.91% at ECS, which was smaller than the
decrease of 31.68% and 24.09% observed in XWX2 and XWX8, respectively, as compared
with NT.

Agronomy 2022, 12, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. The spikelet fertility of three inbred late varieties under different temperature treatments. 
(a) XWX2. (b) XWX8. (c) XWX17. XWX2: Xiangwanxian2; XWX8: Xiangwanxian8; XWX17: 
Xiangwanxian17; NT: Normal temperature control; MCS: Moderate chilling stress; ECS: Extreme 
chilling stress. Different lowercase letters denote statistical differences among treatments of a culti-
var at the 5% level according to LSD test. Error bars above mean indicate standard error (n = 3). 

3.3. Pollen Viability 
The pollen viability of the three late rice varieties was inhibited after 5 days of chilling 

stress treatments (Figure 2). When compared with NT, the pollen viability of XWX2, 
XWX8 and XWX17 was decreased by 3.67%, 11.83% and 2.96%, respectively, at MCS, and 
was decreased by 24.32%, 19.64% and 17.93%, respectively, at ECS. In comparison with 
XWX8, the XWX2 and XWX17 showed stronger resistance to MCS because the decrease 
in pollen viability did not reach a significant level. In addition, although the pollen viabil-
ity of the three varieties was significantly reduced at ECS, the decreased level was lower 
in XWX17 than that in XWX2 and XWX8, as compared with NT.  

   
Figure 2. The pollen viability of three inbred late varieties under different temperature treatments. 
(a) XWX2. (b) XWX8. (c) XWX17. DAT: Days after temperature treatments; XWX2: Xiangwanxian2; 
XWX8: Xiangwanxian8; XWX17: Xiangwanxian17; NT: Normal temperature control; MCS: Moder-

Figure 1. The spikelet fertility of three inbred late varieties under different temperature treatments.
(a) XWX2. (b) XWX8. (c) XWX17. XWX2: Xiangwanxian2; XWX8: Xiangwanxian8; XWX17: Xiang-
wanxian17; NT: Normal temperature control; MCS: Moderate chilling stress; ECS: Extreme chilling
stress. Different lowercase letters denote statistical differences among treatments of a cultivar at the
5% level according to LSD test. Error bars above mean indicate standard error (n = 3).
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Figure 2. The pollen viability of three inbred late varieties under different temperature treatments.
(a) XWX2. (b) XWX8. (c) XWX17. DAT: Days after temperature treatments; XWX2: Xiangwanxian2;
XWX8: Xiangwanxian8; XWX17: Xiangwanxian17; NT: Normal temperature control; MCS: Moderate
chilling stress; ECS: Extreme chilling stress. Different lowercase letters denote statistical differences
among treatments of a cultivar at the 5% level according to LSD test. Error bars above mean indicate
standard error (n = 3).
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Figure 3. The anther dehiscence length of three inbred late varieties under different temperature
treatments. (a) XWX2. (b) XWX8. (c) XWX17. DAT: Days after temperature treatments; XWX2:
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above mean indicate standard error (n = 3).
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treatments. XWX2: Xiangwanxian2; XWX8: Xiangwanxian8; XWX17: Xiangwanxian17; NT: Normal
temperature control; MCS: Moderate chilling stress; ECS: Extreme chilling stress.

Similar trends were also observed in anther width and length. Chilling stress decreased
the length and width of the anthers, and such effects was more pronounce in ECS than that
MCS (Figure 4).

3.5. SPAD of Different Late Rice

The SPAD of the three late rice varieties was descended after 5 days of chilling stress
treatments (Figure 5). When compared with NT, the SPAD of XWX2, XWX8 and XWX17
was decreased by 19.26%, 9.15% and 10.21%, respectively, at MCS, and was decreased by
25.37%, 11.74% and 19.36%, respectively, at ECS. The SPAD of the three late rice varieties
was recovered after 10 days of chilling stress treatments (Figure 4). When compared with
XWX2, the SPAD of XWX8 and XWX17 was increased by 10.83%, 21.65%, respectively, at
MCS, and was increased by 11.52%, 24.38%, respectively, at ECS. In comparison with XWX2
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and XWX8, the XWX17 showed stronger resistance to MCS/ECS because the increase in
SPAD did reach a significant level after 10 days of chilling stress treatments.
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Figure 5. The flag leaf SPAD reading of three inbred late varieties under different temperature
treatments. (a) XWX2. (b) XWX8. (c) XWX17. DAT: Days after temperature treatments; XWX2:
Xiangwanxian2; XWX8: Xiangwanxian8; XWX17: Xiangwanxian17; NT: Normal temperature control;
MCS: Moderate chilling stress; ECS: Extreme chilling stress. Different lowercase letters denote
statistical differences among treatments of a cultivar at the 5% level according to LSD test. Error bars
above mean indicate standard error (n = 3).

3.6. Chlorophyll of Different Late Rices

The chlorophyll (chlorophyll a, chlorophyll b) of the three late rice varieties was
descended after 5 days of chilling stress treatments (Table 3). When compared with NT, the
chlorophyll a of XWX2, XWX8 and XWX17 was decreased by 14.70%, 10.51% and 7.57%,
respectively, at MCS, and was decreased by 23.10%, 17.61% and 16.45%, respectively, at ECS.
When compared with NT, the chlorophyll b of XWX2, XWX8 and XWX17 was decreased
by 6.33%, 5.00% and 5.00%, respectively, at MCS, and was decreased by 8.86%, 8.75% and
6.25%, respectively, at ECS.

When compared with XWX2, the chlorophyll (chlorophyll a + b) of XWX17 was
increased by 7.77% at MCS, and was increased by 8.22% at ECS. When compared with
XWX8, the chlorophyll (chlorophyll a + b) of XWX17 was increased by 9.97% at MCS and
was increased by 8.52% at ECS. In comparison with XWX2 and XWX8, XWX17 showed
stronger resistance to MCS because the decrease in chlorophyll (chlorophyll a + b) did not
reach a significant level. Compared with NT, although the chlorophyll (chlorophyll a + b)
of the three varieties was significantly reduced at ECS, the decreased level was lower in
XWX17 than that in XWX2 and XWX8.
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Table 3. The leaf chlorophyll content of three inbred late varieties under different temperature treatments.

Variety Temperature
Chlorophyll a (mg/g) Chlorophyll b (mg/g) Chlorophyll (a + b) (mg/g) Chlorophyll (a/b)

0DAT 5DAT 10DAT 0DAT 5DAT 10DAT 0DAT 5DAT 10DAT 0DAT 5DAT 10DAT

XWX2
NT 3.82 ± 0.11 a 3.81 ± 0.16 a 3.88 ± 0.05 a 0.81 ± 0.02 a 0.79 ± 0.01 a 0.73 ± 0.02 a 4.63 ± 0.12 a 4.60 ± 0.15 a 4.60 ± 0.06 a 4.69 ± 0.15 a 4.83 ± 0.23 a 5.34 ± 0.12 a

MCS 3.80 ± 0.07 a 3.25 ± 0.11 b 3.72 ± 0.06 a 0.82 ± 0.01 a 0.74 ± 0.01 b 0.69 ± 0.02 a 4.62 ± 0.08 a 3.99 ± 0.1 b 4.42 ± 0.07 a 4.66 ± 0.05 a 4.42 ± 0.23 a b 5.38 ± 0.16 a
ECS 3.95 ± 0.13 a 2.93 ± 0.11 b 3.71 ± 0.13 a 0.82 ± 0.02 a 0.72 ± 0.01 b 0.68 ± 0.01 a 4.77 ± 0.14 a 3.65 ± 0.12 b 4.39 ± 0.13 a 4.81 ± 0.07 a 4.09 ± 0.08 b 5.46 ± 0.15 a

XWX8
NT 3.46 ± 0.09 a 3.52 ± 0.11 a 3.32 ± 0.10 a 0.80 ± 0.04 a 0.80 ± 0.01 a 0.74 ± 0.01 a 4.27 ± 0.12 a 4.32 ± 0.12 a 4.06 ± 0.11 a 4.32 ± 0.08 a 4.42 ± 0.08 a 4.48 ± 0.13 a

MCS 3.43 ± 0.06 a 3.15 ± 0.02 a b 3.18 ± 0.04 a 0.81 ± 0.02 a 0.76 ± 0.01 a b 0.70 ± 0.01 b 4.24 ± 0.08 a 3.91 ± 0.03 b 3.88 ± 0.04 a 4.26 ± 0.06 a 4.15 ± 0.03 a 4.52 ± 0.12 a
ECS 3.30 ± 0.09 a 2.90 ± 0.15 b 3.07 ± 0.16 a 0.80 ± 0.02 a 0.73 ± 0.01 b 0.66 ± 0.01 c 4.10 ± 0.09 a 3.64 ± 0.15 b 3.73 ± 0.16 a 4.13 ± 0.19 a 3.96 ± 0.23 a 4.67 ± 0.19 a

XWX17
NT 3.83 ± 0.11 a 3.83 ± 0.11 a 3.74 ± 0.05 a 0.80 ± 0.01 a 0.80 ± 0.02 a 0.74 ± 0.03 a 4.64 ± 0.12 a 4.63 ± 0.10 a 4.48 ± 0.05 a 4.77 ± 0.09 a 4.82 ± 0.25 a 5.07 ± 0.20 a

MCS 3.82 ± 0.09 a 3.54 ± 0.08 a 3.66 ± 0.06 a 0.81 ± 0.01 a 0.76 ± 0.01 a 0.72 ± 0.02 a
b 4.63 ± 0.09 a 4.30 ± 0.09 a 4.38 ± 0.07 a 4.74 ± 0.17 a 4.66 ± 0.03 a 5.12 ± 0.16 a

ECS 3.79 ± 0.13 a 3.20 ± 0.10 b 3.40 ± 0.05 b 0.80 ± 0.02 a 0.75 ± 0.02 a 0.66 ± 0.01 b 4.59 ± 0.15 a 3.95 ± 0.1 b 4.07 ± 0.06 b 4.76 ± 0.05 a 4.27 ± 0.21 a 5.13 ± 0.08 a

Note: The data were presented as mean value ± standard error (SE) of three replicates. Different lowercase letters denote statistical differences between temperature treatments of a
variety at the 5% level according to LSD test. XWX2: Xiangwanxian2; XWX8: Xiangwanxian8; XWX17: Xiangwanxian17; NT: Normal temperature control; MCS: Moderate chilling stress;
ECS: Extreme chilling stress.
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4. Discussion
4.1. Chilling Stress at Heading Decreased the Grain Filling Percentage via Reducing
Spikelet Fertility

Chilling is one of the major abiotic stresses limiting the growth and productivity
of many field crops. Rice is cultivated in tropical and subtropical environments, and is
extremely sensitive to chilling stress, particularly at flowering [15]. The results of the
present study were consistent with previous research [16–20] showing that the exposure of
rice plants to either moderate (20 ◦C) or extreme(17 ◦C) low temperature for 5 days during
heading would irreversibly reduce grain filling percentage and grain yield. Moreover, such
negative effects induced by chilling stress might mainly be attributed to the decrease in
spikelet fertility, because a significantly positive correlation between grain filling percentage
and spikelet fertility was observed (p < 0.01). Meanwhile, the grain weight showed no
significant variance among NT, MCS and ECS, and the difference between spikelet fertility
and grain filling percentage of the same variety did not vary across temperature treatments,
suggesting that the chilling stress did not affect the grain filling process in present study.
This result was in contrary with the research of Huang, M. et al. [18] which indicated
that temperature stress before anthesis also had a significant impact on the final the grain
weight. However, several studies denoted that the chilling stress at early stage of booting or
flowering may not affect the grain filling process and grain weight [21,22]. The differences
between studies might be attributed to the differences in chilling duration, chilling level
and other factors including relative air humidity and crop managements, and the effects
of chilling stress at heading on the grain filling attributes in late-season rice need to be
explored in future studies.

4.2. The Variances in Chilling Tolerance among Three Inbred Late Varieties

The development of breeding varieties with strong tolerance is one of the important
strategies to diminish the negative impact of chilling stress during heading on the spikelet
fertility and yield formation of late-season rice. In recent years, the resistance of hybrid
rice to abiotic stresses including drought [23–25], submergence [26–28], high tempera-
ture [29–31] and chilling has been intensively studied in China, and several hybrid rice
varieties that possessed relative high chilling tolerance during flowering have been suc-
cessfully bred and adopted in production. In contrary, little attention has been paid to the
evaluation of stress tolerance in inbred lines. The results of the present study indicated that
the genetic improvement has been achieved in inbred late rice varieties, as the grain filling
percentage and the spikelet fertility of XWX17 (released in 2008) was significantly higher
than that of XWX2 (released in 1988) and XWX8 (released in 1988) when suffering from
moderate chilling stress during heading. In addition, although the grain filling percentage
of all the three late rice varieties was significantly decreased under ECS, the decreased
percentage was lower in XWX17 than in XWX2 and XWX8. Nevertheless, the present
study evaluated the chilling tolerance of the three varieties without a chilling-susceptible or
-tolerant control, which limited the comparability of the results. Therefore, further studies
to evaluate the chilling tolerance of inbred late rice varieties in comparison with elite control
varieties under both greenhouse and field conditions are desperately needed.

4.3. Morphological and Physiological Characteristics Underlying the Varietal Differences in
Chilling Tolerance

The viability of the rice pollen grain is frequently affected by chilling stress [32–34].
It has been reported that the chilling stress during panicle initiation would significantly
reduce pollen development, resulting in decreased pollen viability [35], while at the booting
and heading stage, although the pollen development and filling is finished, the chilling-
induced pollen sterility has been widely observed [36]. In the present study, the varietal
differences in spikelet fertility in response to chilling stress can be partially explained by
the variances in pollen viability. The pollen viability of XWX2 and XWX8 was reduced
by both MCS and ECS, while the pollen viability of XWX17 was not reduced under MCS,
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and the deceased level under ECS was smaller than the other varieties, which suggested
that the pollen grains of the newly developed variety, might possessed stronger chilling
tolerance than the older ones. In addition to pollen viability, the anther development
and characteristics also greatly contribute to the spikelet fertility. Anther dehiscence is
essential for pollen spreading and pollination, which are tightly associated with spikelet
fertility [9,15,36–38]. The ability of anther dehiscence is generally related with the anther
development. The abnormal anther shape would greatly decrease anther dehiscence rate
and length, resulting in decreased pollen germination and shedding, and thus resulting
in decreased spikelet fertility [39]. The present study found that under MCS, the anther
dehiscence length was significantly reduced in XWX2 and XWX8, but was not reduced in
XWX17. Moreover, the anther volume of the XWX2 and XWX8 was reduced under ECS or
MCS via decreased anther length and width; in contrast, the anther volume of XWX17 was
not influenced by chilling stress even under ECS. In summary, the above results indicated
that the better anther attributes in XWX17 regarding pollen viability, anther volume and
anther dehiscence might contribute to the higher spikelet fertility under chilling stress, as
compared with that of XWX2 and XWX8.

Several metabolic events including production and scavenging of reactive oxygen
species (ROS), photosynthetic ability and leaf senescence are highly associated with plant
stress tolerance and may affect the spikelet fertility of rice under chilling stress [40,41]. In
the present study, the SPAD reading of the XWX17 was less influenced by chilling stress
as compared with XWX2 and XWX8, suggesting that the leaf function in XWX17 was not
severely reduced under chilling stress; such traits, which might be attributed to better ROS
scavenging ability that reduced the degradation of leaf chlorophyll, greatly guaranteed the
substrate transportation and photosynthesis of rice under chilling stress [42,43]. In addition,
our study suggested that the chlorophyll a content and the SPAD reading of rice flag leaf
can be used as indicators to predict spikelet fertility of late rice under chilling stress. In
addition, several traits including the morphology of pollen [35], spikelet transpiration rate
and internal spikelet temperature [44] were also reported to contribute to the variances in
pollen viability and spikelet fertility, which might be manipulated by the expression levels
of chilling-related genes and transcription factors such as Lsi1 [45], OsSAPK6 [46], and
OsWRKY115 [47]. Nevertheless, the physiological and molecular mechanisms underlying
the chilling responses of inbred late varieties were not fully examined and need to be
addressed in future studies.

5. Conclusions

In summary, the newly released inbred late rice variety XWX17 demonstrated better
chilling tolerance during heading than the early released varieties, with respect to higher
grain filling percentage. The improved grain filling percentage in XWX17 might be the
results of increased spikelet fertility, which was attributed to the increase in pollen via-
bility, anther dehiscence length and anther volume. In addition, the SPAD value and the
chlorophyll a content of the flag leaf can be used as indicators to predict the tolerance
of rice spikelet fertility when suffering from chilling stress during heading. The present
study provides evidence that the chilling tolerance of inbred lines at the heading stage was
improved, However, the physiological and molecular mechanisms underlying the chilling
responses of inbred late varieties were not fully examined and need to be addressed in
future studies.
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