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Abstract: The use of more than one species to manage a single insect pest is a common practice
among biological control programs. However, the beneficial effects of natural enemies are not always
additive, which in many cases may be attributed to interspecific interactions such as intraguild
predation (IGP). Herein, we investigated the potential IGP between two relevant natural enemies of
the Medfly (Ceratitis capitata), the predator Pseudoophonus rufipes and the parasitoid Aganaspis daci,
as well as the possible implications of this phenomenon in their efficiency as biocontrol agents. To
this end, we assessed their functional responses and different demographic parameters when acting
alone and together against C. capitata under laboratory conditions. Coexistence led to a switch in the
functional response of both species, from type III to type II in A. daci and the opposite in P. rufipes.
Regarding demographic parameters, coexistence resulted in higher parasitoidism and population
reduction by A. daci only at low host densities, probably due to competition pressure. In the same
circumstances, P. rufipes reduced its predatory activity, rejecting those larvae that were presumably
parasitized and causing negligible IGP. At high Medfly densities, A. daci efficiency decreased, and
the reduced encounter probability enhanced the predatory activity by P. rufipes. As a result of these
trends, Medfly population reduction reached almost 100% at all densities, which suggests an additive
effect of both natural enemies and recommends combined releases of these agents as a strategy for
the control of the Medfly.

Keywords: Medfly; pest control; intraguild interaction; natural enemies; functional response;
combined release

1. Introduction

In biological control programs against agricultural pests, more than one species of
natural enemy can be used to manage a single insect pest [1,2]. However, these natural
enemies can also interact among themselves, and this interaction may impede the expected
additive regulatory effects [3–5]. One of the most studied types of interspecific interactions
due to its presumably negative effects on biological control is intraguild predation (IGP),
which describes the interaction in which two species that compete for a common resource
also engage in a trophic interaction with each other [6–8]. IGP can be uni- or bidirectional,
with one or both species attacking the other [9], and may even occur between different
types of natural enemies, e.g., a predator and a parasitoid, as long as they share the same
prey/host. In predator/parasitoid interactions, unidirectional IGP is more common, with
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the predator (‘IGP predator’) feeding inadvertently on immature parasitoids (‘IGP prey’)
when consuming the prey species [10,11]. Thus, the parasitic performance can be seriously
jeopardized, and this should be taken into account in the design and implementation of
biocontrol programs involving both types of agents [9,12].

The Mediterranean fruit fly or Medfly, Ceratitis capitata (Wiedemann) (Diptera: Tephri-
tidae), currently represents one of the main threats to fruit crops and is considered one of the
most important agriculture pests worldwide [13,14]. The urgent need to develop efficient
and environmentally safe control programs has led to the identification of a substantial
number of natural enemies, some of which have demonstrated significant potential [15,16].
During the first phase of the Medfly life cycle, eggs and early larvae develop within the
host fruit pulp, after which late-instar larvae jump out the fruit to pupate at a shallow depth
in the ground until adult emergence [17]. Potential arthropod natural enemies therefore
include both parasitoids that can bore the fruit skin and oviposit into the fly larvae and
ground-dwelling predators that can feed on the pupae, late-instar larvae and even freshly
emerged adults [15]. Therefore, accidental IGP of Medfly predators on parasitoids is ex-
pected to occur in agricultural systems, even when the current scarcity of studies dealing
with this phenomenon and its implications suggests the opposite.

Among Medfly natural enemies, the predator Pseudoophonus rufipes De Geer (Coleoptera:
Carabidae) has emerged as a potential biocontrol agent in Spain after the research of
Monzó et al. [18,19]. These authors cited this ground-dwelling beetle as the most abundant
carabid in Spanish citrus orchards and reported that it was able to efficiently prey on third
instar larvae and pupae of C. capitata. This led to the idea that P. rufipes could play a relevant
role in regulating the Medfly in citrus, wherein the incidence of this pest is significant [20,21].
The dominance of this predator in other southern European crops [22,23] suggests that it
could also play an interesting role as a biocontrol agent in other cropping systems.

A current parasitoid being considered for biocontrol is the figitid Aganaspis daci (Weld)
(Hymenoptera: Figitidae). This larval–pupal solitary endoparasitoid was first detected in
Malaysia and Taiwan parasitizing flies from the genus Bactrocera [24], and its biocontrol
potential against this genus has been well-known ever since [25–27]. However, the first
report of A. daci as a Medfly parasitoid was not until 2003, when it was found emerging
naturally from Medfly larvae on the Greek island of Chios [28]. From then on, Medfly
parasitoidism by A. daci has been reported to be common in the Mediterranean Basin
(Spain, Syria and Tunisia) [29–32]. The high natural parasitism rates observed in the field
led to multiple studies assessing the efficacy of this parasitoid in controlling C. capitata with
promising results [33–35].

There is a distinct scarcity of research on the IGP involving C. capitata natural enemies.
The joint action of different species of natural enemies on the Medfly and other fruit flies
has been widely assessed [36–38]. However, to our knowledge, IGP and its implications
on Medfly control had only been specifically studied for P. rufipes and Spalangia cameroni
Perkins (Hymenoptera: Pteromalidae), another important Medfly parasitoid [39]. Herein,
we assessed the consequences of IGP on the parasitic and predatory efficiency of A. daci and
P. rufipes on the Medfly, in view of possible combined releases of these natural enemies for
pest control purposes. Based on their nature and considering previous works such as [39], a
certain mutual effect between these species could be expected. However, the direction and
intensity of this interaction is completely unpredictable. Specifically, we measured (i) the
functional responses and (ii) different demographic parameters (parasitoidism, fertility,
induced mortality, population reduction and offspring sex ratio for A. daci and predation
for P. rufipes) of these agents when acting both alone and together against C. capitata under
laboratory conditions.

2. Materials and Methods
2.1. Study Center and Insect Rearing

All experiments in this study were performed in compliance with current Spanish
law and carried out in 2018 at the facilities of the Museu Valencià d’Història Natural
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(MVHN) and the Instituto Valenciano de Investigaciones Agrarias (IVIA). Adult specimens
of P. rufipes were captured from citrus fields in the Valencian community (Spain) using
pitfall traps, then transported to a climate cabinet in the laboratory. Specimens were reared
in a 50 × 50 × 50 cm methacrylate box with an upper mesh covering and fed with water
and sucrose solution for 2 days prior to the assays. Medfly larvae and A. daci adults
were obtained from their regular semimassive rearings, established at IVIA [40,41], and
then maintained in the same type of terraria mentioned above before being used in the
experiments. The climatic conditions were slightly different for natural enemies (22 ± 2 ◦C,
65 ± 10%RH, 16:8 (L:D)) and the Medfly (27 ± 2 ◦C, 65 ± 10%RH, 16:8 (L:D)).

2.2. Experimental Design

Four experiments were conducted throughout the present research. Experiments 1, 2 and 3
aimed to assess the functional response (defined by Solomon [42] as ‘the relationship be-
tween the number of prey or hosts attacked by a predator or parasitoid as a function of prey
density’) of A. daci and P. rufipes on C. capitata, both when acting alone (Experiments 1–2)
and together (Experiment 3). The last experiment consisted of a comparison of several
demographic parameters of these natural enemies when acting alone and also together on
C. capitata.

2.2.1. Experiment 1: Functional Response of A. daci

In this experiment, newly emerged (<20 h) adults of A. daci were collected from the
terraria, then sexed and paired in 10 mL plastic tubes. The tubes were sealed with a
piece of cotton and contained honey for the parasitoids to feed on. Breeding pairs were left
undisturbed for 2 days, after which they were assumed to have mated. Then, the parasitoids
were introduced into ‘experimental units’. Each cage consisted of a lidded translucent
plastic box (20 × 15 × 10 cm). The lids were adapted with a 4 cm diameter gauze-covered
hole for ventilation. Three breeding pairs were introduced in each experimental unit, which
was also provided with water and honey as feeding sources. For 24 h over 6 consecutive
days, Medfly late larvae (=L3) were supplied to the experimental units, by placing them into
a Petri dish (60 mm ø) with 15, 60 or 120 per unit (i.e., 5, 20 or 40 per breeding pair). Eight
repetitions (=experimental units) were employed per density in each replicate (=block), and
two replicates were performed. To assess natural mortality in the host, a ‘control’ treatment
was also included in each block, consisting of 8 experimental units each containing 15 larvae
but no parasitoids at all. After exposure, larvae were recovered and put in ventilated Petri
dishes (one per experimental unit) until parasitoid emergence. Petri dishes were kept in a
Sanyo MLR 350 climate cabinet (Sartorius, Barcelona, Spain) at 24.5 ± 0.5 ◦C, 60 ± 10% RH
and 16:8 (L:D). Emergences of the parasitoid were counted to assess both fertility (=number
of total emergences) and percentage parasitoidism (=emergence rate, i.e., the number of
emergences per exposed larvae).

2.2.2. Experiment 2: Functional Response of P. rufipes

Three P. rufipes adults (males or females, but never mixed) were introduced in the
same type of experimental units as in Experiment 1, with water and honey and a Petri dish
with Medfly larvae. Additionally, units contained a thin layer of moistened perlite (Floreal,
Agroperlita F-13; Piquer Morte S.L., Rafelbunyol, Valencia, Spain) to facilitate predator
locomotion. The density of larvae, number of repetitions and replicates, exposure time and
control treatment were all the same as in Experiment 1. Predation, taken as the number
and percentage of prey killed by P. rufipes, was recorded.

2.2.3. Experiment 3: Functional Response of A. daci and P. rufipes When Acting Jointly on
the Medfly

Parasitoids and predators were introduced together in the experimental units, set up
as in Experiment 2. Three P. rufipes adults and three A. daci mated females were introduced
in each unit. The density of larvae, number of repetitions and replicates, exposure time
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and control treatment were all the same as the previous experiments. After exposure, the
number of pupae predated by P. rufipes was recorded, and the remainder were reared as in
Experiment 1 to determine parasitoid emergence.

2.2.4. Experiment 4: Demographic Parameters of A. daci and P. rufipes

The last experiment aimed to determine the effect of sharing host/prey on several life
history parameters of both natural enemies. Experiments 1, 2 and 3 were repeated, but new
variables were measured for A. daci, such as induced mortality, population reduction and
offspring sex ratio. Induced mortality was determined as the proportion of pupae that did
not eclose after 2 months and had evidence of parasitoid activity, namely oviposition holes
and/or parasitoid immatures. Thus, every pupae that had not eclosed after this period
was dissected and examined under the microscope. The other measured variables were the
same as in previous experiments, i.e., fertility and percentage parasitoidism for A. daci and
predation for P. rufipes.

2.3. Statistical Analyses

Functional responses (Experiments 1–3) were analyzed by a generalized linear model
(GLM), aiming to discriminate between the two most common types of responses, type
II and type III (see Discussion). The data were fit to a binomial distribution with Logit
link function, then fit to their corresponding functional response equation [43–45]. Attack
rate coefficient is known to be constant and independent of prey/host density in type
II responses, while in type III responses, it varies with prey/host density and can be
obtained as follows [46]: a′ = b × x/(1 + c × x), where x is the prey/host density and b and c
are constants of itself. Data were fitted through a non-linear least-squares regression by
means of the Levenberg–Marquardt iterative estimation procedure [47]. The parameters
of the functional response, attack rate (a′) and handling time (Tm) were extracted from
this regression.

The fertility, percentage parasitoidism, induced mortality and population reduction
attributed to A. daci and the predation displayed by P. rufipes were tested when acting alone
and when sharing host/prey (Experiment 4) by a two-way factorial analysis of variance
(ANOVA), considering the replicates (block effect) as a random factor. Offspring sex ratio
of the parasitoid was also compared between both situations (alone vs. sharing host/prey)
by a Pearson’s chi squared (χ2) test. When the assumptions of normality and homogeneity
of variance were not fulfilled, data were transformed to meet those assumptions. Values
are given as means ± standard error (SE) or percentage (%). Data were analyzed using IBM
SPSS Version 25.0 (Chicago, IL, USA), with a significance set at p = 0.05.

3. Results
3.1. Experiment 1: Functional Response of A. daci

A generalized linear model for the proportion of emerged parasitoids revealed that
the estimated values for the linear and quadratic coefficients were both positive (Table 1),
which reveals a functional response from type III [43]. The estimated handling time and
the b and c parameters are shown in Table 2. Based on these parameters, the estimated
attack coefficients were 0.37, 0.68 and 0.78 days−1 for a density of 15, 60 and 120 larvae,
respectively. The estimated maximum number of successfully emerging offspring was
85 per female in 24 h (Figure 1).
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Table 1. Maximum likelihood estimate parameters from the generalized linear model of the propor-
tion of host/prey parasitized/hunted as a function of initial host/prey densities by Aganaspis daci
mated females and Pseudoophonus rufipes adults acting alone (Experiments 1 and 2, respectively) and
together (Experiment 3) (in all cases, assessed under laboratory conditions).

Parameter Estimate SE χ2 df p

A. daci
Linear 0.035 0.0025 194.828 1 <0.0001

Quadratic 0.00001 1.5552 × 10−5 159.518 1 <0.0001

P. rufipes Linear −0.070 0.0037 361.345 1 <0.0001
Quadratic 0.00001 2.1748 × 10−5 180.264 1 <0.0001

A. daci
(with P. rufipes)

Linear −0.012 0.0025 24.203 1 <0.0001
Quadratic 6.109 × 10−5 1.5428 × 10−5 15.582 1 <0.0001

P. rufipes
(with A. daci)

Linear −0.016 0.0026 36.714 1 <0.0001
Quadratic −8.926 × 10−5 1.618 × 10−5 30.429 1 <0.0001

Table 2. Functional response type (FR), attack rate (a) (days−1) and estimated handling time (Th)
(days) estimated from non-linear regression of the number of host/prey by Aganaspis daci mated fe-
males and Pseudoophonus rufipes adults acting alone (Experiments 1 and 2, respectively); and by A. daci
mated females sharing the experimental unit with P. rufipes adults and vice versa (Experiment 3) (in
all cases, assessed under laboratory conditions).

FR a ±SE 95% CI Th ±SE 95% CI R2

A. daci III
b = 0.041 0.031 −0.020–0.101

0.004 0.003 −0.002–0.010 0.744c = 0.044 0.053 −0.061–0.149
P. rufipes II 1.549 0.233 1.090–2.008 0.024 0.002 0.021–0.027 0.584
A. daci/P. rufipes II 0.572 0.055 0.464–0.681 0.002 0.002 −0.002–0.005 0.659

P. rufipes/A. daci III
b = 0.050 0.042 −0.032–0.132

0.003 0.003 −0.003–0.010 0.791c = 0.104 0.111 −0.115–0.322

R2 = are the coefficients of determination from R2 of each regression.
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Figure 1. Functional response curve fit by non-linear least squares regression of Aganaspis daci mated
females parasitizing Ceratitis capitata larvae exposed in the laboratory, acting alone (type III). Host
density: 5, 20 or 40 larvae per mated female (three) and day.

3.2. Experiment 2: Functional Response of P. rufipes

A generalized linear model for the proportion of killed pupae showed a negative
estimated value of and a positive quadratic (Table 1), revealing a type II response [43]. The
estimated attack rate coefficient and handling time are shown in Table 2. The estimated
maximum number of predated pupae per adult was 14 specimens in 24 h (Figure 2).
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5, 20 or 40 larvae per adult (three) and day.

3.3. Experiment 3: Functional Response of A. daci and P. rufipes When Acting Jointly on
the Medfly

The joint action of both natural enemies resulted in A. daci showing a type II functional
response, with a negative estimated value of the linear coefficient and a positive quadratic
coefficient [43] (Table 1). The estimated attack rate coefficient and handling time are shown
in Table 2. In this case, the estimated maximum number of emergences per female was
167 specimens in 24 h (Figure 3).
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mated females parasitizing Ceratitis capitata larvae and sharing the experimental unit with
Pseudoophonus rufipes adults attacking C. capitata larvae (type II). Host density: 5, 20 or 40 larvae per
A. daci mated female and P. rufipes adult (both species sharing the same experimental unit).

For its part, P. rufipes functional response switched to type III when sharing prey, with
both linear and quadratic coefficients showing negative estimated values [43] (Table 1).
The estimated b and c parameters (see Table 2) led to the following attack rate coefficients:
0.29 days−1 (for a prey density of 15 pupae), 0.41 days−1 (60 pupae) and 0.44 days−1

(120 pupae). The estimated maximum number of predated pupae per adult was 111
specimens in 24 h (Figure 4).
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Figure 4. Functional response curve fit by non-linear least-squares regression of Pseudoophonus rufipes
adults attacking Ceratitis capitata larvae and sharing the experimental unit with Aganaspis daci mated
females parasitizing C. capitata larvae (type III). Host density: 5, 20 or 40 larvae per P. rufipes adult
and A. daci mated female (both species sharing the same experimental unit).

3.4. Experiment 4: Demographic Parameters of A. daci and P. rufipes

Two-way ANOVA revealed that the percentage parasitoidism of A. daci only differed
between the two situations (acting alone vs. acting together with P. rufipes) at a density of
15 larvae (Tables 3 and 4). The same applied to fertility and population reduction, while
induced mortality did not differ between both situations in any case (Tables 3 and 4). When
differences were detected, values were always higher when in the presence of the predator
(Table 4). Regarding offspring sex ratio, Pearson’s chi squared test showed significant
differences at all densities (15 larvae: χ2 = 18.282, df = 1, p < 0.001; 60 larvae: χ2 = 108.789,
df = 1, p < 0.001; 120 larvae: χ2 = 16.444, df = 1, p < 0.001; 15–120 larvae (global): χ2= 104.454,
df = 1, p < 0.001). Offspring were female-biased in all cases, and the bias was especially
marked when in the presence of P. rufipes (Table 4).

Table 3. Two-way ANOVAs comparing percentage parasitoidism, fertility, induced mortality and
population reduction of A. daci and predation of P. rufipe, between the two situations considered
(acting alone vs. acting jointly) at the three Medfly densities established (15, 60 and 120 larvae/pupae)
and globally (15–120 larvae/pupae). df = degrees of freedom; RV = residual variance; BV = block
variance. Asterisks (*) indicate significant differences in each comparison.

Parameter 15 Larvae 60 Larvae 120 Larvae Global
(15–120 Larvae)

Percentage parasitoidism

F 36.481 0.843 53.183 0.220
df 1188 1188 1188 1572
p 0.003 * 0.527 0.087 0.721

σ2 (RV) 7.445 27.555 12.333 27.120
σ2 (BV) 1 × 10−6 1 × 10−7 1 × 10−8 1 × 10−7

Fertility

F 146.689 0.875 53.127 0.007
df 1188 1188 1188 1572
p 0.002 * 0.548 0.089 0.948

σ2 (RV) 5.678 27.322 12.480 20.120

A. daci
σ2 (BV) 1 × 10−6 1 × 10−7 1 × 10−8 1 × 10−7

Induced mortality

F 0.212 0.016 1.591 0.156
df 1188 1188 1188 1572
p 0.725 0.921 0.427 0.761

σ2 (RV) 12.717 32.444 28.111 14.101
σ2 (BV) 1 × 10−6 1 × 10−7 1 × 10−7 1 × 10−7

Population reduction

F 220.061 2.250 2.317 0.414
df 1188 1188 1188 1572
p 0.043 * 0.374 0.370 0.636

σ2 (RV) 17.040 25.111 27.123 29.037
σ2 (BV) 1 × 10−6 1 × 10−7 1 × 10−6 1 × 10−7
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Table 3. Cont.

Parameter 15 Larvae 60 Larvae 120 Larvae Global
(15–120 Larvae)

F 1019.434 177.929 224,240.743 56.006
df 1188 1188 1188 1572

P. rufipes Predation p 0.020 * 0.048 * 0.001 * 0.085
σ2(RV) 11.321 17.888 10.555 16.112
σ2(BV) 1 × 10−7 1 × 10−8 1 × 10−7 1 × 10−8

Table 4. Demographic parameters of A. daci (percentage parasitoidism, fertility, induced mortality,
population reduction and offspring sex ratio) and P. rufipes (predation) acting alone and together
under laboratory conditions on different host densities of C. capitata larvae. In each column, asterisk
indicates significant differences for a same parameter.

Host Density

Parameter 15 Larvae 60 Larvae 120 Larvae

A. daci (alone)

Parasitoidism (%) (Range; Mean ± SE) 0–80; 35.90 ± 2.41 * 0–83.3; 58.00 ± 1.92 0–88.3; 57.17 ± 2.00
Fertility (Range; Mean ± SE) 0–12; 5.38 ± 0.36 * 0–50; 34.80 ± 1.15 0–106; 68.60 ± 2.40
Induced mortality (%) (Range; Mean ± SE) 0–20; 9.44 ± 0.70 0–18.3; 8.07 ± 0.62 0–16.67; 6.63 ± 0.59
Population reduction (%) (Mean ± SE) 45.34 ± 1.86 * 66.07 ± 1.84 66.61 ± 2.01
Sex ratio (♂♂, ♀♀; ♀♀/♀♀+ ♂♂) 196, 321; 0.62 * 1352, 1654; 0.55 * 2053, 4083; 0.62 *

A. daci (with P. rufipes)

Parasitoidism (%) (Range; Mean ± SE) 26.67–100; 62.43 ± 2.38 * 23.33–93.33; 53.73 ± 2.08 20.83–90.83, 51.97 ± 2.03
Fertility (Range; Mean ± SE) 4–15; 9.37 ± 0.36 * 14–56; 32.23 ± 1.25 25–109; 62.37 ± 2.44
Induced mortality (%) (Range; Mean ± SE) 0–33.3; 8.61 ± 1.27 0–31.67; 7.86 ± 1.52 0–40; 9.98 ± 1.44
Population reduction (%) (Mean ± SE) 71.11 ± 1.45 * 61.59 ± 1.26 61.96 ± 1.10
Sex ratio (♂♂, ♀♀; ♀♀/♀♀+ ♂♂) 243, 657; 0.73 * 990, 2105; 0.68 * 1715, 4004; 0.70 *

P. rufipes (alone) Predation (Range; Mean ± SE)
[Percentage: Mean ± SE]

9–15;
13.56 ± 0.23 * [90.41 ± 1.56]

9–48;
31.18 ± 1.56 * [51.97 ± 2.61]

9–51;
32.62 ± 1.59 * [27.18 ± 1.32]

P. rufipes (with A. daci) Predation (Range; Mean ± SE)
[Percentage: Mean ± SE]

0–11;
4.31 ± 0.22 * [28.85 ± 1.44]

4–46;
23.04 ± 0.76 * [38.40 ± 1.26]

11–93;
45.64 ± 1.32 * [38.04 ± 1.11]

In the case of P. rufipes, the two-way ANOVA revealed that predation was significantly
affected by the presence of A. daci at the three densities (15, 60 and 120 pupae) but not
globally (15–120 pupae). Predation was higher when P. rufipes acted alone at densities of 15
and 60 pupae, but, with the highest prey availability, predation was greater when in the
presence of A. daci (Tables 3 and 4).

4. Discussion

Many insect pests are attacked by both predators and parasitoids, which frequently
interact with each other while exerting their biocontrol activity [10,11]. Among these
interactions, intraguild predation (IGP) has been reported to be especially common [48,49].
IGP between predators and parasitoids is asymmetric: while predators can frequently kill
parasitoids when feeding on hosts that are already parasitized, parasitoids cannot cause
direct mortality to predators [50–54]. Moreover, the presence of predators with whom they
must share the same resource usually leads to alterations in the behaviour of parasitoids
that can cause reduced parasitic efficiency [55]. In short, the coexistence with predators
often leads to the disruption of the biological control by parasitoids, and this impedes the
desired complementary action of both natural enemies [48,56–59].

In the present study, we studied the functional responses shown by the parasitoid
A. daci and the predator P. rufipes when feeding on the Medfly as a way to understand the
trophic interactions between these three species. Functional responses are classified into
three types (type I to III), with type II being the most common for invertebrate parasitoids
and predators [60]. This type of response leads to inverse density-dependent predation or
parasitism [44], with values increasing with prey/host density at a constantly decreasing
rate towards a maximum value determined by the maximum attack rate. Type III functional
response, although more common among vertebrates, could also be characteristic for
invertebrate natural enemies, especially when external factors affect their behavior [61,62].
This type of response resembles type II but includes an acceleration at low prey/host
densities [63], which is believed to be due to learning behaviors and the subsequent
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increased searching efficiency and decreased host-handling time [60]. Therefore, under
these circumstances, it is the only functional response that may lead to direct density
dependence and can potentially stabilize predator–prey interactions [46].

We observed a type III functional response for A. daci in the absence of the predator,
as was the case in the two previous works that assessed the functional response of this
species under laboratory conditions. In de Pedro et al. [64], conditions were very similar to
ours, with the only difference that hosts were offered an artificial Medfly diet. This could
explain the lower handling times exhibited by the parasitoid when compared to the present
study. In de Pedro et al. [65], the Medfly larvae received the artificial diet, and, more-
over, A. daci was in the presence of the braconid parasitoid Diachasmimorpha longicaudata
(Ashmead) (Hymenoptera: Braconidae), which also parasitizes the late larval instars of
C. capitata [66,67]. Competition, in this case, resulted in higher handling times and lower
attack rates but did not affect the functional response of A. daci. In contrast, in the present
study, the presence of P. rufipes caused a shift to a type II response. The shift to a different
functional response seems to be a common phenomenon in parasitoids when they compete
for hosts with predators, whose presence may have different effects on parasitoid efficiency.
For example, Vanaclocha et al. [45] observed that the coccinelid Chilocorus circumdatus
(Gyllenhall) (Coleoptera: Coccinellidae) modified the functional response of the aphelinid
Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae) on armored scales exclusively
via IGP at low host densities. In most cases, however, the shift is linked to behavioral
changes caused by the presence of the predator. In this regard, Martinou et al. [55] described
an increase in the handling time of the parasitoid Aphidius colemani Viereck (Hymenoptera:
Aphidiinae) when coexisting with the mirid Macrolophus caliginosus Wagner (Hemiptera:
Miridae), while our study, as well as the one by Tormos et al. [39], revealed the opposite
effect on A. daci and S. cameroni, respectively, in the presence of P. rufipes. The fact that these
Medfly parasitoids displayed opposite responses could be attributed to differences in their
searching ability, probably derived from the different ways in that hosts were offered in
each case.

For its part, the functional response of P. rufipes also changed in the presence of A. daci,
in this case from a type II to a type III response, suffering a significant decrease in handling
time but also in the attack rate. Type II responses seem to be the most typical when P. rufipes
acts alone on C. capitata [18,39], whereas the shift to type III in competition had never been
observed prior to the present work. The attack rate and handling time we recorded are
similar to those scored by Monzó et al. [18] for third instar Medfly larvae and significantly
lower than the values obtained by the same author and Tormos et al. [39] for Medfly pupae,
which seems to confirm that the latter is the preferred instar of this beetle species.

None of the A. daci parameters were globally affected by the presence of the predator,
but some effects were observed at certain host densities. For example, at low densities,
percentage parasitoidism and fertility were higher in the presence of P. rufipes. Under
these circumstances, the parasitoid efficiency and, more specifically, the attack rate seems
to be enhanced by the predator, probably via competition pressure. Induced mortality
was very low (below 10%) in any case and was neither affected by host density nor by
the presence of the carabid. This was unexpected considering that both factors seem to
have a negative effect on superparasitism, which in turn seems to be one of the main
causes of the induced mortality caused by Medfly parasitoids [68]. The stability of induced
mortality led to population reduction by A. daci following a similar trend to percentage
parasitoidism, with higher values in the presence of with P. rufipes at low host densities.
Since Medfly population reduction is the final goal of biocontrol programs, the combined
use of both natural enemies seems to be a proper strategy from the perspective of A. daci.
Another argument in favor of this strategy is the strongly female-biased offspring recorded
for A. daci in the presence of P. rufipes at all host densities. Female-biased sex ratio is
very common among hymenopteran parasitoids and is always desirable within biocontrol
programs because only females exert parasitic activity [69,70]. Until now, only temperature
had been highlighted as a decisive factor affecting A. daci offspring sex ratio, with the
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proportion of females rising with increasing temperatures in the suitable developmental
temperature range [33].

The predation of P. rufipes was significantly lower when in the presence of A. daci at
low and medium host densities, and the opposite was the case when prey were abundant.
As we mentioned before, it seems that at low densities, when the probability of encounter
is higher, the competition pressure exerted by P. rufipes stimulated the parasitic activity of
A. daci, which negatively affected the performance of the predator. At high host densities,
the efficiency of the parasitoid stabilized, and the abundance of C. capitata was enough to
ensure an optimal activity of both natural enemies. These results support the observation
of Tormos et al. [39] that P. rufipes is able to discriminate between parasitized and unpar-
asitized hosts, expressing a preference for the latter, which is common among predators
in coexistence with parasitoids [48,71–73]. The main novelty in the present study is that
P. rufipes discrimination seems to occur at all prey densities, even when the Medfly was
scarce. The reason why Medfly juveniles parasitized by A. daci are avoided by P. rufipes
to such an extent should be addressed in future research, as this phenomenon could have
serious implications on predator survival under low prey availability. In any case, we can
conclude that IGP between P. rufipes and A. daci is negligible, and this allows an additive
effect of both natural enemies that improves their individual performance. The population
reduction of the pest under the joint action of both natural enemies, i.e., the sum of the
population reduction caused by A. daci and the percentage predation of P. rufipes, reached
100% or very close values at all densities. Therefore, combined releases of A. daci and
P. rufipes seems to be a suitable strategy for the control of the Medfly regardless of the
density of the pest. This could be greatly advantageous in comparison to other predator–
parasitoid systems whose effects are only additive over a certain pest density threshold
due to IGP [39,45,74]. Firm conclusions, however, will not be drawn until field studies are
conducted to assess the real behavior of these species in nature.

5. Conclusions

The present work represents the first study of intraguild interactions involving A. daci,
one of the most studied Mediterranean parasitoids of the Medfly in recent years [32,41,75].
Our results suggest that, when acting together against Medfly larvae, A. daci and P. rufipes
affect each other’s functional response. At low host densities, A. daci improves its parasitic
efficiency, while P. rufipes reduces its predatory activity due to an extreme host discrim-
ination that causes the rejection of parasitized larvae. As host availability increases, the
parasitic activity of A. daci reaches a maximum value and the reduced encounter probability
enhances predation by P. rufipes, which even exceeds the values obtained in the absence of
the parasitoid. The result of all these trends is a practically negligible IGP and a combined
deleterious effect on Medfly populations that almost completely eliminate C. capitata at all
densities. This lends support to the recommendation of combined releases of A. daci and
P. rufipes in biocontrol programs against the Medfly. However, further ecological studies,
especially under natural conditions, will be necessary to elucidate the long-term effects
that competition may have on the population dynamics and the biocontrol performance of
these natural enemies.
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