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Abstract: Sugarcane (Saccharum spp.) is one of the most valuable food and industrial crops. Its
production is constrained due to major biotic (fungi, bacteria, viruses and insect pests) and abiotic
(drought, salt, cold/heat, water logging and heavy metals) stresses. The ever-increasing demand for
sugar and biofuel and the rise of new pest and disease variants call for the use of innovative tech-
nologies to speed up the sugarcane genetic improvement process. Developing new cultivars through
conventional breeding techniques requires much time and resources. The advent of CRISPR/Cas
genome editing technology enables the creation of new cultivars with improved resistance/tolerance
to various biotic and abiotic stresses. The presence of genome editing cassette inside the genome
of genome-edited plants hinders commercial exploitation due to regulatory issues. However, this
limitation can be overcome by using transgene-free genome editing techniques. Transgene-free
genome editing approaches, such as delivery of the RNPs through biolistics or protoplast fusion,
virus-induced genome editing (VIGE), transient expression of CRISPR/Cas reagents through Agrobac-
terium-mediated transformation and other approaches, are discussed. A well-established PCR-based
assay and advanced screening systems such as visual marker system and Transgene killer CRISPR
system (TKC) rapidly identify transgene-free genome edits. These advancements in CRISPR/Cas
technology speed up the creation of genome-edited climate-smart cultivars that combat various biotic
and abiotic stresses and produce good yields under ever-changing conditions.

Keywords: sugarcane; transgene-free genome editing; biotic stress; abiotic stress

1. Introduction

Sugarcane (Saccharum spp.) is one of the most important food and industrial crops
cultivated across the world [1]. Sugarcane contributes to 80% of global sugar production
with India as the leading sugar producer followed by Brazil, European Union, Thailand and
China [2]. In addition to this, sugarcane juice and the by-product, molasses, are the major
raw materials used in distilleries for alcohol and bioethanol production [1]. The crushed
sugarcane stalks are burned to generate electricity. Thus, sugarcane plays an indispensable
role in supplying raw materials for the food and fuel industries. The human population
reached approximately 7.95 billion in 2022 and it is projected that the global population
will reach 9.7 billion in 2050 [3]. The pollution caused by industries, urban sewage and,
heavy use of chemical inputs in agricultural fields causes severe damage to land and water
resources, which in turn have serious impacts on all-life forms on Earth. The lethal impacts
of climate change on agriculture are the epidemic outbreak of new pests and diseases and
the periodic occurrence of drought and waterlogging. Sugarcane is adversely affected
by various biotic and abiotic stresses. Biotic stresses, such as insect pests, diseases and
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noxious weeds, severely affect cane production and juice quality [4–6]. Severe drought
due to monsoon failure, excessive rainfall, low temperature, salinity, alkalinity and heavy
metal contamination in soil increase day-by-day and also have an adverse effect on cane
production and juice quality [7–10].

Conventional breeding and molecular marker-assisted selection are carried out in
sugarcane to develop new cultivars. Transgenic events were also developed in sugarcane
for pest and disease resistance, but their commercialization has not been successful due
to various regulatory issues [11]. Although conventional breeding strategies have led to
commercial success, more time is required to develop cultivars. The polyploid nature of
sugarcane makes crop improvement programs much more complicated than for diploid
plants. The increasing human population and adverse impacts of climate change on
plants and animals call for the use of sustainable modern techniques in crop production
to meet global food demands and to ensure a better way of living. The advent of genome
editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENS), clustered regularly interspaced short palindromic repeats
and CRISPR-associated protein 9 (CRISPR/Cas9), expedites the crop improvement process
by creating site-specific mutations in the plant genome [12]. Among these, CRISPR/Cas9 is
widely used because of its high editing efficiency, cost-effectiveness, and multiplexing [13].

CRISPR/cas9 consists of two main components: a guide RNA and Cas9 endonu-
clease. The single-stranded guide RNA consists of a 20 bp sequence complementary
to the host target region, and Cas9 induces DSBs (Double-stranded breaks) in the 3 bp
upstream of PAM sequence (5′NGG3′) in the DNA of the host, complementary to the
guide RNA (gRNA) [14,15]. The host cell DNA repair machinery repairs the breaks by
either NHEJ (Non-homologous end joining) or HDR (Homology directed repair). NHEJ is
predominant and error-prone, thus creating mutations by base insertions, deletions and
replacements [16–18]. Currently, many Cas variants other than Cas9 have been identified
and used for genome editing purposes. The problem with using vector-based delivery
of the CRISPR/Cas system is that the markers, promoters and Cas9 genes in the genome
editing cassette integrate into the plant genome and are passed on to successive genera-
tions, which places the genome-edited (GE) plants developed through this technique under
the category of genetically modified organisms (GMOs). In the case of seed propagated
annuals, the transgenes can be eliminated by recombination and selection. Sugarcane
is a highly heterozygous vegetatively propagated crop; eliminating the transgenes via
meiotic recombination and producing GE lines with exact genome composition other than
the difference in target region is highly difficult. However, the advent of transgene-free
genome-editing techniques enables the creation of site specific mutations without integra-
tion of any residual transgenes in the plant genome and these techniques are very useful in
creating GE sugarcane without any residual foreign genes. The objective of this review is
to highlight strategies to develop and screen transgene-free GE sugarcane lines for rapid
genetic improvement with special emphasis on imparting tolerance/resistance to major
biotic and abiotic stresses.

2. Biotic Stresses Affecting Sugarcane

Diseases and insect pests adversely affect sugarcane and incur a huge yield loss,
increasing the cost of cultivation [4]. As sugarcane is allowed to produce ratoons, the com-
plete elimination of established diseases and insect pests is an arduous task to accomplish.
However, the extent of damage caused by biotic agents can be reduced by adapting various
agronomic practices.

2.1. Major Diseases

The major fungal diseases of sugarcane are red rot, wilt and smut [4]. Red rot caused by
Colletotrichum falcatum is one of sugarcane’s most devastating diseases that severely affects
juice quality by disrupting the sucrose metabolism [4]. The affected canes have a reddish
discoloration in the stalk portion [4]. Wilt is caused by Fusarium sacchari, which causes yield
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loss of up to 15% and reduces sugar recovery during extraction [19]. The symptoms are
yellowing and drying of canes with pinkish-brown discoloration in the internal cavities [19].
Smut is caused by Sporisorium scitamineum which causes yield losses of up to 50% and
reduces sugar recovery. The symptoms of smut are affected cane shoots modified into
sorus or a whip-like structures [20]. The other fungal diseases of sugarcane are pineapple
disease, rust, pokkah boeng, stalk rot, brown spot, eye spot, ring spot, seedling rot and
many others [4].

The major bacterial diseases affecting sugarcane are ratoon stunting and leaf scald.
Ratoon stunting is caused by Leifsonia (Clavibacter) xyli subsp. xyli causes yield loss up to
30% [21]. The symptoms of the disease are stunted growth with thin stalks, reduction
in tillering, shortened internodes and yellowing of the leaf. Leaf scald is caused by Xan-
thomonas albilineans; the pathogen shows acute and chronic expression [22]. During the
chronic phase, the pathogen produces white lines along the leaf blade to the leaf sheath,
followed by chlorosis, necrosis and death of young shoots and stalks. The acute phase is
initially symptomless followed by the sudden outbreak and death of plants [22,23].

Sugarcane grassy shoot (SCGS) disease is a phytoplasma disease of sugarcane trans-
mitted by leaf hoppers which causes huge yield loss in susceptible varieties. The symptoms
of SCGS are excessive tillering with thin slender tillers and shortened internodes showing
grass-like appearance with chlorosis. The affected canes fail to produce millable canes [4,24].
Yellow leaf is one of the most destructive diseases caused by the sugarcane yellow leaf
virus (ScYLV), which accounts for 15–50% yield loss of sugarcane [25–28]. The symptoms of
yellow leaf disease appear on 6–8-month-old crops and the symptoms are prominent midrib
yellowing on the lower surface of the leaf followed by the lateral spread of yellowing and
leaf tip necrosis, shortening of internodes and bunchy top appearance of leaves during
severe infection [25–28]. Sugarcane mosaic disease is caused by three viruses, namely
sugarcane mosaic virus (SCMV), sugarcane streak mosaic virus (SCSMV) and sorghum
mosaic virus (SrMV), which cause severe yield losses of more than 50% in case of severe
infection. The symptoms of the mosaic disease are yellow and green spots on the young
leaves with interveinal chlorosis; upon severe infection, leaves turn yellow or yellow-white
with green or necrotic patches [29–31].

2.2. Major Insect Pests

Pest infestation causes severe yield losses in sugarcane. The major insect pests affecting
sugarcane are early shoot borer, top borer, internode borer, termites, root grub, aphids
and white fly. The early shoot borer (Chilo infuscatellus) affects canes during the early crop
stages from one to three months; the symptoms are bore holes in the shoot above ground
level, dead heart and rotten portions that emit an offensive odour, and affected canes that
can be easily pulled out [5,32,33]. The internode borer (Chilo sacchariphagus indicus) affects
the crop soon after internodes emerge; the boreholes are plugged with excreta and frass
is seen in the infected portions. The internodes are reduced in length and girth [5,33,34].
The top shoot borer (Scirpophaga excerptalis) affects the crop during all growth stages; its
characteristic symptoms are bore holes in the apical portion of the stem, shot holes on
opened leaves, dead heart in the fully grown canes and bunchy top formation [5,33,35].
The borers account for yield losses of 15–42% [5,33,36].

Whitefly (Aleurolobus barodensis and Neomaskellia andropogonis) is a serious sucking
sugarcane pest that causes yield reduction up to 50% [37,38]. The symptoms are yellowing
of leaves followed by drying and retarded growth [37,38]. The sugarcane woolly aphid
(Ceratovacuna lanigera) produces symptoms similar to that of whitefly. Honeydew secretions
from whitefly and aphids favour the growth of sooty mould fungus [33].

Subterranean pests, such as termites and white grubs, are difficult to control and
cause severe yield loss. White grub (Holotrichia serrata) is another serious sugarcane pest
that can cause yield losses up to 100% [33,39]. The larvae feed voraciously on the root
system, leading to poor growth, lodging, yellowing and wilting of canes. The affected
canes can be easily pulled out and the damage usually occurs in patches in the field [33,39].
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Termites (Odontotermes obesus) mainly affect the germinating setts in the field, causing poor
germination. The damaged portions are filled with soil, and damage in the later stages of
the crop causes yellowing and drying of leaves [5,33].

3. Abiotic Stress in Sugarcane

Worldwide sugarcane production is affected by abiotic stresses, namely drought,
salinity, cold and heat stress, and metal toxicity. These stresses incur huge economic loss to
farmers and severely restrict crop cultivation in stress-prone areas.

3.1. Drought

Water deficit caused by meteorological and agricultural drought leads to drought
stress [40]. Lack of water during key water requirement periods, such as germination,
tillering, grand growth phase and maturation, reduces cane development and affects the
sugar content [41]. Yield loss due to lack of water in sugarcane is estimated to be approxi-
mately 50–70% based on the degree of water stress [42]. Plants use various morphological
and physiological strategies to mitigate drought stress, which varies from genotype to
genotype [43]. The plant responds to water stress by exhibiting physiological changes such
as leaf rolling, stomatal closure, inhibition of stalk and leaf growth, leaf senescence and
reduced leaf area [44]. Water stress reduces biochemical activities in mesophyll and bundle
sheath cells which in turn reduces the sugar accumulation in the plant [45]. The accumula-
tion of ROS, such as superoxide radicals (O2

−), hydrogen peroxide (H2O2) and hydrogen
radicals (OH·), in the cells causes severe damage to cell components such as chlorophyll,
lipids, proteins and nucleic acids [46,47]. The ROS also acts as a secondary messenger in
response to stress conditions. Hormones play an important role as messengers that regulate
plant’s responses to lack of soil water. Abscisic acid (ABA) synthesized by plant roots,
which control the stomatal opening and closure, produces the first signal during plant
stress and is transported through the xylem to the roots [48]. Controlled and regulated
opening and closing of stomata is required to avoid loss of water through transpiration
during water deficit conditions [49].

3.2. Salt

Since sugarcane is a glycophyte, it is highly sensitive to salinity [50]. Germination and
early growth stages are more sensitive to salt stress compared to later stages [51]. High
salt concentration leads to an increase in osmotic and ionic stresses. The majority of the
ionic stress is caused by sodium toxicity which leads to ion imbalance, and hyperionic
or hyper-osmotic stress disintegrates the overall metabolic activities leading the plant to
death [51]. Salt stress leads to a reduction in leaf area, chlorophyll content and stomatal
conductance which reduces productivity and juice quality. Plants have developed various
self-defensive complex mechanisms, such as adaptation, accumulation and combinations
of these, to protect themselves from the osmotic and ionic stresses caused by high salt
concentration [52]. The adaptation mechanism mostly followed by plants to mitigate salt
stress is a permanent genetic modification of the plant’s structure and function [10]. In addi-
tion to the adaptation mechanism, a majority of the plants respond to intermittent stresses
by modifying physiological or morphological changes by a process called acclimation, a
reversible process that does not involve any permanent genetic changes [10].

3.3. Cold and Heat

Sugarcane production and productivity are severely affected by high and low-temperature
stresses [53]. Cold stress severely affects the plants’ metabolic processes and accumulates
reactive oxygen species (ROS), which severely damages biomolecules such as DNA, pro-
teins, carbohydrates, lipids, and pigments in the cell [54]. Cold stress causes shortening
of internodes and leaves and stunting of canes, and also affects the ratooning ability [55].
Heat stress severely affects the germination and growth of seedlings despite having enough
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water. High-temperature stress leads to drying and necrosis of leaf tips and margins, and
reduces photosynthesis and sugar accumulation [56].

3.4. Waterlogging

Waterlogging mainly caused by excessive rainfall and flood affects sugarcane yield and
juice quality [53,57,58]. Waterlogging during the formative stage causes a yield reduction
of up to 45% [58]. Water stagnation for a prolonged period of time severely affects the
crop metabolism, nutrient and water uptake, decreases sucrose content and increases
ROS, glucose, total colloids, non-proteinous nitrogen and gums [57,58]. The symptoms of
waterlogging are aerial root formation, reduction in leaf size and number, stunted growth,
yellowing and wilting of canes, ultimately leading to death of the plants [53,58]. The aerial
roots with aerenchymatic cells help in gas exchange under submerged conditions. Ethylene
accumulation in root systems increases under waterlogging which aids in the production
of aerial roots [58].

3.5. Heavy Metals

Macro and micronutrients are required to the plant for their normal growth and devel-
opment [59]. Excess accumulation of these macro and micronutrients such as manganese
(Mn), copper (Cu), nickel (Ni) and others in the soil are harmful to plants [59,60]. Recent
activities, such as mining, exploitation of groundwater, excessive use of fertilizers and
industrialization, have greatly contributed to the repeated accumulation of toxic heavy met-
als such as lead, cadmium, arsenic, mercury, chromium and many others in the soil [61,62].
Accumulation of these heavy metals adversely affect soil health and is also harmful to
all biological organisms, from microbes to humans [62–64]. Heavy metal toxicity affects
all essential plant biological processes, such as germination, respiration, photosynthesis,
metabolic reactions and reproduction. Symptoms of heavy metal toxicity in plants are
chlorosis, necrosis, stunted growth, senescence, yield reduction and death of plants [59,60].

4. Transgene-Free Genome Editing: Approaches and Applications

Improvements in genome editing technique enable the creation of transgene-free
GE plants in a single generation which is highly beneficial for producing transgene-free
mutants in vegetatively propagated crops such as sugarcane. These techniques eliminate
the need for meiotic recombination-based selection of transgene-free plants in successive
generations. The possible techniques that may be applied to produce transgene-free GE
lines in sugarcane are illustrated in Figure 1.

4.1. Virus-Induced Genome Editing

Virus-induced genome editing (VIGE) is one of the promising approaches to develop
transgene-free GE plants. Both DNA and RNA viruses can be used to deliver the gRNA and
Cas endonucleases into plant systems. This can be performed in two ways: by delivering
the gRNA into a plant system that already has Cas9 integrated into its genome, or by
delivering both gRNA and Cas9 into the plant genome simultaneously [65]. The VIGE
has been successfully employed in both model plants and economically important crops,
such as tobacco, Arabidopsis, wheat, rice, maize, soybean, potato and tomato [65]. DNA
viruses such as bean yellow dwarf virus (BeYDV), wheat dwarfing virus (WDV), cotton leaf
crumple virus (CLCrV), and cabbage leaf curl virus (CaLCuV), and RNA viruses such as
tobacco rattle virus (TRV), potato virus X (PVX), pea early browning virus (PEBV), tobacco
mosaic virus (TMV), apple latent spherical virus (ALSV), beet necrotic yellow vein virus
(BNYVV), tobacco etch virus (TEV), and foxtail mosaic virus (FoMV), have been successfully
used for gRNA delivery into the plant system [66–84]. However, the serious limitation of
using these viruses is their limited cargo-carrying capacity which makes it highly difficult
to carry both gRNA and Cas9 in the same virus. These viruses can be efficiently used
for introducing gRNA into plants that already have Cas9 in their genome. The negative-
strand RNA viruses, namely barley yellow striate mosaic virus (BYSMV) and sonchus
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yellow net virus (SYNV), have been used to produce targeted mutation in N. benthamiana
by expressing both gRNA and Cas9 [85,86]. The large cargo-carrying capacity of these
viruses has a potential application in delivering complete genome editing components into
the host system. Since the size of Cas9 is large (~4.1 kb), it cannot be delivered together
with gRNA in the plant system by most of the plant viruses due to their limited cargo-
carrying capacity; this problem can be resolved by using small-size Cas variants, such
as CasΦ and CasX, that enable them to deliver gRNA and Cas endonuclease together
into the host plant [87,88]. The virus with genome editing components can be introduced
into the host plant either by agroinfiltration or by mechanical method [65,82,89]. As the
sugarcane is mainly propagated through setts, the following method can be effective for
the VIGE approach in sugarcane. First, the viral vectors are agroinfiltrated into the growing
canes and once the visible symptoms are expressed, the infected setts are propagated in
the pot followed by meristem culture of the pot-grown setts to produce transgene and
virus-free GE plants. Another approach is by subjecting canes to agroinfiltration, allowing
them to set seeds and using the seeds as propagative material to develop transgene-free
GE plants. Though the latter approach bypasses the need for tissue culture, it cannot be
applied universally as sugarcane seed production is highly location and season-specific
and the heterozygous nature produces more recombinants [90,91]. The main advantages
of VIGE are the high gRNA expression due to the high proliferation rate of viruses, tissue
culture-free development in the case of seed-propagated plants, less off-target effects
and transgene-free plants [65,89]. Producing heritable mutations through the virus is
difficult because the viruses cannot proliferate into the apical meristem or reproductive
tissues. However, this problem can be overcome by fusing mobile RNA sequences, such as
Flowering Locus T (FT), with gRNA to enable the virus to enter the shoot apical meristem
portions to create heritable mutations without any residual transgenes [92].
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4.2. Particle Bombardment/Biolistics

Particle bombardment/biolistics has been widely used for sugarcane genetic transfor-
mation along with Agrobacterium-mediated transformation [11,93]. Biolistics can deliver a
variety of molecules, such as DNA, RNA, plasmid, and proteins, directly into the cells [94].
Delivering the plasmids containing genome editing cassette through biolistics randomly
integrates the genome editing system into the plant genome, and the presence of foreign
genes from plasmids into the plant genome leads the GE plants to fall under the category
of GMOs. This problem can be circumvented by delivering ribonucleoproteins (RNPs)
consisting of in vitro assembled gRNA and Cas9 through particle bombardment. This
method uses Cas9 or cpf1 endonuclease that interacts with gRNA without any additional
auxiliary factors [95]. The assembled genome editing reagents, such as Cas endonuclease
and gRNA molecule, are active only for a short period of time and become degraded
inside the cell. The RNP is the mixture of Cas9 protein and gRNA molecules in definite
preparation along with other components such as a buffer [96]. The biolistics delivery of
RNPs has been successfully used for genome editing in crops, such as rice, wheat and
maize [96–99]. In sugarcane, embryogenic callus is widely used for particle bombardment
and many successful transgenic events were developed using biolistics [11,93]. Biolistics
was successfully used for delivering the CRISPR/Cas9 genome editing cassette into sug-
arcane callus by Oz, et al. [100] and Eid, et al. [101]. Oz, et al. [100] edited the alleles of
the acetolactate synthase (ALS) gene to produce herbicide resistance. Upon spraying the
herbicide nicosulfuron, the wild types died whereas the GE lines survived. Eid, et al. [101]
edited the multiple alleles of the magnesium chelatase gene, which is essential for chlorophyll
biosynthesis, and the edited plants were yellow in color whereas the wild-type plants
showed normal green color. These studies highlighted the potential use of biolistics in
CRISPR/Cas-mediated genome editing to produce targeted mutations in sugarcane.

4.3. Agrobacterium-Mediated Transformation

Agrobacterium-mediated transformation has been used for genetic transformation in
sugarcane to produce transgenic events for various purposes [11,93]. Transient expression
of gRNAs and Cas9 using Agrobacterium eliminates the integration of foreign genes into
the plant system. This technique has been used to produce transgene-free GE plants in
tobacco, tomato and potato [102–106]. Chen, et al. [103] targeted the PDS gene in tobacco
by this method and generated transgene-free GE tobacco without using any selection
media. Veillet, et al. [104] delivered Cytosine base editors by Agrobacterium-mediated
transformation to edit the acetolactate synthase (ALS) gene to produce chlorsulfuron-resistant
potato and tomato plants and obtained 10% and 12.9% of transgene-free potato and tomato
plants, respectively [104]. The genome edited plants produced by this method contain a
mixture of transgenic and non-transgenic individuals [103–106]. Leaf rolls and callus are
the main explants used for Agrobacterium-mediated transformation which needs in vitro
regeneration for its development. Mayavan, et al. [107], Mayavan, et al. [108] successfully
demonstrated the in planta transformation using sugarcane seeds and setts through Agrobac-
terium-mediated transformation. This method bypasses the need for time-consuming and
resource-intensive tissue culture facilities to produce transformed lines [107,108]. This
opens a new window to exploit the possibilities of producing transgene-free GE plants
using in planta transformation method.

4.4. Protoplast Transformation

The RNPs are delivered into protoplast through lipofection or PEG-Ca2+ transfection.
The lipofection method has been used in crops such as cabbage, Chinese cabbage and
tobacco [109,110]. PEG-Ca2+ transfection was the method mostly used for delivering
the genome editing RPNs into the protoplasts and was used to produce transgene-free
GE plants in model plant system and crop plants, such as Arabidopsis, tobacco, lettuce,
maize, rice, banana, canola, wild tomato and potato [111–116]. In the case of sugarcane,
electroporation and PEG-mediated protoplast transformation were successful in producing
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transgenic events, but transformation and regeneration efficiency was low [117–120]. Wang,
et al. [121] optimized the protoplast isolation and transformation through PEG, which had a
protoplast yield of approximately 1.26× 107 per gram of leaf and achieved a transformation
efficiency of 80.19% in Saccharum spontaneum [121]. Though efficient protoplast isolation
and transformation methods have been developed, the regeneration of whole plants from
the sugarcane protoplast is genotype specific and still a promising issue that needs to be
addressed. By developing an efficient protoplast regeneration technique, the protoplast
transformation could potentially be exploited for producing transgene-free GE sugarcane.

4.5. piggyBac-Mediated Transgenesis

Nishizawa-Yokoi and Toki [122] used piggyBac transposon to remove the randomly
integrated CRISPR/Cas9 genome editing cassette from the rice genome. This system
enables editing of the target site by temporary expression of CRISPR/Cas9 followed by
the elimination of transgenes from the rice genome by piggybac transposase (PBase) [122].
This system successfully produced transgene-free genome-edits in rice and this technology
opens a new avenue for eliminating the transgenes in vegetatively propagated crops such
as sugarcane, where eliminating transgenes through recombination and selection is highly
difficult and time-consuming [122,123].

4.6. Grafting and Mobile RNA-Mediated Genome Editing

A novel technique using grafting for transgene-free GE plants was demonstrated by
Yang, et al. [124] in Arabidopsis thaliana and Brassica rapa. The fusion of tRNA-like sequences
(TLS) has produced a mobile version of CRISPR/Cas9 RNA which enables the root-to-shoot
movement from root stock to scion. Agrobacterium-mediated transformation was used to
deliver Cas9-TLS mRNA and gRNA-TLS fusions into Arabidopsis thaliana which was used
as root stock for both Arabidopsis scion and B. rapa scion [124]. The hypocotyl grafting was
done between transformed A. thaliana root stock containing the genome editing cassette
and wild type scions of Arabidopsis and B. rapa. The fusion product moved from root stock
to scion with the aid of TLS and created edits in the genome of scions, while the edited
scions produced seeds with transgene-free targeted mutation [124]. However, this method
needs to be established in sugarcane because the monocots are devoid of vascular cambium
and have scattered vascular bundles. Vascular cambium is required for successful graft
establishment [125].

5. Screening of Transgene-Free GE Lines

Plasmid-based delivery of CRISPR/Cas genome editing cassette produces a mixture
of transgenic and non-transgenic individuals. The techniques such as the transgene killer
CRISPR system (TKC) and visual marker system help in the easy identification and selection
of transgene-free GE lines generated by plasmid-based delivery methods.

TKC uses suicidal genes that kill the male and female gametophyte-containing trans-
genes and allows only the seed produced from the fusion of transgene-free pollen and
embryo [126,127]. Two cassettes, one containing the barnase gene and the other with CMS2
were added into the CRISPR/Cas9 construct. The barnase gene under the control of rice
REG2 promoter kills the embryo that contains transgenes and the CMS2 gene under the
control of CaMV 35S promoter disrupts mitochondrial functions during male gametophyte
development and causes male sterility [126,127]. Yang, et al. [128] demonstrated the poten-
tial of the TKC system along with multiplexing to edit multiple gene families in plants and
produced multiple transgene-free null mutant combinations. This system can be potentially
used for seed propagating plants, but for vegetatively propagated crops such as sugarcane,
where flowering and seed set is highly difficult, this system is a big challenge to implement
to produce transgene-free edits.

Transgene-free GE seeds/plants can be easily identified visually by utilizing fluo-
rescent markers and pigments [123]. Introducing fluorescent marker proteins, such as
mCherry, along with genome editing cassette produces bright color in transgenic seeds
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which enables easy differentiation of transgene-free GE seeds [129,130]. By using different
marker proteins, such as DsRED, or green fluorescent Proteins (GFPs,) the same strategy
was used to select transgene-free seeds in rice, Arabidopsis, tomato and maize [131–133].
The other approach to visually select transgene-free GE plants is by introducing genes such
as the PAP1 gene of anthocyanin biosynthesis pathway or artificially synthesized RUBY
reporter gene for betalain synthesis pathway in the genome editing cassette that produces
purple and vivid red color, respectively in the transgenic calli and plants [134,135]. In
sugarcane’s case, delivering the genome editing cassette through Agrobacterium-mediated
transformation or biolistics, followed by selecting the transgene-free plants through a visual
marker system, particularly pigment-based selection during callus stage, will eliminate
the plants with integrated transgene at an early stage and reduce the cost and workload
involved in analyzing GE lines for targeted mutation.

The transgene-free lines developed through RNP-based delivery systems can be ana-
lyzed for targeted mutation using a variety of PCR-based approaches, such as PCR-RFLP,
T7 endonuclease 1(T7E1), semi-nested PCR, Droplet Digital PCR and Cas9/sgRNA-assisted
reverse PCR (CARP), that can be used for preliminary screening of mutants [136–140].
Among these techniques, PCR-RFLP and T7E1 are mostly used techniques, and in PCR-
RFLP, the PCR products are subjected to restriction digestion [139,140]. Restriction enzyme
cleaves the target region in wild types whereas mutants remain unaffected. Site-specific mu-
tation created by CRSIPR/Cas reagents leads to loss of restriction site in the genome-edited
plants [139,140]. The other reliable technique to screen mutated lines is T7 endonuclease
1 (T7E1) assay [141–144]. During PCR amplification of mutants, the base changes at the
target site cause heteroduplex formation; upon treating the amplified products with T7
endonuclease 1, the heteroduplex portion in mutants will be cleaved and the wild type
remains unaffected [141–144]. These assays enable the preliminary screening of mutated
lines and limits the number of individuals for further sequencing and analysis (Figure 2).
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Figure 2. Strategies for screening and analyzing the transgene-free GE lines. TKC and visual marker
system are used for selecting transgene-free GE plants/seeds developed through plasmid-based
delivery methods. The plants developed through RNP-based delivery systems are subjected to
PCR-RFLP and T7E1 assays to identify mutated individuals. Finally, mutants identified in these
methods are further sequenced and analyzed for type of mutation in the targeted region.
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6. Candidate Genes for Genome Editing in Sugarcane for Biotic and Abiotic
Stress—Lessons from Crop Plants

In sugarcane, a number of candidate genes were identified for biotic and abiotic
stresses (Table 1) and targeting these genes through the CRISPR/Cas system may produce
multiple stress-resistant/tolerant cultivars. Other than the genes listed in Table 1, many
putative candidate genes and genomic loci have been identified in sugarcane and its wild
species for various biotic and abiotic stresses [55,145–149].

Table 1. Candidate genes for biotic and abiotic stresses in Sugarcane.

Stress Candidate Genes References

Drought SoACLA-1 [150]

Drought SoP5CS [151]

Drought miRNAs [152,153]

Drought ScLoX, Dehydrin.
Dirigent-jacalin [154]

Salinity miRNAs [155]

Salinity ShPHT [156]

Drought and salinity SodERF3 [157]

Drought and salinity SoMYB18 [158]

Drought and salinity Scdr2 [159]

Drought, salinity and oxidative Scdr1 [160]

Drought, salinity and oxidative ScDir [161,162]

Drought, salinity and oxidative ScAPX6 [163]

Salinity and low temperature SspNIP2 [164]

Drought, salinity and cold ShGPCR1 [165]

Whip smut ScCAT1 [166]

Rust Bru1 [167]

Genome editing has been successfully used to create GE lines resistant/tolerant to
various biotic and abiotic stresses in many crop plants [168–170]. Structural genes, regu-
latory genes, and cis-regulatory elements (CREs) of regulatory and structural genes are
the potential targets for CRISPR/Cas system to produce abiotic stress resistant/tolerance
plants [168]. In the case of biotic stresses, resistance can be induced either by manipulating
the susceptible factors of the host that favors pathogen establishment and spread or by
targeting the pathogen factors. Table 2 summarizes some of the recent reports on the use
of CRISPR/Cas genome editing in plants for various abiotic and biotic stresses. Most of
the published work on transgene-free genome editing was done in model plants, such as
Arabidopsis thaliana and Nicotiana bethamiana, by targeting the genes that enable easy visual
identification such as PDS. Only very few reports have been published on transgene-free
genome editing for biotic and abiotic stresses in crop plants (Table 3).
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Table 2. CRISPR/Cas mediated genome editing for various biotic and abiotic stresses in crops.

Stress Crop Target Gene References

Drought

Rice

OsERA1 [171]

OsDST [172]

OsPYL9 [173]

OsWRKY5 [174]

Tomato
SlGID1 [175]

SlMAPK3 [176]

Wheat
TaSal1 [177]

Sal1 [178]

Soybean GmHdz4 [179]

Chickpea 4CL and RVE7 [180]

Salinity

Rice

OsbHLH024 [181]

OsRR22 [182]

OsmiR535 [183]

Tomato
SlARF4 [184]

SlHyPRP1 [185]

Soybean GmAITR [186]

Heavy metals Rice

OsNRAMP5 [187]

OsNRAMP1 [188]

OsARM1 [189]

Fungus

Rice Blast

Rice OsERF922 [190]

Rice OsSEC3A [191]

Rice Bsr-d1, Pi21 and ERF922 [192]

Powdery mildew

Tomato SlML [193]

Tomato SlPMR4 [194]

Wheat TaMLO-A1 [195]

Grapevine VvMOL3 [196]

Stem rot Rapeseed BnWRKY70 [197]

Black pod Cacao TcNPR3 [198]

Ergot Rye pyr4 and TrpE [199]

Bacteria

Bacterial leaf blight Rice
Pi21 or ERF922 [192]

OsSWEET14 [200]

Bacterial leaf spot Tomato
SlJAZ2 [201]

Sldmr6-1 [202]

Banana
Xanthomonas wilt

Musa balbisiana LRR, WAK2, WAK5, Vicilin, RPM1,
PR1, NPR1 [203]

Banana MusaDMR6 [204]

Bacterial speck Tomato SLDMR6-1 [202]



Agronomy 2023, 13, 1000 12 of 23

Table 2. Cont.

Stress Crop Target Gene References

Virus

Rice tungro spherical virus Rice eIF4G [205,206]

Rice black streaked dwarf virus Rice eIF4G [207]

Rice black-streaked dwarf virus Maize ZmGDIα [208]

Potato virus Y Potato
eIF4E1 [209]

eIF4E [210]

Tomato brown rugose fruit virus Tomato TOM1 [211]

Tomato yellow leaf curl virus Tomato IR, CP of virus [212]

Soybean mosaic virus Soybean GmF3H1, GmF3H2 and GmFNSII-1 [213]

Cucumber vein yellowing virus,
Zucchini yellow mosaic virus; Papaya

ring spot mosaic virus-
Cucumber eIF4G [214]

Banana streak virus Banana ORF1, ORF2,ORF3 of virus [203]

Table 3. Transgene-free genome editing in crops.

Method Stress Crop Target Gene References

Protoplast transformation Drought Chickpea 4CL and RVE7 [180]

Agrobacterium-mediated transformation Bacterial leaf blight Rice Xa13 [215]

Agrobacterium-mediated transformation Powdery mildew Tomato SlMlo1 [193]

7. Regulatory Issues in Commercializing GE Plants

The regulatory approvals for commercial utilization of GE products is location specific
as it varies from country to country [216]. Generally, GE plants are regulated in two ways,
namely product-based regulation and process-based regulation [217,218]. In the case of
product-based regulation, the health and environmental risks posed by GE products are
assessed by the final product of the technique and not with the methodology associated
with it; whereas the process-based regulation, considers the techniques used for the de-
velopment of GE crops for risk assessment. The process-based regulation restricts the
commercialization of GE crops created with the aid of foreign genes even though the end
products are devoid of any foreign genes [217,218]. This severely affects the commercial ex-
ploitation of GE crops and future developments in genome editing. Countries such as USA,
Canada, Argentina, Australia, Russia, and Chile follow product-based regulation, whereas
the European Union follows the process-based regulation [217,219]. Based on double-
stranded breaks (DSBs) produced by site-directed nucleases (SDNs), the GE products are
categorized into three classes, namely SDN1, SDN2 and SDN3 [219,220]. The SDN1 system
repairs the DSBs through NHEJ without inserting any foreign genes and it is similar to
that of natural mutations [219,221]. The SDN2 system repairs DSBs using a donor template
with a few base changes and the resulting product is similar to that of SDN1 without any
transgenes [219,222]. The SDN3 system inserts a gene or large DNA sequences at the DSBs,
and the product is either transgenic or cisgenic based on the donor sequence [219,220,223].
SDN1 and SDN2 products are exempted from regulation in many countries, such as the
USA, Canada, India, China, Russia, Switzerland, Japan, Philippines, Australia, Kenya, Nige-
ria, Argentina, Chile, Ecuador, Brazil, Columbia, Paraguay, Honduras and Guatemala [224].
In the European Union and New Zealand, GE crops are categorized under GMOs and
in countries such as Indonesia, Bangladesh, Uruguay and Norway, commercialization of
GE crops is under consideration [224]. Globally, unprecedented changes in climate and
increasing demand for food highlight the need for use of potential technologies such as



Agronomy 2023, 13, 1000 13 of 23

genome editing in the crop improvement process to meet all kinds of demands. In order to
meet global food demands, the world nations that are restricting the commercialization of
GE crops should consider the use of SDN1 and SDN2 products for commercial cultivation.

8. Challenges in Transgene-Free Genome Editing in Sugarcane

Transgene-free genome editing opens a new window for commercializing the GE lines
of sugarcane, since eliminating transgenes, such as Cas endonuclease, promoters, marker
genes and other components, from genome editing cassette in the host plant genome
through genetic recombination is highly difficult. Although transgene-free genome editing
techniques have numerous advantages over transgenics, many factors, such as long du-
ration, complex genome with varying chromosome numbers ranging from 80–130, high
polyploid nature with multiple alleles of a single gene, heterozygosity, and very high
genome size, pose difficulties in establishing an efficient genome editing platform in sugar-
cane [225–227]. The availability of well-annotated whole genome sequence information
enables the use of gRNA design tools, such as CHOP-CHOPv3, CRISPR-P 2.0 and many
others, to select the gRNAs targeting the selective regions in the genome with good editing
efficiency and less off-target site binding [228,229]. Unfortunately, such genome information
is lacking in sugarcane and even a 1 or 2 bp mismatch between gRNA sequences and the
host genome’s target region prevents the expression of the genome editing system inside
the host plant. The release of the draft of the whole genome sequence of sugarcane hybrid
cultivar SP80-3280 in 2017 [230], the monoploid reference genome of sugarcane cultivar
R570 [231] and the allele-defined genome of a haploid Saccharum spontaneum AP85-441 [232]
in 2018 provides the opportunities to exploit CRISPR/Cas technology in sugarcane for
various traits. Even though the reference genome sequences are available, it should not
be directly used as reference for gRNA designing. It is highly recommended to clone and
analyze the sequence of the target gene from the cultivar chosen for genome editing prior to
gRNA designing. This process helps avoid the nucleotide mismatches between gRNA and
the target region and ensures the correct binding of gRNA in the target site. The lower trans-
formation efficiency of sugarcane, when compared to other crops, calls for the development
of efficient transformation techniques in sugarcane [226,227,233]. Despite there being many
advantages in transgene-free techniques, the low editing efficiency and the lack of selection
pressure for the identification of transgene-free GE plants at an early stage not only make
the process more complicated, but also more expensive [95]. However, these limitations
can be circumvented by using visual markers, such as pigments and fluorescent protein
markers, for the identification and elimination of the transgene-containing sugarcane plants
at early stages and limiting the number of plants for further sequencing and analysis [123].
The VIGE, protoplast transformation of RNPs and many other techniques show promising
results in producing many transgene-free GE crops, but their use in sugarcane is yet to be
explored [95,123,234].

9. Conclusions and Future Prospects

Crop improvement has seen a dramatic shift from traditional breeding methods,
where the selection is purely based on the phenotype, to genome-based selection of an
individual or the population. Phenotype-based methods are highly laborious and time-
consuming, which requires approximately 12–15 years to develop a variety based on
the duration and reproductive nature of the crop plants [225,235]. Though transgenic
technology has great potential to create plants resistant/tolerant to various biotic and
abiotic stresses, commercial success in food crops is very limited across the world due to
the various regulatory concerns surrounding the cultivation of transgenic food crops. The
advent of genome editing technologies, such as ZFNs, TALENS and CRISPR/Cas, helps
to produce site-specific mutations in the plant genome within a very short span of time.
Conventional plasmid-based delivery of CRISPR/Cas genome editing cassette has been
successfully employed in various crop plants and has produced promising results in the
creation of novel alleles, new traits/products. Nevertheless, the integration of transgenes
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from plasmids into the plant genome places the GE lines under GMOs [216,217]. Crop
plants that reproduce through seeds such as rice, maize, tomato and many others, have the
advantage of meiotic recombination to eliminate transgenes from their genomes. In the case
of vegetatively propagated crops, especially sugarcane, the high heterozygosity along with
the complex ploidy level pose difficulties in eliminating the transgenes through meiotic
recombination. Moreover, exact genetic reconstitution is highly difficult due to the complex
nature of the genome. PCR-based assays, visual marker system and TKC enable the
preliminary screening of transgene-free genome edits. Employing transgene-free genome
editing approaches, such as particle bombardment, Agrobacteruim-mediated transformation,
VIGE, protoplast transformation and piggyBac-mediated transgenesis, along with advanced
screening approaches, likely produce transgene-free GE lines resistant/tolerant to biotic
and abiotic stresses.
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