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Abstract: Weeds have a serious impact on lettuce cultivation. Weeding is an efficient way to increase
lettuce yields. Due to the increasing costs of labor and the harm of herbicides to the environment, there is
an increasing need to develop a mechanical weeding robot to remove weeds. Accurate weed recognition
and crop localization are prerequisites for automatic weeding in precision agriculture. In this study,
an intra-row weeding system is developed based on a vision system and open/close weeding knives.
This vision system combines the improved you only look once v5 (YOLOv5) identification model and the
lettuce–weed localization method. Compared with models including YOLOv5s, YOLOv5m, YOLOv5l,
YOLOv5n, and YOLOv5x, the optimized SPH-YOLOv5x model exhibited the best performance in
identifying, with precision, recall, F1-score, and mean average precision (mAP) value of 95%, 93.32%,
94.1% and 96%, respectively. The proposed weed control system successfully removed the intra-row
weeds with 80.25% accuracy at 3.28 km/h. This study demonstrates the robustness and efficacy of the
automatic system for intra-row weed control in lettuce.

Keywords: weeds remove; mechanical weeding robot; deep learning; YOLOv5 model

1. Introduction

Lettuce is essential in human diets and is widely cultivated around the world [1] Weed
control is one of the most important factors affecting the production of lettuce. Intra-row
weed removal is more challenging than inter-row weed removal due to the closer proximity
of the intra-row weeds to the crop line [2]. Manual weeding can accurately remove weeds
in the rows, but the expensive labor costs and low efficiency make it impossible to satisfy
the demands of large-scale production [3]. Chemical herbicides are widely used because of
their high efficiency in removing weeds from fields on a large scale. However, long-term
use of herbicides results in increased weed resistance and environmental damage [4–6].
Mechanical weed control is efficient and environmentally friendly. However, most of the
current mechanical weed control is not effective in removing weeds from rows due to the
lack of an accurate real-time plant location technology [7,8]. Therefore, it is important
to develop an intelligent, fast, and real-time lettuce field identification and positioning
technology for lettuce field weeding machinery.

Computer vision technology has demonstrated great potential for the rapid classi-
fication and localization of crops and weeds with the increase in computer computing
power and camera performance [9]. Iowa State University (USA) used a stereo camera
to extract depth information from the scene and identified the center of corn plants in
a laboratory environment through eight basic steps, including image segmentation and
skeletonization [10]. Li et al. [11] successfully extracted the grain skeleton and eventually
identified individual corn plants with an accuracy of 96.7% by using computer vision to
process depth images. However, the algorithm estimated the location of the corn with only
70% accuracy and the skeleton extraction algorithm was not effective in separating the
crop from the weed in the case of overlapping crop and weed. In addition, many scholars

Agronomy 2023, 13, 2915. https://doi.org/10.3390/agronomy13122915 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy13122915
https://doi.org/10.3390/agronomy13122915
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-1745-4722
https://orcid.org/0009-0004-9909-0153
https://doi.org/10.3390/agronomy13122915
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy13122915?type=check_update&version=2


Agronomy 2023, 13, 2915 2 of 20

achieved crop and weed classification by extracting the color, texture, shape, and other
features of crops using machine learning techniques [12–14]. Nonetheless, relying solely on
manually selected features fails to exploit the full potential of other distinguishing charac-
teristics inherent in crops and weeds. Deep learning techniques have a brilliant ability to
extract complex features from large amounts of data, making it a remarkable achievement
in image classification tasks [15,16]. By employing deep learning methodologies for crop
and weed classification, researchers have achieved remarkable outcomes in terms of clas-
sification results and accuracy, as demonstrated in various scholarly studies [17–19]. For
instance, Tao et al. [20] proposed a hybrid convolutional neural networks–support vector
machines (CNN-SVM) classifier for detecting weeds in winter rape fields and achieved
an accuracy of 92.1%. Mohd Anul Haq et al. [21] proposed a CNN LVQ model to classify
weed from soybean in a dataset of UAV image and showed an overall accuracy of 99.44%.
Completing the classification task is not enough, because the ultimate goal is to rapidly
obtain the precise location of crops and weeds. YOLO (you only look once) is an advanced
object detection algorithm proposed by Joseph Redmon and others, which offers higher
real-time performance compared to traditional object detection algorithms by simultane-
ously detecting multiple objects in an image within a short period [22]. A vertical rotating
intra-row robot based on YOLOv3 developed by Quan et al. [23] successfully detect the
maize from weeds with a crop detection rate of 98.50%, and a weed detection rate of 90.9%.
Chen et al. [24] proposed a YOLO-sesame model based on YOLOv4, using an attention
mechanism to detect weeds from sesame. The mean accuracy of the sesame crop and weeds
was 96.16% with a speed of 27.17 ms/f and the F1-score of crops and weeds were 0.91 and
0.92. Wang et al. [25] improved a YOLOv5s model to develop a precision spray system in
corn fields. The accuracy of the improved model is 92.6%, which was 3% better than the
original model with a speed of 3.2 ms/f. The above literature demonstrates the enormous
potential of the YOLO model in the field of rapid crop and weed detection and localization.
The ultimate goal of building a deep learning crop weed recognition model is to be able
to assist field weeding machinery in real time for intra-row weed removal. In addition to
accurate crop weed identification and localization technology, fast and efficient weeding
devices are particularly important. The weeder system that accompanies the intelligent
localization recognition model is crucial. Therefore, in addition to proposing a novel deep
learning weed recognition model, this paper designs a weeding system to validate the
model based on prior research.

In this paper, an inter-row weeding system is developed based on a vision system
and open/close weeding knives. The novelty of this study is the development of an
integrated system for weed identification and lettuce localization. The specific contribution
can be summarized as follows: (1) building a self-attention prediction head combined
YOLOv5x (SPH-YOLOv5x) deep learning model to distinguish crops–weeds under complex
backgrounds; (2) proposing an effective vision system for the identification of lettuce
stem emerging points that combines the improved YOLOv5 model and the lettuce–weed
localization method; (3) developing an intra-row weeding device based on a vision system
and open/close weeding knives.

2. Materials and Methods
2.1. Dataset Preparation

Lettuce and weed images were collected in Weifang, Shandong, China (36.755, 119.211;
Sunny Day), forming the original dataset, which includes 275 images. This dataset encom-
passes images of five distinct weed species: 52 Veronica polita Fries (VP) weeds, 51 Avena
fatua L. (AF) weeds, 54 Malachium aquaticum L. (MA) weeds, 87 Plantago asiatica L. (PA)
weeds, and 23 Sonchus wightianus DC. (SW) weeds, as is visually represented in Figure 1.
To meet the data requirements for machine learning model training, data augmentation
techniques were employed. Besides using flip and rotate, the original images of both
weeds and lettuce underwent enhancement, involving chroma adjustment and brightness
adjustment. Through comparison, it was found that when the brightness and chroma are
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adjusted to between 0.5 and 0.7 of the original images, there can be obvious differences
between the original images after adjustment, and too many shadows and highlights will
not be generated in the image process; that is, the original image is randomly selected [26].
Adjusting the chroma and brightness of the image from 0.5 to 0.7 for data enhancement
can show the difference from the original image while still retaining the details of the
original image. In the case of lettuce plants, 100 images were randomly chosen for data
augmentation, while the remaining 175 lettuce images were designated as the test set.
Following data augmentation, the new dataset included 312 VP images, 306 AF images,
324 MA images, 408 PA images, 138 SW images, and 430 lettuce images. For model training,
116 plant images were allocated to the training set, with 372 images for testing purposes.
The effect of the data enhancement is shown in Figure 2.
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Figure 1. Examples of lettuce and weed images. (a) An example of lettuce, (b) an example of SW,
(c) an example of PA, (d) an example of MA, (e) an example of AF, and (f) an example of VP.

2.2. Model Training Conditions

The vision system mainly consists of an industrial camera (Gaoshe, Shenzhen, China,
UBS 2.0) and a computer. The training images are acquired by the camera in real time
and then processed by the computer. The parameters of the camera include a maximum
resolution of 4500 × 3500 pixels and a frame rate of 30 frames per second. The height of the
camera from the ground is about 500 mm, and the horizontal distance between the camera
and the weed knife blade is 50 mm. The acquisition range of each camera was 400 square
centimeters, depending on the needs of the vision system. The computer was equipped
with an NVIDIA GTX 960 graphics card. The data training process was carried out on a
server with a workstation equipped with an NVIDIA GeForce RTX 3090 GPU (NVIDIA,
Santa Clara City, California, US, 24 GB RAM), an Intel (R) Xeon (R) Platinum 8156 CPU
(Intel, Santa Clara City, California, US), and 20 GB RAM (Kingston, Fremont, California,
US). The parameters for training were as follows: learning rate 0.001, batch size 16, and
epoch number 150.
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2.3. SPH-YOLOv5x Model

Among the seven versions in the YOLO series, YOLOv5 is the most widely used for
object detection [27]. YOLOv5 series networks have been widely used in the field of agri-
culture for weed and crop detection [28–30]. YOLOv5 comprises a backbone architecture
known as CSP-Darknet53, a neck structure called the path aggregation network (PANet),
and a prediction head referred to as YOLO [31]. YOLOv5x improves detection performance
and robustness compared to YOLOv5 by employing a larger model, multi-scale inference,
an enhanced model backbone network, and training strategies, striking a better balance
between speed and accuracy [26]. SPH-YOLOv5x is a one-stage object detection model: the
same as the original YOLOv5 model. The original YOLOv5 was modified to achieve the
identification and location of weeds and lettuce more precisely.

2.3.1. Detection Neck and Head

The neck is improved to better employ the features extracted by the backbone network.
It can reprocess the feature maps extracted by the backbone network at different stages.
The neck is a crucial link in the target detection network. Usually, a detection neck consists
of several top-down paths and several down-top paths. The original fast spatial pyramid
pooling (SPPF) module is replaced by the SPPFCSPC in the neck network.

SPPFCSPC is a combination of two modules: SPPF and SPPCSPC. SPPF is a module in
the YOLOv5 network. SPPCSPC is a module in the YOLOv7 network [32]. The modules
SPPF and SPPCSPC are proposed to solve the two problems of image distortion and to
avoid repetition of proposed features. The combination of the two modules can better solve
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these two problems and lead to improved performance of the model. The structure of the
three modules is shown in Figure 3.
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The backbone network focusing on classification is not equipped to handle object posi-
tioning. Therefore, the head module takes charge of discerning both the object’s category and
its spatial coordinates using the extracted feature maps from the backbone. It can be found
that it contains many extremely small instances in the weed/lettuce dataset. Thus, one more
prediction head is added for tiny objects detection. Combined with the other three prediction
heads, the four-head structure can easily find the small weeds. The prediction head (head
No. 1) is added for a low-level, high-resolution feature map, which is more sensitive to tiny
objects. After adding an additional detection head, although the computation and memory
cost increase, the performance of tiny objects detection improves greatly.

2.3.2. Backbone

The convolutional block attention module (CBAM) [33] represents a potent attention
mechanism, offering a lightweight solution compatible with various prominent CNN ar-
chitectures. CBAM is trainable in an end-to-end fashion and exhibits a two-fold inference
process on feature maps: it sequentially derives attention maps along two distinct dimen-
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sions; namely, channel and spatial. These derived attention maps are then employed to
dynamically refine the input feature map through element-wise multiplication.

The structure of the CBAM module is shown in Figure 4. According to the experiment
in the paper written by Zhu et al. [34], after integrating CBAM into different models on
various detection datasets, the performance of the model improves greatly. By using CBAM,
the attention area can be extracted to help SPH-YOLOv5x resist confusing information.
The CBAM module sequentially infers a 1D channel attention map Mc ∈ RC×1×1 and a
2D spatial attention map MS ∈ R1×H×W as shown in Figure 4 [33]. The overall attention
process can be summarized as follows:

F′ = MC(F)
⊗

F (1)

F′′ = MS
(

F′
)⊗

F′ (2)

where ⊗ represents element-wise multiplication. During the multiplication, attention
values are broadcasted along the spatial dimension. F′′ is the final refined output. Figure 4
shows the computation process of each attention map. Next, the details of each attention
module were described.
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In the channel attention module, a channel attention map was produced by exploiting
the inter-channel relationship of features. As each channel of a feature map acts as a
feature detector, channel attention is meaningful in focusing on “what” given an input
image. The spatial dimension of the input feature map was squeezed to compute the
channel attention. For aggregating spatial information, the max-pooled and average-
pooled features simultaneously. Both descriptors are forwarded to a shared network to
produce channel attention map Mc ∈ R C × 1 × 1. The shared network is composed of a
multi-layer perceptron (MLP) with one hidden layer. In short, the channel attention module
is computed as

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) = σ(W1(W0

(
Fc

avg

)
) + W1(W0(Fc

max))) (3)

where σ represents the sigmoid function, W0 ∈ RC/r×C, and W1 ∈ RC/r×C. Note that the
MLP weights (W0 and W1) are shared for both inputs and the ReLU activation function is
followed by W0.
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In the spatial attention module, a spatial attention map was generated by utilizing the
inter-spatial relationship of features. Distinguish from channel attention, spatial attention
is complementary to the channel attention according to its focus on the informative region.
For computing the spatial attention, max-pooling and average-pooling operations are
applied along the channel axis. And the two operations are concatenated to generate an
effective feature descriptor. It was proved that applying pooling operations can effectively
highlight informative regions [33]. In short, the channel attention module is computed as

MS(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)]
)
= σ

(
f 7×7

([
FS

avg; FS
max

]))
(4)

The framework of SPH-YOLOv5x is illustrated in Figure 5.
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2.3.3. Localization Algorithm

As shown in Figure 6, the localization system is implemented by building an added
localization module based on the improved SPH-YOLOv5x target detection model. The lo-
calization method has been mentioned in Zhang’s paper [26]. Specifically, it is implemented
based on the bounding enclosing box and HSV color space generated by the deep learning
model prediction. The center of the lettuce rootstock is located by locating the center
of the bounding box. Its final output will be in the form of a “txt” file of plant species
and their rootstock coordinates at 30 frames per second. The positioning system can not
only specialize in locating crops in combination with open and closed weed knives for
indiscriminate weed removal within the crop row, but they can also be positioned to focus
on locating weeds between plants by precision spraying or hammering. In this article,
the positioning accuracy and weed control effectiveness of the system will be verified in
combination with the open and closed weed knife.
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2.4. Model Evaluation Methods

The primary metrics employed encompass the loss function, precision, recall, F1-score,
mean average precision (mAP), and the confusion matrix. The loss function gauges the
data fitting effectiveness, precision assesses the positive category prediction accuracy, recall
signifies the positive category recognition rate, while the F1-score harmonizes the precision
and recall to balance the trade-off. mAP comprehensively evaluates the target detection
performance, and the confusion matrix furnishes detailed insights into the classification
performance. The equations of recall, precision, F1-score, and mAP were as follows:

Recall =
tp

tp + f n
(5)

Precision =
tp

tp + f p
(6)

F1− score =
2× Precision× Recall

Precision + Recall
(7)

mAP =
∑N

n=1 AP(n)
N

(8)

2.5. Intelligent Intra-Row Weeding System
2.5.1. Mechanical Weeding Device

An intra-row weed control device was designed by combining target detection and an
intra-row mechanical weed knife. The design principle is similar to the dilution knife in the
vegetable diluter developed by Eversman [35], but the accurate identification and localiza-
tion of intra-row weeds are based on an optimized target detection model. The mechanical
weeding equipment part is shown in Figure 7. The intra-row weeding knife consists of
two weeding blades (shown in Figure 7e). It is shaped as an isosceles triangle with a low
triangle width of 7 cm and a triangle height of 3.2 cm. The forward-pointing side of the
weeding blade is sharpened to form a cutting edge. The two intra-row weeding knife
blades are fixed to the mechanical arms of the weeding device. The forward direction of the
intra-row weeding device is the direction in which the tips of the triangular blades point.
In addition, the bottom surface of the triangular blade is parallel to the soil surface and
remains below approximately 2.5 cm at all times during operation. The mechanical arm to
which the weeding blade is attached has a pivot point at a distance of 40 cm from the soil
surface. This fulcrum point allows the weeding knife blade to move in a direction across
the direction of travel of the weeding device. The driving force of the intra-row weeding
knife is achieved by a double-acting cylinder (model SC40×50, JuXiang, Shenzhen, China).
This cylinder is connected between the frame of the weeding unit and the robotic arm.
The cylinder has a travel distance of 40 cm (0.5 in.) and a bore diameter of 1.6 cm (1.5 in.).
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The movement of the knife is controlled by an electronically actuated solenoid control valve
(model 4V210-08 DC24V, JuXiang, Shenzhen, China) that supplies air pressure (0.7 MPa) to
the cylinder.
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sor/pneumatic pump; (h) electric motor.

Figure 8 illustrates the working process of the intra-row weeding device. In the crop
field, three areas are artificially distinguished: area A is the inter-row area, area B is the
intra-row area, and area C is the crop safety area. Within the crop row, the weeding
knife blade (about 7 cm wide) was used to control intra-row weeds. Figure 8b shows the
sequence of the three positions in which the weeding knife blade is moved from left to right.
In position 1© and position 3©, the weeding blade is positioned in the “closed” position in
the intra-row area driven by the cylinder, and the two blades advance in parallel. As the
blade approaches the lettuce plant, in position 2©, the cylinder separates the blade into
the inter-row area along the purple dotted line. This leaves the safety zone C unbroken.
After the knife blade has passed the lettuce, the cylinder re-drives the blade back into the
intra-row area. This process is repeated for each lettuce crop. When not in the crop area,
the weeding knife is in a closed state and penetrates deep into the soil. As the machine
(conveyor belt) travels, all weeds in the area are removed by their roots.

The system requires accurate vision recognition tools to ensure that it opens in the
“open” position. The accuracy of the vision system’s positioning directly affects the ef-
fectiveness of intra-row weeding equipment, and obtaining accurate information on the
distance between seedlings can reduce the probability of equipment injury. In the early
stages, machine vision sensing technology could acquire the position of crops but often
failed to identify their specific types. By incorporating machine learning into machine vi-
sion technology, machines have gained the capability to recognize and differentiate various
crop types. However, when confronted with numerous weeds, the effectiveness of crop
recognition and localization cannot be guaranteed. Deep learning-based target detection
methods have gradually become popular in the agricultural field. In facing the intra-row
weeding task in agriculture, the deep learning target detection technique also provides
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a new solution and has achieved great value in the initial exploration. Therefore, in this
paper, the designed intra-row weeding equipment uses deep learning target detection as a
recognition tool.
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Figure 8. Schematic of weed distribution: (a) working area schematic diagram; (b) schematic diagram
of weed cutting blade working principle.

2.5.2. Real-Time Control System

The hardware system of the intra-row weeding device is built as shown in Figure 9a.
A controller (Arduino Uno R3, Arduino S.r.l., Via Andrea Pollini 11, 20159 Milan, Italy) was
used for the lower computer control of the weeding gear. Arduino, an open-source single-chip
microcontroller, uses an Atmel AVR microcontroller. This microcontroller uses an open-source
software and hardware platform and it is built on a simple output/input interface board.
The 220 v power supply is used to supply power to the laptop, adjustable power supply,
and air compressor. The camera is connected to the laptop via USB. The camera acquires
information about crops and weeds in real time and transmits it with a video stream to a laptop
deployed with the SPH-YOLOv5x deep learning model. The detection program (detect.py)
of SPH-YOLOv5x analyzes the video transmitted by the camera to obtain information about
the type of crops and weeds and the coordinates of the crops. The positioning algorithm
calculates the center point of the crop based on the crop coordinate information transmitted
by the detection program. This information is converted into signals and passed to the
controller. The microcontroller triggers the solenoid valve to control the pneumatic cylinder to
provide the power required by the weed knife system to complete the full coverage of weed
removal in the row avoiding the crop. The power of the solenoid valve is provided by the
adjustable power supply, and the power of the air pressure cylinder is provided by the air
compressor. Throughout the entire weeding process, from the initiation of the system, the
lettuce identification program operates on the computer, actively monitoring and processing
real-time information about lettuce weeds captured by the conveyor belt’s camera. The
program calculates the precise location data of the identified lettuce and promptly transmits
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this information to the Arduino development board. Subsequently, the Arduino development
board assumes control over the operation of the weeding knife, regulating its opening and
closing functions. The entire process from identification to weeding by the weeding knife is
completed continuously without interruption. Thus, the intra-row weeding device completes
a complete mechanical weeding process.
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Figure 9. Intra-row weeding system: (a) components of the intra-row weeding system; (b) control
program flow chart of the intra-row weeding system.

A real-time weed knife control system for intra-row weeding was developed. A flow
chart of its control algorithm is shown in Figure 9b. On the test platform, the conveyor belt
travels at a speed of 3.24 km/h, simulating a weed wagon walking in the field. During this
process, the camera records video in real time and saves it to a local computer. The computer
calculates the location of the weed knife from the crop by capturing the location of the crop
and the tag information. When the weed knife is about to enter the crop safety zone, the
computer transmits a signal to the Arduino microcontroller through the serial port. At this
point, the Arduino microcontroller controls the cylinder to open the weed knife to bypass
the crop. The process from the detection of the crop to the opening of the weed knife is
almost instantaneous.

2.6. Method of Conveyor Belt Experiment

In the conveyor belt experiment, we mainly verified the weeding effect of the weeding
system under different weed densities and different light conditions. The control of lighting
conditions is mainly controlled by LED light strips, and different densities of weeds are
planted between the lettuce to simulate different densities of weeds. The light strips that
are turned on are considered to represent good lighting conditions. The positioning of
weed density is based on the research of Rekha Raja et al. [36]; that is, light weed density is
defined as 10 or fewer weeds per square meter; moderate weed density is 11–100 weeds
per square meter; and heavy weed density is defined as more than 100 weeds per square
meter. Figure 10 shows the experimental equipment and real experimental scenes.
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3. Results
3.1. Training of Optimized YOLOv5 Model

The optimized YOLOv5 model was compared with five other YOLOv5 model sizes.
The variation values during the training of the six models was shown in Figure 11 and
Table 1. Figure 11a shows the training loss curve with the training period in weed–lettuce
identification. All models decreased rapidly within 40 cycles and eventually stabilized as
the training period increased. Among the six models trained, the proposed SPH-YOLOv5x
model obtained the lowest loss values. Figure 11b shows the loss curves of the six models in
the validation phase. Although the proposed SPH-YOLOv5x model fits slightly slower than
the other models until at least 20 rounds, as with the training loss curves, the SPH model
eventually obtains the lowest validation loss value. The proposed SPH-YOLOv5x model
achieved the lowest loss values on both the training and validation sets, demonstrating its
strong learning capabilities and generalization ability in weed classification.
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training, signifying one full pass through the training dataset for model parameter updates and learning.

Table 1. Training and validation loss values of YOLO models.

Model Training Loss Validation Loss

SPH-YOLOv5x 0.01738 0.01937
YOLOv5l 0.01713 0.02648

YOLOv5m 0.0197 0.02651
YOLOv5n 0.03453 0.03142
YOLOv5s 0.02668 0.0277
YOLOv5x 0.04272 0.08988

3.2. Classification and Detection of Optimized Model

In this paper, a total of six models, including the proposed SPH model, were trained
to test their classification and localization abilities among lettuce weeds. Table 2 shows the
scores of each model, where the proposed models achieved 95%, 93.2%, 96%, and 94.1% for
precision, recall, mAP, and F1-scores, respectively. It can be seen that the proposed model
has higher precision and mAP than the other models, except YOLOv5X, which proves the
reliability of the model.

Table 2. Lettuce and weeds classification results of YOLO models.

Model Precision (%) Recall (%) mAP@0.5% (%) F1-Score (%)

SPH-YOLOv5x 0.950 0.932 0.96 0.941
YOLOv5l 0.944 0.946 0.947 0.945

YOLOv5m 0.919 0.946 0.945 0.932
YOLOv5n 0.925 0.938 0.942 0.931
YOLOv5s 0.925 0.934 0.938 0.929
YOLOv5x 0.952 0.935 0.943 0.943

As shown in Table 3, the classification performance of the SPH-YOLOv5x model was
analyzed for lettuce crops with five weeds: Veronica polita Fries, Avena fatua L., Malachium
aquaticum L., Plantago asiatica L., and Sonchus wightianus DC. (VP, AF, MA, PA, SW). The ac-
curacy of the model in correctly identifying lettuce was 92.9% for the identification of
weeds. The model had the highest classification accuracy of 98.7% for PA and the lowest
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recognition ability of 89% for SW. Even so, the model’s ability to classify lettuce and weeds
is still at a high level. By observing the confusion matrix shown in Figure 12, it is evident
that the proposed model achieves good identification and classification results for both
lettuce and various weeds.

Table 3. Lettuce and weeds classification results of the YOLO models.

Plant Species Precision (%) Recall (%) mAP@0.5% (%) F1-Score (%)

lettuce 0.878 0.878 0.929 0.878
VP 0.991 1 0.995 0.967
AF 0.971 1 0.991 0.909
MA 0.888 0.875 0.933 0.876
PA 0.973 0.976 0.987 0.94
SW 0.889 0.85 0.89 0.861

Agronomy 2023, 13, x FOR PEER REVIEW 14 of 21 
 

 

model has higher precision and mAP than the other models, except YOLOv5X, which 

proves the reliability of the model. 

Table 2. Lettuce and weeds classification results of YOLO models. 

Model Precision (%) Recall (%) mAP@0.5% (%) F1-Score (%) 

SPH-YOLOv5x 0.950 0.932 0.96 0.941  

YOLOv5l 0.944 0.946 0.947 0.945  

YOLOv5m 0.919 0.946 0.945 0.932  

YOLOv5n 0.925 0.938 0.942 0.931  

YOLOv5s 0.925 0.934 0.938 0.929  

YOLOv5x 0.952 0.935 0.943 0.943  

As shown in Table 3, the classification performance of the SPH-YOLOv5x model was 

analyzed for lettuce crops with five weeds: Veronica polita Fries, Avena fatua L., Malachium 

aquaticum L., Plantago asiatica L., and Sonchus wightianus DC. (VP, AF, MA, PA, SW). The 

accuracy of the model in correctly identifying lettuce was 92.9% for the identification of 

weeds. The model had the highest classification accuracy of 98.7% for PA and the lowest 

recognition ability of 89% for SW. Even so, the model’s ability to classify lettuce and weeds 

is still at a high level. By observing the confusion matrix shown in Figure 12, it is evident 

that the proposed model achieves good identification and classification results for both 

lettuce and various weeds. 

Table 3. Lettuce and weeds classification results of the YOLO models. 

Plant Species Precision (%) Recall (%) mAP@0.5% (%) F1-Score (%) 

lettuce 0.878 0.878 0.929 0.878  

VP 0.991 1 0.995 0.967  

AF 0.971 1 0.991 0.909  

MA 0.888 0.875 0.933 0.876  

PA 0.973 0.976 0.987 0.94  

SW 0.889 0.85 0.89 0.861  

 

Figure 12. Confusion matrix of the trained SPH-YOLOv5x model. Figure 12. Confusion matrix of the trained SPH-YOLOv5x model.

3.3. Results of the Conveyor Belt Experiment

In the experimental design, we conducted a total of three trials to simulate the dis-
tribution of lettuce weeds under different light and irrigation conditions. The specific
operational parameters for each of the three trials are detailed in Table 4. Figure 13 il-
lustrates the positioning results of the three trials. During the experimental process, the
experimenters assessed the positioning accuracy by observing whether the weed knife
could accurately avoid the lettuce crop, and they recorded their observations accordingly.
The main errors observed during the experiment were two types: missed identification and
misidentification, with both falling under the category of recognition errors. The formula
for the success rate of lettuce crop positioning was

P = (1− Nm + Nl
N

)× 100% (9)

where P is the localization success rate of lettuce; Nm is the number of lettuce misidentifi-
cations; Nl is the number of lettuces missed identifications; and N is the total number of
lettuce trials.
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Table 4. Validation results of weed control devices under different irrigation and light conditions.

Experimental Batch Luminous Conditions Plant Number Incorrect/Missed Correct Detection Success

First Batch Good 239 49 239 82.99
Second Batch Inferior 252 101 252 71.39
Third Batch Good 279 44 279 86.38
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The average positioning accuracy of the three trials was found to be 80.25%, as shown
in Table 4. The experimental results indicate that the first and third trials exhibited notably
higher positioning accuracy compared to the second trial, which is mainly attributed to
variations in lighting conditions. The second trial experienced inferior lighting conditions,
which significantly impacted the recognition and positioning system. The observed experi-
mental results did not show any significant impact of irrigation conditions on the system’s
recognition performance.

Based on the experiments conducted using the SPH-YOLOv5x model for weed de-
tection, the positioning system shows promising prospects. With an average positioning
accuracy of 80.25% under the current conditions (3.28 km/h), there is considerable scope
for further development by optimizing both hardware and software aspects. This detection
and positioning system, along with intra-row mechanical weeding equipment, is expected
to contribute to increased organic agriculture yields in the future.

3.4. Efficiency of the Weed Moving System

The pre-arranged distribution of light, moderate, and heavy weed density conditions
was subjected to weeding tests on the experimental platform. The weeding results are
shown in Figure 14a–c. Based on the weeding outcomes, the cutting edge of the weeding
knife effectively covered the majority of the intra-row area. Figure 14a–c corresponds to the
light, moderate, and heavy weed density conditions, respectively.

As illustrated in Figure 15a, the weeding knife was able to remove or bury the weeds
effectively in the case of light weed density. In Figure 15b, under moderate weed density,
the weeding knife successfully pulled out almost all weed roots from the soil. However, in
Figure 15c, under heavy weed density, the reciprocating weeding knife indiscriminately
pushed weeds from the front crop to the rear crop, causing them to accumulate around the
latter. While the reciprocating weeding knife showed good performance in high-density
weed removal between crop rows, its effectiveness diminished when the weeds surrounded
the crops. This reduced performance was mainly due to the high-density weed distribution,
which often resulted in the weeds encircling the lettuce crops. Consequently, the model
experienced significant localization errors during the recognition process, greatly affecting
weed clearance and occasionally leading to accidental crop damage.
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4. Discussion

In this study, we successfully designed and operated a cost-effective intra-row weeding
device that incorporates a vision system to determine the opening/closing events of the
weeding blades for efficient removal of intra-row weeds. The vision system was developed
based on an optimized YOLOv5 model that was specifically tailored for the identification
and localization of lettuce weeds. Compared to traditional machine vision methods [37], the
optimized YOLOv5 approach proved to be more suitable for complex field environments.
With the assistance of the vision system, the intra-row weeding device performed effectively
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on the conveyor belt. The results from laboratory experiments demonstrated that the intra-
row weeding device was both feasible and efficient. However, the impact of increasing
the working speed on the weed control efficiency and seedling injury rate of the proposed
weeding system has not yet been validated.

The vision system yielded a location accuracy as high as 80.25% and extremely
good weed control at the speed of 3.2 km/h of the conveyor belt with a 30 FPS cam-
era. Table 5 shows the results of related research about the intelligent intra-row cultivator
based on different techniques in recent years. Specifically, computer vision can perform
repetitive actions with greater reliability over the course of an entire work shift without
fatigue factors. The burden on the human supervisor is greatly reduced. But this is achieved
with the aid of agronomy. Mechanical–thermal weeding tools equipped on the tractors
achieved a weeding effect of 90% with no record of major crop losses in the RHEA project,
which employs agricultural robots and related high-tech equipment in addition to trans-
forming existing small tractors on the market so that they can independently complete
agricultural tasks [38]; however, this system relies on the collaborative efforts of multiple
intelligent robots to accomplish the task, resulting in comparatively higher costs. Baw-
den et al. [39] designed a weed control robot called AgBotII which removes weeds by
spray or mechanical means based on the information captured by the visual system [19].
The misclassification rate of the system is 7.7% which means weeds may be retained and
crops removed. Wu designed an automatic classification weeding robot that combined the
spray and stamp methods. The weeding robot achieved good recognition and weeding
results on both flat and uneven ground. However, the robot was not evaluated at speeds
higher than 2 m/s due to the huge tangential force on the stamper caused by the driving
vehicle [40]; Quan et al. [23] developed an intelligent intra-row robot based on YOLO v3
using a rotating hoe. The robotic system successfully classified and removed the weeds
with an accuracy of 86.13% in the conveyor belt experiment with the speed under 0.5 m/s.
Raja et al. [41] developed a real-time weed sprayer machine based on the crop signal with
machine vision. At a speed of 3.2 km/h with the conveyor belt, 98% of the weeds were
successfully sprayed among the 83.7% detected weeds. However, this system requires an
additional crop spraying system, which adds additional work procedures. The greatest
advantage of the Institute’s proposed weeding device over some of the smart weeding
equipment mentioned above is its low cost and simplicity and efficiency.

Table 5. Research progress of intelligent weeding equipment in recent years.

Reference System Name Technology Crop Name

Gonzalez-de-Santos et al. [38] Co-robot Sensing technique Tomato

Bawden et al. [39] NaN Machine vision Cabbage

Sujaritha et al. [42] NaN Machine vision Bok choy, celery, lettuce, and radicchio

Wu et al. [40] NaN Ultrasonic sensor

Quan et al. [23] SLIC Super-pixel algorithm ConvNet Soybean

Raja et al. [41] SSWM system Deep learning Corn and soybean

Proposed method SPH-YOLOv5x system SPH-YOLOv5x Lettuce

The model proposed in this study demonstrates higher accuracy in crop recognition
compared to the aforementioned weeding system. Furthermore, the model performed
well according to the benchmark of YOLO object detectors for weed detection in different
turf grass scenarios proposed by Sportelli et al. [43] and in the cotton production system
proposed by Dang et al. [44]. However, it is essential to acknowledge that during the
experimental validation phase, the proposed model did not achieve the same level of
performance as it did during training. The reasons for the positioning accuracy error can
be attributed to both software and hardware factors. On the software side, the main issue
lies in the communication between the laptop and the Arduino microcontroller. Regarding
hardware, the accuracy is closely related to the performance of both the laptop and the
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microcontroller. Although the conveyor experimental system’s crop recognition accuracy
did not reach 95%, as was achieved during model training, this does not necessarily
imply poor practical applicability of the model. The actual recognition performance is
significantly influenced by hardware conditions, which can be improved through technical
enhancements. Additionally, the model has not been validated in more complex scenarios,
such as at higher conveyor speeds and real field experiments. These validations will
be conducted after further optimization of the software and hardware to better assess
and verify the feasibility of the proposed weeding system. The proposed mechanical
weeding system integrated with deep learning technology has been experimented with
and validated for its feasibility and efficiency. However, it is important to note that the
system assumes a flat ground surface, and its weeding efficiency cannot be guaranteed
when encountering uneven terrain. For future design considerations, it is essential to
address the working mechanism of the weeding system when dealing with uneven surfaces.
Although the primary focus of the mechanical weeding system proposed in this article is
the identification and positioning of lettuce, without utilizing specific weed information,
the model’s capability to identify and locate weeds still holds significance in the realm of
automated weeding. The information pertaining to weed identification and positioning
serves as a fundamental basis for the precise deployment of more advanced weeding
components, such as spray weeding or laser weeding. This implies that, while the article’s
primary emphasis is on lettuce, the knowledge gained about weed location can provide
valuable support and a foundation for subsequent, more sophisticated weeding operations.

5. Conclusions

In this study, an advanced intra-row weeding mechanism has been successfully for-
mulated by leveraging a deep learning-based vision system, aiming to achieve precise and
automated weeding processes within the realm of agriculture. The intelligent intra-row
weeding system comprises a recognition and localization system, along with a mechanical
weeding device. Within the vision system, Within the vision system, the SPH-YOLOv5X
YOLOv5x model was presented, which is a customized iteration of the YOLOv5x model,
designed explicitly for the purpose of identifying and pinpointing field lettuce weeds.
The improved YOLOv5 model demonstrated remarkable recognition performance, achiev-
ing accuracy, recall, F1-score, and mAP values of 95%, 93.2%, 94.1%, and 96%, respectively.
Through conveyor belt simulations, the proposed model effectively facilitated the mechani-
cal weeding device to achieve crop discrimination and weed removal with an impressive
accuracy of 80.25% at a speed of 3.28 km/h. The knowledge generated from this research is
expected to significantly contribute to the development of automatic weeding robots and
offer innovative solutions for precise automated weeding in modern agriculture.
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