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Abstract: Terrestrial ecosystems depend heavily on their vegetation; it is possible to forecast future
growth trends of regional vegetation by keeping an eye on changes in vegetation dynamics. To
circumvent the potential reduction in prediction accuracy caused by the non-stationarity of meteoro-
logical changes, we analyzed the characteristics of NDVI (Normalized Difference Vegetation Index)
spatial and temporal changes and the influencing factors over the past 20 years in the Maowusu
Sandland of China via attribution analysis. We also constructed a comprehensive analysis system
for vegetation pre-restoration. Moreover, we combined meteorological data from 2000 to 2018 and
presented a deep-learning NDVI-Informer prediction model with a self-attentive mechanism. We
also used distillation operation and fusion convolutional neural network for NDVI prediction. In-
corporating a probsparse self-attention method successfully overcomes Transformer weaknesses by
lowering the memory use and complexity of large time series. It significantly accelerates the inference
speed of long time series prediction and works well with non-smooth data. The primary findings
were: (1) the Maowusu Sandland’s 20-year average showed a consistent increasing trend in the
NDVI at 0.0034 a−1, which was mostly caused by climate change, with a relative contribution rate of
55.47%; (2) The Informer-based model accurately forecasted the NDVI in the research region based on
meteorological elements and conducted a thorough analysis of the MAPE (mean absolute percentage
error) (2.24%). This suggests that it can effectively lower the data’s volatility and increase prediction
accuracy. The anticipated outcomes indicate that the trend will stabilize during the following ten
years. To attain more sustainable and efficient agricultural production, the results of this study may
be used to accurately estimate future crop yields and NDVI using previous data.

Keywords: NDVI; attribution analysis; self-attention mechanism; convolutional neural network;
Informer model

1. Introduction

One of the key elements of terrestrial ecosystems is vegetation, which influences
the earth’s ecological balance, water cycle, and temperature [1,2] and contributes signifi-
cantly to information transit, energy movement, and material cycle, among other things [3].
Jiazheng Zhang performed visualization calculation analysis and processing using the
Google Earth Engine (GEE), which can monitor the dynamic changes of large-scale and
long-time sequence vegetation and subsequently serve as a useful resource for local envi-
ronmental management [4]. One of China’s four main sandy zones, Maowusu Sandland, is
surrounded by agricultural and livestock industries with a low forest cover and vulnerable
ecosystems [5]. Maowusu Sandland had more than 90% desertified and sandy land in the
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1950s, with sandy area making up 40% of the total area and only 2.6% of the area covered
by forests [6–8]. The vegetation in the Maowusu Sandland has deteriorated considerably
due to man-made and natural forces [9]. For the study of NDVI extraction in the Maowusu
Sandland, it is crucial to understand the spatial and temporal dynamics of vegetation
in the region as well as trend prediction. Vegetation degradation is accompanied by a
drop in the NDVI [10]. This study examines the spatiotemporal aspects of NDVI changes
over the past 20 years in the study region and investigates trend changes using remote
sensing technologies.

The prediction of NDVI based on Moderate Resolution Imaging Spectroradiometer
(MODIS) and Landsat data has gained considerable attention in recent years. It is now
used to interpolate the Landsat NDVI data throughout an entire year to complete the
evaluation of the vegetation state [11]. There are, however, fewer studies on the primary
factors influencing vegetation change in dry and semi-arid regions and precise long-term
projections, with earlier research mainly concentrating on how vegetation responds to the
environment and human activity [12]. Precipitation and air temperature are currently the
primary parameters used by many researchers, which are relatively varied concerning
vegetation in space due to the effect of climate change on vegetation change [13]. The
two areas where human activity has the greatest impact on vegetation change are: (1) im-
plementing ecological initiatives, such as converting farms to forests and shutting down
mountains to grow grass [14]; (2) human production and living activities, together with
the urbanization process, have the potential to upset the ecosystem’s delicate balance,
preventing plants from growing normally [15]. We can gain a deeper understanding by
thoroughly analyzing the effects of climate change and human activities on vegetation
change. Currently, global change research focuses on the quantitative analysis of the impact
of vegetation change drivers and the prediction of future trends [16]. Additionally, the
multivariate linear residual analysis [17], which carefully examines the relative influence
of human actions [18], dominates the quantitative analysis. The major models used for
trend prediction include the stochastic Forest, Support Vector Machine (SVM), and Support
Vector Regression (SVR) models [19], as well as machine learning techniques for forecasting
future trends. For instance, Guo et al. [20] used the residual method, which is the most
popular model for separating climate change and human activities, and is appropriate
for long time series analyses, to quantitatively analyze the effects of climate change and
human activities on changes in vegetation cover. The Support Vector Regression (SVR)
approach was successfully used by Yang Wei et al. [21] and others to increase the NDVI in-
version accuracy, however, the model suffers from a sluggish convergence speed and a very
complicated optimization procedure [22]. To simulate and quantify the effects of climate
change and human activity on vegetation cover, Shengzhi Huang et al. [23] introduced
a Support Vector Machine (SVM) model. However, the limitations of machine learning,
including its difficulty in feature learning, difficulty in determining hyper-parameters, and
slow computation speed, decrease prediction accuracy.

Deep learning offers superior learning and fitting capabilities compared to statistical
and machine learning approaches, and it can fully exploit large-scale time series data
for improved short-term NDVI forecasting [24]. Convolutional neural networks (CNNs),
recurrent neural networks (RNNs), deep belief networks (DBNs), and deep neural networks
(DNNs) are examples of deep learning techniques [25]. Peiqiang Gao et al. [26] use CNNs
to create an NDVI prediction model to thoroughly examine how the NDVI responds to
environmental conditions, which significantly increases the accuracy of NDVI prediction.
However, when dealing with very volatile and non-stationary data, CNN prediction
accuracy suffers. The cyclic structure introduced by RNN is better able to handle time series
data and extract NDVI data for fitting, however, it also has issues with fading gradients
and the inability to record long-term dependencies [27]. As a specific type of RNN, the
long short-term memory (LSTM) network outperforms current neural networks (RNNs) in
short-term NDVI prediction tasks. However, LSTM also has issues with many parameters
and sluggish model convergence [28]. The prediction accuracy of the aforementioned deep
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learning models is significantly better than that of conventional statistical models and
machine learning techniques; however, it is not optimal when dealing with nonlinear time
series data. In the field of time series prediction, the Transformer model [29] has recently
been proposed and applied. However, despite producing predictions with better accuracy,
the Transformer model has a high memory occupancy rate and time complexity.

This study focuses on fixing the issues with the earlier Transformer model, while the
Informer model [30] is suggested to address the Transformer’s weaknesses. This study aims
to address three issues of the earlier Transformer: (1) The self-attention mechanism’s com-
plexity and memory requirements; (2) The memory bottleneck with lengthy input stacked
layers; and (3) The performance deterioration of forecasting long output time series. In ad-
dition to exhibiting excellent potential in long-time series input and output dependencies,
the improved Informer model introduces the probabilistic sparse self-attention mecha-
nism, which can efficiently reduce the spatial complexity of the long sequence time-series
forecasting (LSTF) problem.

Determining the long-term spatial and temporal NDVI changes in the Maowusu
Sandland and the pattern of such changes is crucial for ensuring ecological quality [31].
There are currently few persistent analyses for trend prediction, and the geographical and
temporal variations of NDVI in the Maowusu Sandland are in the monitoring stage. The
Maowusu Sandland’s NDVI trend in the future is crucial for addressing drought.

This study is based on the Google Earth Engine (GEE) cloud platform. It integrates
multiple change analysis and attribution algorithms over 20 years to construct a set of
comprehensive analysis systems for vegetation pre-restoration. These systems are used to
predict future changes in vegetation trends, to thoroughly reveal through in-depth analysis
the relationships and roles of vegetation, climate, and human activities, and to provide
trustworthy scientific data (Figure 1) [32–34]. Therefore, the study’s specific goals are to
(1) thoroughly explore the relationship between the dynamic changes in vegetation and
the spatial and temporal changes in the climate under artificial restoration and natural
restoration, taking into account the context of 20 years of climate warming and aridifi-
cation of severe ecological restoration projects as an entry point; (2) conduct a regional
ecological assessment, evaluate the spatial and temporal changes, and forecast future NDVI
trends to examine the distinct effects of artificial restoration and natural restoration on
vegetation changes in the Maowusu Sandland area as an example; (3) compile and train
19 years’ worth of NDVI data in the research region, as well as meteorological parame-
ters, and propose a technique based on Informer’s accurate long-term NDVI prediction,
which will serve as a scientific foundation for ecological environmental conservation and
sustainable development.

Figure 1. Methodology flowchart.
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2. Materials and Methods
2.1. Study Area

Maowusu Sandland, with an average elevation of 1347 m above sea level, is situated in
the semi-arid desert region of northwest China, between the Yulin area of Shaanxi Province
and Ordos City of Inner Mongolia Autonomous Region (Figure 2). It has an administrative
area that includes the Wushen Banner of Ordos City, Ejin Horo Banner, Ertok Banner, and
Ertokqian Banner. The region’s geography is high in the north and south and low in the
east and west. It has a land area of roughly 2.98 × 104 km2 [35]. With an average annual
temperature of 6.0–8.5 ◦C, average annual precipitation of 220–400 mm, average annual
evaporation of 2100–2600 mm, and average annual wind speed of 4.5 m/s, the Maowusu
Sandland is classified as having a moderate continental monsoon climate. The region’s
climatic features include a dry environment, significant evaporation, uneven distribution
of precipitation, powerful insolation, windy weather, and sandy terrain [36].

Figure 2. NDVI long time series data and elevation of the Maowusu Sandland.

2.2. Data and Processing

The method effectively removed the temporal and spatial constraints in the geomor-
phological study. The Google Earth Engine (GEE) cloud platform was used to generate
long time series and multi-year mean analyses based on the Landsat series, which was
used to construct the NDVI dataset of 250 m spatial resolution long time series for remotely
sensed data in the study area.

The GEE platform (https://earthengine.google.com/) (accessed on 30 June 2023)was
used to obtain NDVI data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) data. The Maowusu Sandland was subjected to a quantitative investigation
of plant cover changes utilizing the monthly temporal and geographical resolution of
250 m MOD13Q1 NDVI. NDVI data were created using the average synthesis approach
with data from January through December. Additionally, Landsat remote image NDVI
obtained each year of the research period underwent pixel-by-pixel yearly 95th quantile
synthesis, which can partially mitigate the uncertainty caused by the year’s limited number
of picture acquisitions.

Using ASTERGDEM 30M resolution digital elevation data, digital elevation model
(DEM) data were chosen from the geospatial data cloud (https://www.gscloud.cn/) (ac-
cessed on 5 July 2023). ArcGIS was used to analyze the digital elevation model (DEM) data
to acquire elevation information.

https://earthengine.google.com/
https://www.gscloud.cn/
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The two primary sources of meteorological data were the National Tibetan Plateau
Science Data Center and the fifth-generation European Centre for Medium-Range Weather
Forecasts (ECMWF) atmospheric reanalysis (ERA5) dataset from the GEE cloud platform.
The mean_2m_air_temperature band temperature data at 2 m above ground level per hour
and total_precipitation band calculations were the foundation of the European Centre
for Medium-Range Weather Forecasts Fifth Generation Atmospheric Reanalysis (ERA5)
dataset (resolution 27,830 m), which gathers daily mean temperature and daily precipitation
data from 2000 to 2019. Meanwhile, researchers from Peng Shouzhang obtained data from
the National Tibetan Plateau Science Data Center, including differences in mean annual
temperature and rainfall through time and space. These data were created using the
worldwide high-resolution climate dataset from World Clim and the global 0.5◦ climate
dataset from Climatic Research Unit Time Series (CRU), which were both downscaled
in the Chinese region using the Delta spatial downscaling tool. Data from 496 different
meteorological observation stations were utilized for validation to confirm the accuracy of
the data, and the validated findings demonstrated its reliability.

Three periods of land-use data were gathered for 2000, 2010, and 2020. The land-use
data were acquired from the Globeland30 dataset (30 m resolution), a worldwide surface
cover dataset created in China. Bare land, grassland, farmland, shrubland, wetland, water
bodies, woodland, and man-made land surfaces were among the several types of land.

The surface soil moisture covariate from the ERA5 reanalysis data was used to inter-
polate the 0.25◦ resolution European Space Agency Climate Change Initiative (ESA-CCI)
surface soil moisture product to obtain the spatiotemporally continuous day-by-day 0.25◦

resolution soil moisture. Machine learning algorithms were then used to downscale the
daily 0.25◦-resolution surface soil moisture to a daily 1-km resolution [37] using data from
the International Soil Moisture Observation Network’s global soil moisture observatory,
along with other high-resolution optical remote sensing data.

The accuracy of the aforementioned data was strictly controlled and was collected
from reputable sources, including the National Aeronautics and Space Administration
(NASA), the Computer Network Information Center of the Chinese Academy of Sciences,
the European Centre for Medium-Range Weather Forecasts (ECMWF), and the Global
Surface Coverage Remote Sensing Mapping and Key Technology Research Project of the
National High-Technology Research and Development Program of China.

2.3. Research Methodology
2.3.1. MK + Sen Trend Analysis

The temperature–rainfall time series was examined for noteworthy patterns using
nonparametric approaches. The Mann–Kendall (MK) and Sen slope estimators, which are
computationally effective, were employed to determine the trend and slope, respectively,
as temperature–rainfall data were not normally distributed [38].

The Sen trend is a more reliable non-parametric statistic for trend calculations. It is
insensitive to measurement error and outlier data. In contrast, the MK test does not require
the samples to follow a particular distribution and is less affected by outliers, making
it suitable for significant tests of trends in long time series data [39]. The Sen trend and
MK tests can be combined to analyze long vegetation time series [32]. The formula for
calculating the significant trend is as follows:

β = Median
( xj − xi

j − i

)
∀j > i (1)

where Xj and Xi are time series data; β is an indicator that represents the trend of a time
series; β > 0 indicates an upward trend in the time series; β < 0 indicates a downward trend
in the time series.
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2.3.2. Partial Correlation Analysis

In addition to applying to multivariate data, partial correlation analysis permits hy-
pothesis testing to ascertain whether there is a statistically significant relationship between
two variables by controlling for the impact of one or more confounding variables on the
relationship between two variables [40]. The t-test, which statistically analyzes each pixel
at a significance threshold of 0.05, was used for the correlation study [41]. This study
examined the association between three variables—temperature, precipitation, and soil
moisture—and the change in NDVI from 2000 to 2019 using MATLAB2016-based partial
correlation analysis.

2.3.3. Multivariate Linear Residual Analysis

To isolate the portion of the climatic effect that impacts vegetation development,
residual analysis is a method for modeling regression between climate parameters and
the NDVI (Normalized Vegetation Index) [42,43]. Regression modeling is used in this
approach to determine the expected values of the NDVI, which in turn produces the
residuals between the real and predicted values. These values are then used to assess the
influence of human activity on vegetation growth [44]. This paper establishes a multiple
regression model between the NDVI and climate factors before the implementation of the
ecological project (2000–2010) (i.e., a metric scale to calculate the NDVI climate response
model) [45] to better reflect the impact of human activities on vegetation changes.

The NDVI predictions—driven solely by climate change—were calculated image-
by-element from 2000 to 2020 using the established regression equations. The NDVI
observations were then subtracted from the NDVI predictions—driven solely by climate
change—to obtain the NDVI residual time series from 2000 to 2020 [34]. The following
formula was used to calculate the residual series:

ε = NDVIabs − NDVIpre (2)

where ε is the NDVI residual; NDVIabs is the observed NDVI value; NDVIpre is the predicted
NDVI value.

2.3.4. Relative Contribution Rate

Relative contribution analysis is a technique for determining the precise percentage
that each explanatory variable contributes to the variance of the explained variables. The
challenge and concern regarding the relevant research domestically and internationally has
been identifying and quantifying the determinants of vegetation change on a wide regional
scale [46]. In this study, we adopted a technique to calculate the relative contribution rate of
climate change and human activity to vegetation change using multivariate linear residual
analysis [45]. We also identified the drivers of vegetation change on an image metric
scale and quantified their relative contributions to vegetation change [46]. The associated
formula is:

K =
Slope

(
NDVIpre

)
Slope(NDVIobs)

(3)

K =
Slope(NDVIres)

Slope(NDVIobs)
(4)

where K is the relative contribution rate; Slope(NDVIobs) is the trend value for the time series
of actual NDVI values; Slope(NDVIpre) is the trend value for the time series of predicted
NDVI values based on multivariate regression analysis; Slope(NDVIres) is the trend value
for the NDVI residual time series based on residual analysis.

2.3.5. Accurate Long-Term NDVI Prediction Model Based on Informer

Although Transformer can predict long time sequences and demonstrates strong pre-
diction ability, the model’s multilayered encoder–decoder structure means that the longer
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the sequence, the slower the speed, and the worse the effect of the model in predicting
long time sequences [47]. Herein, we address this issue and the inherent issues with the
encoder–decoder architecture by introducing an effective LSTM model based on an im-
proved Transformer, the Informer model. This model uses probabilistic sparsity inside the
encoder—a self-attention mechanism—trained and learned according to sequences with
high probability in the data and filtering the Q-value with high weight [48]. As a result, the
complexity may be significantly reduced. Figure 3 presents the structure of this model.

Figure 3. Schematic diagram of the Informer model.

Based on the encoder–decoder structure of the Informer prediction model system, we
developed precise long time series NDVI prediction in this article. For the temporal dimen-
sion of the inputs, a distillation operation prioritizes high-level features with dominant
features, generates a centralized self-attentive feature mapping in the following layer, and
adds a max-pooling layer of two after stacking one layer, which drastically reduces the
memory in the downsampling [30].

3. Results
3.1. Spatiotemporal Characteristics of Land Use Types

As illustrated in Figure 4, the land use categories for the Maowusu Sandland from
2000 to 2020 were plow, woodland, grassland, shrubland, wetland, wave, bare land, and
man-made surface, in sequence. In the research area, the categories of land use include, in
decreasing order, grassland, bare land, farmland, shrubland, water body, wetland, man-
made land surface, and forest. Grassland, bare land, and plow all exhibited an upward
tendency between 2000 and 2020, with grassland showing the largest increase, wave
exhibited the slightest increase, and wetland and forest remaining relatively unchanged.

Figure 4. Land use type maps for 2000, 2010, and 2020.
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In general, the Maowusu Sandland exhibits a gradual decline in cultivated land and
an increase in woodland and grassland from the northwest to the southeast (Figure 5).
The man-made land surface is sporadically distributed throughout the entire region but is
primarily concentrated in the eastern part of the Maowusu Sandland and develops with
a fast growth trend. After a field investigation, it was discovered that the predominant
vegetation in the sandy land was sandy cypress. The Northwest region exhibited an
increasing trend in grassland from 2000 to 2020, and the man-made land surface and arable
land also showed a slight growth trend, moving in the direction of a trend in restoring
ecological well-being.

Figure 5. Land use type change map for 2000, 2010, and 2020.

3.2. Analysis of Groundwater Impact on NDVI

The 2019 groundwater depth spatial distribution map for the Maowusu Sandland was
produced using the Spatial Analyst spatial analysis module of the ArcGIS 10.8 software.
This map was used to analyze the inverse distance weights of the 2019 groundwater level
depth based on the 2019 groundwater level depth data in Maowusu Sandland.

The Ordos Hydrological Bureau, located in China’s Inner Mongolia Autonomous
Region, supplied all information on burial depths and groundwater levels. Within the
spectrum of places with data recordings, the 2019 groundwater level depth in the Maowusu
Sandland exhibited more pronounced variances, as illustrated in Figure 6. In the research
area, the depth of the groundwater varied widely, with shallow depths in the middle and
northern areas and depths below 10 m in the northern and southern regions. According
to the 2019 NDVI spatial distribution map of the Maowusu Sandland, this area had a
wide range of variable groundwater depths. We discovered that vegetation was well-
developed in areas with shallow groundwater table burial depths, which suggests that
groundwater had a beneficial promoting effect on vegetation. However, most places had
groundwater buried deeper than 7 m, and the relationship between groundwater and
vegetation was weak.

Our daily monitoring of the Maowusu Sandland groundwater level changes in 2019
revealed that only points 4 and 7 had more obvious variations in groundwater level
(Figure 7). This was largely because these points are situated in an area of cultivated land,
where the groundwater is primarily used for irrigation water for agricultural development
and where the groundwater level is buried deeper.

3.3. Analysis of Vegetation Change Trends

The Maowusu Sandland’s average Sen slope value from 2000 to 2019 was 0.18, and
its slope was 0.0034 a−1, showing that the NDVI increased steadily while growing at
a relatively modest rate (Figure 8). Most of the quicksand regions were located in the
hinterland of the sandy land, which contributed to the study area’s low vegetation cover
in 2000. Most of these areas had <30% vegetation cover. The Maowusu Sandland has
undergone construction and ecological protection projects in recent years from national
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and local governments, which have improved the ecological environment and increased
the plant cover, although the geographical disparity is still evident [49].

Figure 6. Spatial distribution of groundwater level changes in 2019.

Figure 7. Monitoring maps of daily changes in groundwater levels.

The Maowusu Sandland area’s vegetation cover exhibited a decreasing trend from
northeast to southwest; however, because the ecological protection construction project’s
vegetation growth requires time, the vegetation cover in the eastern region is increasing
significantly (Figure 9). This indicates that the project’s ecological protection management
is having an impact. Among these, the maximum NDVI in August 2020 is significantly
greater than the highest NDVI in August 2000, which is closely related to China’s local
governments’ participation in protection and restoration.

The change in vegetation cover was divided into nine classes based on the Theil-Sen
Median trend value analysis and the Mann–Kendall nonparametric test at a significance
level of 0.05: dramatic increase, significant increase, slightly significant increase, insignifi-
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cant increase, unchanged, insignificant reduction, slightly significant reduction, significant
reduction, and very significant reduction.

Figure 8. NDVI trend chart from 2000 to 2019.

Figure 9. Spatial distribution of average NDVI in the Maowusu Sandland in 2000, 2005, 2010, 2015,
and 2020, and linear interpolation and fitting of NDVI values. Annotation A1 corresponds to 2000, A2
corresponds to 2005, A3 corresponds to 2010, A4 corresponds to 2015, and A5 corresponds to 2020.

The Maowusu Sandland region significantly expanded, accounting for more than 90%
of the region, as shown by the NDVI trend change map (Figure 10). Between 2000 and 2020,
there was a clear difference in the amount of land, with an increasing trend and an obvious
decreasing trend. Of these, 95.28% of the area had significantly improved vegetation cover,
while only a small portion had degraded vegetation. This difference is likely due to the
implementation of national ecological conservation and construction projects. Throughout
the 20 years, the NDVI had a notable increasing trend, and the number of regions with
a large increase in plant cover grew significantly. However, these areas were primarily
concentrated in areas with high populations.

The 20-year NDVI trends were compared, revealing that plant cover rose gradually
from 2000 to 2020 with no discernible variation in growth rate. Given that the popula-
tion is more concentrated in the eastern half of the Maowusu Sandland, the growth rate
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of vegetation cover is significantly larger than it is in the western region. This finding
suggests that the ecological restoration project has a substantial impact on the increase in
vegetation cover.

Figure 10. NDVI change trend chart from 2000 to 2019.

3.4. Characterization of Inter-Annual Variability of Climate Factors

In the study area, the temperature and precipitation change rates showed substantial
declining trends between 2000 and 2010 (Figure 11). This suggests that the environment
was drier, which was detrimental to the growth and recovery of vegetation. Meanwhile,
the rates of temperature and precipitation changes showed substantial upward trends from
2013 to 2019 (Figure 11). During the 2011 to 2013 period, the temperature decreased, and
the quantity of precipitation increased. The humid weather created ideal circumstances for
the NDVI to thrive.

Figure 11. Characterization of inter-annual variability in precipitation and temperature.

From 2003 to 2018, it was discovered that July through September saw the most rainfall,
while June through July saw high temperatures. This helps to keep high temperatures
from accelerating drought and causing severe soil moisture loss due to crop transpiration
and soil evaporation. There is a greater chance of very heavy precipitation because of
the atmosphere’s enhanced capacity to store water vapor before saturation, which is why
spring and autumn rainfall has significantly risen. Increased precipitation, sufficient soil
moisture, and appropriate temperature contributed to gains in plant cover and growth,
creating the ideal environment for vegetation development and the NDVI (Figure 9).

3.5. Relationship between Climate Factors and NDVI

The elevation map indicates that the southeast region has more mountain ranges, high
vegetation cover, low surface specific heat capacity, a tendency for stable temperatures,
and vegetation that can produce water vapor for precipitation through transpiration and
encourage infiltration to replenish the groundwater. This is favorable for the significance
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of the NDVI in the eastern region (Figure 9). Meanwhile, the western region has a flat
terrain predominately made up of deserts, a dry climate, little vegetation cover, high
evaporation, low air humidity, and a high water infiltration rate. As a result, transpiration
and groundwater absorption by plants are significantly impacted, leading to a prolonged
period of low vegetation cover. The Maowusu Sandland’s typical flowing dunes were
monitored for soil water seepage at various soil layer depths. The results show that deep
water seepage is more affected by heavy rainfall than by changes in soil water storage;
moreover, when rainfall is low, the relationship between deep water seepage and soil water
storage is stronger.

In most locations, air temperature impeded plant development, as shown by the
partial correlation coefficients between vegetation and climatic parameters (Figure 12).
The rainfall in most regions encouraged vegetation growth, and the soil moisture in all
sites encouraged plant growth. Overall, soil moisture had the greatest impact on vege-
tation changes, as indicated by the mean values of the partial correlation coefficients for
temperature, precipitation, and soil moisture with vegetation NDVI, which were −0.394,
0.108, and 0.726, respectively. We discovered that temperature was the primary driver
of the Maowusu Sandland, whereas rainfall was the primary driver in the eastern and
southern parts. Among these, precipitation, air temperature, plant type, and topographic
variables were the key determinants of soil moisture and accounted for the main drivers of
the research region. Precipitation is particularly important for herbaceous plants growing
in chestnut calcium soil. It is the main driving factor for the Maowusu Sandland’s large
expanse of the steppe zone, which contains high calcium ions and carbonates, loose texture,
good permeability, and poor water-holding capacity. In particular, the primary cause of the
Maowusu Sandland region’s healthy vegetation development is climate change.

Figure 12. Partial correlation coefficients for temperature, precipitation, and soil moisture.

3.6. Changes in Plant Cover as a Result of Climatic Conditions and Human Activity

The primary drivers of the growth trends in vegetation NDVI from 2000 to 2019
were human activity and climate change, with the former predominating over the latter
(Figure 13). The study area’s vegetation NDVI improvement accounted for 99.26% of the
total area. Of these, most of the vegetation improvement areas—primarily located in the
eastern and southern regions of the study area—were driven by meteorological changes,
while the remaining portion was primarily controlled by human activity. The primary
cause of the rising trend in vegetation cover is the effects of climate change. The primary
causes of the decreasing trends in plant cover are human activity-influenced forces.

In terms of population density and gross domestic product (GDP) in the study area in
2020 (Figure 14), the population was primarily distributed in the region of vegetation cover
NDVI growth, with the high human living standard also located in this region. This is
primarily because ecological restoration work in urban suburbs supports development. In
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contrast, the desert area has a small population and a low human living standard, making
the area difficult to develop.

Figure 13. Trends in the residuals of the NDVIres, NDVIpre, and NDVIobs.

Figure 14. Population density and gross domestic product (GDP) in 2020.

In particular, the Maowusu Sandland region’s vegetation improvement was primar-
ily driven by climate change, with human-led ecological restoration projects accounting
for a small portion of the region. Hence, the region’s vegetation improvement was pri-
marily caused by climate change, with human-led ecological restoration projects serving
as a secondary driver. The combined impact of climate change is the primary cause of
vegetation decline.

3.7. Relative Contribution of Climate and Human Activities to Vegetation Changes

In regions with increasing NDVIs, the average contribution of climate change to the
enhancement of vegetation cover was 55.57%, whereas in regions with declining NDVI,
the average contribution of human activities to the deterioration of vegetation cover was
88%. In terms of geographical distribution, the research region’s most densely inhabited
city center contributed less compared to vegetation cover. However, the highly populated
region had a more favorable influence on ecological restoration efforts. We discovered that
there are two main factors contributing to the NDVI decrease: first, the city center area
has a greater negative contribution due to human activities compared with the desert area;
second, the natural ecological restoration area system has more stable NDVI growth; the
desert area has a narrow population distribution and climatic circumstances that make it
more vulnerable to the harmful effects of climate change. Because the desert region has
fewer people and a harsher environment that is not conducive to plant development, the
negative effects of climate change are more pronounced.

Climate change and human activities have the greatest impact on vegetation changes,
and climate change has the greatest impact on regions with growing trends in vegetation.
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In the dry and semi-arid Mao Sandland, rainfall has the greatest impact on plant growth.
Sufficient water is necessary to encourage the development and recovery of vegetation.
The study area’s shift in land use patterns is partially the result of frequent human activity;
as urban sprawl has intensified, there has been a commensurate rise in the amount of
man-made land and a corresponding decline in the plant cover in certain localized areas.

3.8. Accurate Long Sequence Prediction Based on Informer

To conduct this study, a total of 7305 days of daily meteorological data for 228 months,
spanning from 1 January 2000 to 31 December 2019, were chosen for the Maowusu Sandland.
These data included information on temperature and rainfall.

Python 3.8, the PyCharm 3.8.1 framework, Windows 11, and 16 GB comprised the
experimental environment.

This study adjusts the hyperparameters according to the training results of its predic-
tion model, and the final hyperparameters are set as follows: learning rate, 0.001; number
of iterations, 20; batch size, 128; activation function, Gaussian error linear units (GELU).
This study’s hyperparameters were adjusted according to the meteorological data of the
prediction model.

Four commonly used evaluation metrics were selected to assess the prediction per-
formance of the model from different perspectives, i.e., mean absolute error (MAE), mean
square error (MSE), root mean square error (RMSE), and mean absolute percentage error
(MAPE). The smaller the value of these four evaluation indexes, the closer the prediction
result is to the real value, and the more accurate the prediction accuracy of the model; the
specific calculation formula is as follows:

eMAE =
1
n ∑n

i=1|yi − ŷi| (5)

eMSE =
1
n ∑n

i=1|yi − ŷi|2 (6)

eRMSE =

√
1

n ∑n
i=1(|yi − ŷi|)2 (7)

eMAPE =
1
n ∑n

i=1|yi − ŷi|/yi (8)

where yi is the true value of the original data; ŷi is the predicted value of the original data;
n is the test sample size; i is the test sample point sequence number.

The average daily temperature (calculated based on 24-h temperature observations),
total daily precipitation (based on rainfall totals over 24 h), and NDVI data from 2000 to
2018 were used in the prediction validation experiment to assess the predictive model’s
accuracy. The prediction results are depicted in Figure 15.

Figure 15. Informer model prediction error plot.
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Figure 16 shows that the prediction error values of the Informer model’s findings
compared to the actual results are 0.59%, 0.86%, 0.91%, and 2.24% for mean absolute error
(MAE), mean square error (MSE), root mean square error (RMSE), and mean absolute
percentage error (MAPE), respectively. This provides strong evidence that our enhanced
Transformer-based Informer model closely approximates the real values’ curve fit. Our
prediction model will have a lower error value and use less computation time than the
conventional model, thoroughly demonstrating the viability of the model. As a result, the
model is more effective in forecasting NDVI’s future trends.

In this study, we utilized the Informer model and input average daily temperature,
total daily precipitation, and NDVI data from 2000 to 2020 for deep learning to forecast the
NDVI trend for the following ten years (Figure 16). As further evidence of the reliability of
the prediction findings, the peak NDVI for each year in the prediction results is approxi-
mately 0.3, which does not differ significantly from the peak input NDVI data in recent
years. Figure 17 illustrates the forecast findings, which demonstrate that the NDVI trend
will stabilize during the following ten years. The nonlinear fitted equation has a slope of
0.000294, indicating a minimal change over the following ten years (Figure 17).

Figure 16. Map of NDVI projection results for the next ten years.

Figure 17. NDVI trend chart for the next ten years.
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4. Discussion
4.1. Characteristics of Dynamic Changes in Land-Use Types and Changes in Groundwater
Resources in the Maowusu Sandland Area

According to our research, the Maowusu Sandland area’s primary land use categories
from 2000 to 2019 were, in descending order, farmland, forest, grassland, shrubland,
wetland, water body, bare ground, and man-made land surface (Figures 4 and 5). Man-
made surfaces were sporadically distributed, mostly concentrated in the eastern region of
the Maowusu Sandland, and developing rapidly, with a fast growth trend, the same as that
reported in the past. The study area showed a trend of gradually increasing cropland and
decreasing grassland from the southeast to the northwest [50]. Wetlands, cropland, bare
land, and man-made land surfaces all exhibited an upward trend between 2000 and 2020,
with cropland having the largest increase, water bodies showing a slight decrease, grassland
exhibited the largest decline in 20 years, and forests and shrublands showing relatively no
change. Grassland is a key land use type for the ecological repair and preservation of sandy
land. According to the field research, the predominant vegetation was sandy cypress, and
between 2000 and 2020, grassland had a decreasing tendency. However, man-made land
surfaces and arable land also showed a minor growth trend, shifting toward reversing the
ecologically unsound trend.

According to our 2020 daily monitoring data, from April through October, numerous
monitoring sites located at agricultural sites within the study region exhibited decreasing
groundwater levels. This shows that groundwater may be the area’s primary source of
agroecological water. In regions where the groundwater table is < 4 m deep, we discovered
that the flora is well-developed. This supports earlier findings and implies that groundwater
has a positive influence on promoting plants [51]. According to research by Zhang et al. [8],
high-density vegetation in the Maowusu Sandland may have contributed to a drop in the
groundwater table and retention of water in the soil. To maintain the sustainability of the
ecosystem, we propose that water balance concerns be taken into account in upcoming
ecological restoration initiatives in China and across the world.

4.2. Quantifying the Impacts of Human Activities and Climate Change on NDVI

Lin et al. [50] tracked the Maowusu Sandland region’s sandy vegetation cover from
2000 to 2019 and linked changes in the local climate to NDVI-related land cover metrics.
Using residual analysis, they assessed the various contributions and discovered that most
of the NDVI exhibited an increasing trend, with only 0.08% in the highly damaged area.
According to our study, which aligns with the other data, the vegetation cover in the studied
region exhibited a decreasing trend from east to west. It also had a larger distribution of
mostly low and medium vegetation cover [50]. Vegetation cover had a variable increasing
trend of 0.0034 a−1, which was primarily demonstrated by an ongoing but slower rate of
increase in NDVI across the study period.

According to Tian et al. [52], in the Yellow River Basin, NDVI is positively associated
with air temperature and precipitation, with precipitation having a greater impact on plant
development than air temperature. According to Yang et al. [35], the Maowuosu Sandland
region’s response relationship between NDVI and climatic factors in one year was primarily
in the spring, with most precipitation negatively correlated with NDVI and the areas of
positive and negative correlation essentially flat in other months. In our study, the two
climatic elements restricting plant growth—air temperature and precipitation—were both
somewhat favorably and slightly negatively associated with the total NDVI growth rate in
the study region.

Gao et al. [53] used the residual analysis of Maowusu Sandland from 1985 to 2020 to
reveal that human activity contributed 56.44% of the NDVI, and climatic change contributed
43.56%. Lin et al. [50] measured the Maowusu Sandland’s impact from 2000 to 2019,
revealing that human activity was the primary driving force. In our research, we discovered
that the Maowusu Sandland’s plant cover was mostly favorably influenced by climate
change, with a relative contribution rate of 55.47%, and that human activities and climate
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change had some heterogeneity. However, the improvement in vegetation was primarily
attributed to the ecological restoration project driven by climate change, in which human
activities only made up a small portion of the factors, and its implementation had a positive
impact on governance. In contrast, the decline in vegetation was primarily attributed to the
impact of climate change. Temperature changes and extreme weather have a greater impact
on vegetation development. The ecosystem is more stable and resistant to the effects of the
outside environment when the ecological environment is better.

4.3. Precision Long Time Series-Informer Model

To guarantee ecological quality and offer a scientific foundation for sustainable develop-
ment, accurate NDVI predictions are crucial. Huang et al. [23] reported that the support vector
machine (SVM) could accurately recreate the observed NDVI series. However, the normalized
system criterion (NSC) value for the validation period was only guaranteed to be between 0.9
and 0.95. For the NPP spatial simulation distribution prediction, Wang et al. [54] utilized a
CA-Markov model with a kappa coefficient of 0.8776. However, it can fully utilize large-scale
time series data for improved short-term NDVI prediction compared to deep learning, which
has higher learning and fitting capabilities. The NDVI and meteorological factor data from
2000 to 2018 were utilized for deep learning using the Informer model, an effective long
short-term memory (LSTM) model enhanced based on the Transformer; the hyperparameters
were ideally changed to provide a probabilistic sparse self-attention mechanism.

The model can recognize patterns in unsteady, smoothed meteorological factor data.
Moreover, using a probabilistic sparse self-attention mechanism can remove the volatility of
the meteorological factor to enhance the accuracy of NDVI predictions while retaining the
original data’s key elements. The mean absolute percentage error (MAPE) of the Informer
model suggested in this study may be reduced to 2.24% after analyzing the NDVI prediction
data, providing a strong scientific foundation for future NDVI predictions in China and
throughout the world.

5. Conclusions

The Maowusu Sandland area has the following land use classifications, in descending
order: grassland, bare land, farmland, shrubland, water body, wetland, man-made surface,
and forest. The overall pattern is cropland progressively declining from east to west and
grassland growing. The NDVI has a decreasing tendency from east to west and is mostly
dispersed by low and medium vegetation cover. It swings upward by 0.0034 a−1, primarily
caused by the NDVI’s constant increase throughout the period. In the Maowusu Sandland,
which is primarily impacted by the climate change-led ecological restoration project, human
activities account for a small portion of the factors. The ecological restoration project has a
better management effect, with some heterogeneity in the contribution of vegetation cover
due to both factors. The impact of climate change is primarily to blame for the decline in
the vegetative cover.

The primary issues that the Informer model resolves with the Transformer are (1) not
being directly affected by the long sequence time-series forecasting (LSTF) problem; (2) ex-
cessive memory occupancy; (3) encoder–decoder architectural restrictions; and (4) perfor-
mance loss in long output time series prediction. We used this method for NDVI prediction
because it can identify patterns in the unsteady smoothed weather factor data and, by re-
moving the volatility of the weather factors through a probsparse self-attention mechanism,
it can remove the volatility while maintaining the critical information of the original data,
resulting in accurate long time series prediction (MAPE = 2.24%). Using historical data,
the study’s conclusions may accurately forecast future crop yields, crop pests and diseases,
and NDVI. This opens up new agricultural production and management avenues and con-
tributes to realizing more sustainable and productive agricultural practices. This discovery
has broad ramifications for real-world applications and is significant for scientific research.
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