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Abstract: The aboveground dry biomass (AGDB) of winter wheat can reflect the growth and de-
velopment of winter wheat. The rapid monitoring of AGDB by using hyperspectral technology is
of great significance for obtaining the growth and development status of winter wheat in real time
and promoting yield increase. This study analyzed the changes of AGDB based on a winter wheat
irrigation experiment. At the same time, the AGDB and canopy hyperspectral reflectance of winter
wheat were obtained. The effect of spectral preprocessing algorithms such as reciprocal logarithm
(Lg), multiple scattering correction (MSC), standardized normal variate (SNV), first derivative (FD),
and second derivative (SD); sample division methods such as the concentration gradient method
(CG), the Kennard–Stone method (KS), and the sample subset partition based on the joint X–Y
distances method (SPXY); sample division ratios such as 1:1 (Ratio1), 3:2 (Ratio2), 2:1 (Ratio3), 5:2
(Ratio4), and 3:1 (Ratio5); dimension reduction algorithms such as uninformative variable elimination
(UVE); and modeling algorithms such as partial least-squares regression (PLSR), stepwise multiple
linear regression (SMLR), artificial neural network (ANN), and support vector machine (SVM) on
the hyperspectral monitoring model of winter wheat AGDB was studied. The results showed that
irrigation can improve the AGDB and canopy spectral reflectance of winter wheat. The spectral
preprocessing algorithm can change the original spectral curve and improve the correlation between
the original spectrum and the AGDB of winter wheat and screen out the bands of 1400 nm, 1479 nm,
1083 nm, 741 nm, 797 nm, and 486 nm, which have a high correlation with AGDB. The calibration sets
and validation sets divided by different sample division methods and sample division ratios have
different data-distribution characteristics. The UVE method can obviously eliminate some bands in
the full-spectrum band. SVM is the best modeling algorithm. According to the universality of data,
the better sample division method, sample division ratio, and modeling algorithm are SPXY, Ratio4,
and SVM, respectively. Combined with the original spectrum and by using UVE to screen bands, a
model with stable performance and high accuracy can be obtained. According to the particularity of
data, the best model in this study is FD-CG-Ratio4-Full-SVM, for which the R2

c, RMSEc, R2
v, RMSEv,

and RPD are 0.9487, 0.1663 kg·m−2, 0.7335, 0.3600 kg·m−2, and 1.9226, respectively, which can realize
hyperspectral monitoring of winter wheat AGDB. This study can provide a reference for the rational
irrigation of winter wheat in the field and provide a theoretical basis for monitoring the AGDB of
winter wheat by using hyperspectral remote sensing technology.

Keywords: aboveground dry biomass; preprocessing; sample division method; sample division ratio;
dimension reduction; modeling method

1. Introduction

Winter wheat is a common food crop; a large number of studies have believed that
irrigation can affect the growth of crops to different degrees [1,2]. The aboveground dry
biomass (AGDB) of winter wheat refers to the dry weight of all existing organic substances
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above the ground of winter wheat in a unit area at a certain time [3,4]. It is believed that
the AGDB not only reflects the growth and development of winter wheat aboveground but
also is closely related to the final yield [5–7]. At the same time, some studies have believed
that irrigation could affect the AGDB. For example, Fan et al. [8] conducted two treatments
of irrigation at the jointing stage and delayed irrigation by 10 days at the jointing stage on
winter wheat, and they found that delaying irrigation by 10 days at the jointing stage can
improve the AGDB after flowering. Therefore, obtaining the AGDB in a timely manner has
important reference value for judging the growth status of winter wheat and providing
reasonable suggestions for the next field irrigation management system. However, the
traditional method of obtaining AGDB of winter wheat has the disadvantages of destructive
sampling and a time-consuming and laborious acquisition process [9,10]. Therefore, it is of
great significance to find a method to quickly obtain the AGDB to promote the development
of the winter wheat industry.

The application of remote sensing technology in agriculture provides technical support
for the rapid acquisition of winter wheat AGDB [11]. Among them, hyperspectral remote
sensing technology has the advantages of a large number of bands and spectral informa-
tion and has become one of the technical means used by many researchers to obtain the
AGDB [7,9,12]. For example, Fu et al. [7] constructed a hyperspectral monitoring model of
winter wheat AGDB based on spectral indices and band depth analysis, and they achieved
a high monitoring accuracy, with an R2 and RMSE of 0.84 and 0.177 kg·m−2, respectively.
Therefore, it is feasible to use hyperspectral remote sensing technology to obtain the AGDB
of winter wheat.

The process of constructing an AGDB model by using hyperspectral remote sensing
technology includes mainly the following. (1) Properly preprocess spectral data to amplify
spectral characteristics and reduce noise interference. (2) According to the amount of data,
reasonably divide the data into a calibration set and a validation set, eliminate the data re-
dundancy and over-fitting of the calibration set, and avoid the problem that the sample size
of the validation set is too small to effectively validate the model. (3) Because hyperspectral
data have a large amount of spectral information, which contains a substantial amount of
useless information, it is necessary to use a band-screening algorithm to screen the full-
spectrum bands to simplify the model and reduce the computational complexity. (4) The
modeling algorithm is the final step of constructing a model; it is necessary to compare the
modeling effects of different modeling algorithms and select the best modeling algorithm.

Therefore, in combination with previous research experience, according to the mod-
eling process, modeling effecting factors can be summarized mainly into five categories:
the preprocessing algorithm, the sample division method of the calibration set and the
validation set, the sample division ratio of the calibration set and the validation set, whether
to reduce the dimension of spectral data, and the modeling method [9,13–15]. Predecessors
have conducted some research on the effecting factors of these models. Most of them are
about preprocessing algorithms, whether to reduce the dimension of spectral data, and
the modeling method. For example, Lee et al. [16] studied the effect of the first derivative
(FD) and logarithmic transformation preprocessing on the lead, zinc, and copper content in
water, and the results showed that the FD had the best prediction effect on lead, while the
logarithmic transformation had a better prediction effect on zinc and copper. Jia et al. [9]
studied the effect of a successive projections algorithm (SPA) and synergy interval partial
least squares (SIPLS) on extracting the spectral characteristics of wheat leaf biomass. The
results showed that both algorithms can reduce the complexity of the model while ensuring
the accuracy of the model. Zhang et al. [17] selected four modeling methods, including the
partial least squares regression (PLSR), random forest regression (RFR), extreme random
tree (ERT), and K-nearest neighbor (KNN) algorithms, to construct hyperspectral monitor-
ing models of winter wheat leaf water content. The final results showed that the ERT had a
good modeling effect.

In addition, many studies have also analyzed these factors at the same time. For
example, Zhang et al. [17] previously used the correlation coefficient method and the
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x-loading weight method to screen characteristic spectra by using PLSR, RFR, ERT, and
KNN to construct the model of winter wheat leaf water content. Xu et al. [18] simulta-
neously studied the effects of preprocessing algorithms such as the Svitzky–Golay filter,
wavelet packet transform, multiple scattering correction (MSC), and fractional order deriva-
tive and dimensionality reduction methods such as principal component analysis (PCA),
multidimensional scaling, and locally linear embedding on the accuracy of hyperspectral
monitoring models of soil organic matter content. Li et al. [19] analyzed the effect of two
dimensionality reduction algorithms of uninformative variable elimination (UVE) and SPA,
and two modeling methods of PLSR and extreme learning machine on the accuracy of the
monitoring model of soil total nitrogen content.

However, the effect of the sample division method and sample division ratio of the
calibration set and the validation set on the model accuracy is often ignored. However,
some studies have analyzed this. Yang et al. [20] set five sample division ratios of 1:1,
3:2, 2:1, 5:2, and 3:1 for 225 soil samples according to the concentration gradient method
(CG) when constructing the hyperspectral monitoring model of soil organic carbon content.
The results showed that the highest model accuracy was achieved when the division
ratio was 3:2. Xu et al. [21] divided 301 samples according to stratified random sampling
(STRAT), the Kennard–Stone method (KS), and sample subset partition based on the joint
X–Y distances method (SPXY) when using hyperspectral technology to classify mangrove
species. The results showed that the classification effect of STRAT was better. To sum up,
above five category factors all affect the accuracy of the hyperspectral monitoring model to
varying degrees.

When the predecessors used hyperspectral technology to quantitatively monitor the
AGDB of winter wheat, they generally analyzed the effect of one or more of these factors
on the accuracy of the model. Bao et al. [12] reduced the complexity of the model by
constructing spectral indexes and extracting spectral characteristic parameters, and they
achieved good results. The maximum RMSE of the model was 66.403 g·m−2. Li et al. [22]
constructed a three-band spectral index when monitoring the AGDB, and they finally
screened out three bands of 560 nm, 738 nm, and 806 nm that had a strong relationship
with the AGDB. Fu et al. [23] constructed a monitoring model of AGDB based on two
spectral preprocessing algorithms of continuum removal (CR) and FD, and three modeling
methods of principal component regression, PLSR, and stepwise multiple linear regression
(SMLR). The results showed that the model constructed by CR combined with PLSR had
the highest accuracy.

It can be seen from the analysis of previous studies that, when constructing the hyper-
spectral monitoring model of winter wheat AGDB, the predecessors rarely simultaneously
considered the effect of above five category factors on the accuracy of the winter wheat
AGDB model. Based on this, this study sets five kinds of preprocessing for the original
spectrum, including reciprocal logarithm (Lg), MSC, standardized normal variate (SNV),
FD, and second derivative (SD). Then, CG, KS, and SPXY methods are used to divide all
samples into a calibration set and a validation set according to the division ratios of 1:1
(Ratio1), 3:2 (Ratio2), 2:1 (Ratio3), 5:2 (Ratio4), and 3:1 (Ratio5). Finally, based on the full-
spectrum band and the band screened by UVE, respectively, the hyperspectral monitoring
models of winter wheat AGDB are constructed by using PLSR, SMLR, artificial neural
network (ANN), and support vector machine (SVM).

The purpose of this work is to (1) analyze the effect of irrigation on AGDB of winter
wheat; (2) analyze the correlation between the original spectrum and preprocessing spec-
tra and the AGDB of winter wheat and determine the noise-reduction effect of different
preprocessing algorithms; (3) analyze the division effect of three sample division methods
and five sample division ratios; (4) analyze the effect of UVE algorithm in screening bands;
and (5) analyze the modeling effect of four modeling algorithms. Finally, through compre-
hensive comparison, this work aims to select the best spectral preprocessing algorithm,
sample division algorithm, sample division ratio, and modeling method for hyperspectral
monitoring models of winter wheat AGDB and determine whether dimension reduction is
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required in the modeling process. This study can provide a theoretical basis for the rational
irrigation of winter wheat and the rapid and non-destructive acquisition of the AGDB of
winter wheat.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted in the agricultural station of Shanxi Agricultural
University from October 2020 to July 2022. The experimental procedure involved building
a water pond according to FAO standards. Each plot was a 2 m × 3 m rectangle with
15 plots in total. The winter wheat variety “JinTai 182” was planted with a row spacing
of 20 cm. A total of 5 water treatments was set: T1 (No irrigation), T2 (Jointing stage), T3
(Jointing stage + Flowering stage), T4 (Jointing stage + Later grain-filling stage), and T5
(Jointing stage + Flowering stage + Later grain-filling stage). The irrigation amount was
60 mm each time. Each treatment was repeated 3 times by using a completely random
design. The overwintering water and the reviving water were uniformly irrigated. Nitrogen,
phosphorus, and potassium fertilizers were used as the base fertilizer and were applied once
before sowing. The fertilization standard was 150 kg·hm−2 for nitrogen (N), 120 kg·hm−2

for phosphorus (P2O5), and 120 kg·hm−2 for potassium (K2O). The nitrogen source was
urea, the phosphorus source was calcium superphosphate, and the potassium source was
potassium sulfate. Other field management was consistent with that of local farmers.

2.2. Data Acquisition

Canopy hyperspectral data were measured with a Field-Spec 3.0 spectrometer (Pro-
duced by the ASD Company of the United States). The acquisition band range was
350–2500 nm. The spectral sampling interval between 350 and 1000 nm was 1.4 nm, and the
spectral resolution was 3 nm. The spectral sampling interval between 1000 and 2500 nm
was 2 nm, and the spectral resolution was 10 nm. The field angle was 25◦. Spectral acquisi-
tion was carried out in sunny, cloudless, or windless weather or in wind less than Grade 3.
For a certain plot, a position with uniform growth was selected to ensure that the collected
spectrum was representative. The probe was placed at 1 m above the canopy during
measurement, and 10 spectral curves were measured. Finally, the average of the 10 spectral
curves was calculated as the final spectrum of this plot. Before each measurement, the
whiteboard was used for calibrating.

The AGDB was measured by the drying–weighing method. Specifically, winter wheat
plants with a row length of 10 cm were collected, the roots were removed, and the plants
were placed into an oven. The samples were baked at 105 ◦C for 30 min, then the tem-
perature was adjusted to 80 ◦C and dried to a constant weight. Finally, the weight was
converted to the weight per unit area, and the unit was kg·m−2.

2.3. Data Analysis Method

Lg can reduce the influence of multiplicative factors caused by light transforma-
tion [24,25]. MSC can eliminate the scattering effect caused by uneven sample distribu-
tion [26]. SNV can eliminate the influence of diffuse reflection spectrum [27]. FD and SD
can reduce noise interference and improve the sensitivity of the spectral information [28,29].

The CG method is a method used to classify samples according to dependent vari-
ables [3,13]. In this study, the specific steps were to sort the AGDB data from small to large
and to divide the samples into a calibration set and a validation set in certain ratios. For
example, a ratio of 3:2 means that among 5 consecutive samples, 3 samples were selected
into the calibration set, and other 2 samples were selected into the validation set. The KS
method is a method to classify samples according to independent variables. In this study,
the Euclidean distance between each spectrum and the rest of each spectrum was calculated.
First, the two samples with the largest Euclidean distance were selected as the calibration
set, and then the Euclidean distance was calculated between the remaining samples and the
calibration set samples. The samples were selected with the smallest and largest distances
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to enter the calibration set, and so on, until enough samples were obtained to enter the
calibration set [14,30]. The SPXY method was proposed by Galvão et al. [31] based on the
KS method. Its sample selection process is similar to the KS method, but in the process
of calculating Euclidean distance, both independent and dependent variables are consid-
ered [14,32,33]. In this study, the ratios of 5 calibration sets and validation sets were set,
which were 1:1 (Ratio1), 3:2 (Ratio2), 2:1 (Ratio3), 5:2 (Ratio4), and 3:1 (Ratio5), respectively.

UVE is a variable selection algorithm based on the PLSR, which screens bands accord-
ing to the stability of the PLSR model regression coefficients [34,35].

PLSR is a modeling method integrating PCA, canonical correlation analysis, and
multiple linear regression analysis [13,34]. SMLR is an algorithm that can extract significant
variables to construct a linear regression model [36,37]. ANN is an algorithm for mining
data relationships developed from simulating the neural system of animals [37,38]. SVM
was originally used to solve classification problems, and now it is widely used to mine data
relationships [39,40].

In this study, Microsoft Excel 2021 was used for data sorting. SPSS Statistics 26 was
used for difference analysis. Unscrambler 9.7 was used for the preprocessing of original
spectral data. The CG method, KS method, SPXY method, UVE, PLSR, SMLR, ANN,
and SVM were implemented in MATLAB 2021a. Origin 2021 was used for drawing. The
determination coefficient (R2), root mean square error (RMSE), and relative analysis error
(RPD) were used to evaluate the accuracy of the model.

3. Results
3.1. Variation in AGDB and Spectral Reflectance under Different Treatments

Figure 1 shows the change rule of the AGDB of winter wheat in the two-year exper-
iment. It can be seen from the figure that with the growth of winter wheat, there was a
certain difference in the change trend in AGDB in the two-year experiment. Among them,
the experiment in 2021 mainly showed a rising trend first and reached the highest at the
early grain-filling stage and then fell, while the experiment in 2022 showed a trend of grad-
ually rising to the flowering stage and reached basic stability. In the two-year experiment,
the AGDB of the regreening stage had certain differences under different treatments, but
the differences were not significant. After the first irrigation treatment, the AGDB of the
T2, T3, T4, and T5 treatments at the jointing stage had no significant difference but were
significantly higher than that of the T1 treatment. At the booting stage and heading stage,
the AGDB of the T2, T3, T4, and T5 treatments after irrigation were higher than that of
the T1 treatment, but the difference reached a significant level only at the booting stage
in 2021. At the flowering stage, the AGDB increased further. Among them, the T3 and
T5 treatments had the largest increase after the second irrigation treatment. There was
no significant difference between the T2 and T4 treatments in the two-year experiment,
but it was significantly higher than the T1 treatment. At the early grain-filling stage, the
AGDB of the T3 and T5 treatments in the 2022 experiment were still the highest, but the
differences between the treatments were not significant in the 2021 experiment, and the
change characteristics were disordered. After the third irrigation, the AGDB of T4 and
T5 treatments were higher than that of the other treatments, but there was no significant
difference with the T2 and T3 treatments; it was only that they were significantly higher
than the T1 treatment. In the maturation stage, the AGDB changes with different treatments
were also different. In 2021, it reached the highest under the T3 treatment, and in 2022, it
reached the highest under the T5 treatment. The AGDB of the T2, T3, T4, and T5 treatments
were higher than that of the T1 treatment, but there was no significant difference among
the treatments.

Figure 2 shows the spectral reflectance curve under different irrigation treatments. The
spectral bands in the range of 350–399 nm, 1351–1399 nm, 1801–1950 nm, and 2451–2500 nm
were eliminated in order to reduce the effect of factors such as moisture in the air. It can be
seen from the figure that the original spectrum of winter wheat canopy basically increased
first and then decreased with the increase in wavelength. Among them, a small reflection
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peak was formed near 550 nm in the visible light area, a near-infrared reflection platform
was formed within 780–1100 nm, and two obvious absorption valleys were formed near
1000 nm and 1450 nm, which conforms to the basic characteristics of spectral reflectance of
the green plant canopy. However, at the same wavelength, there were certain differences
in spectral reflectance between different treatments. Taking the near-infrared reflection
platform as an example, we can see that the spectral reflectance of the T1 treatment without
irrigation was the lowest. The T4 and T2 treatments irrigated once at the jointing stage
were higher than the T1 treatments, and the T3 and T5 treatments irrigated twice at the
jointing stage and flowering stage were the highest.
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3.2. Effect of Preprocessing Algorithm on Spectral Reflectance

In this study, Lg, MSC, SNV, FD, and SD were preprocessed for the original spectral (R)
curve, and the results are shown in Figure 3. (Take T3 treatment at flowering stage in 2021
as an example; its AGDB is 1.3405 kg·m−2, which is closest to the average value of AGDB
of all samples in this study.). From the preprocessing spectrum, it can be seen that the
changing trend in the Lg transformation spectrum was basically opposite to that of R. The
changing trends of MSC and SNV transformation spectra were basically the same as that of
R. The FD and SD transformation spectra basically lost the basic characteristics of R, but
from the geometric significance of FD and SD, we can see that FD and SD transformation
can show the changes in R that are difficult to recognize by the naked eye.
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spectrum, and second derivative transformation spectrum, respectively. The same below.

Figure 4 shows the correlation between R and preprocessing spectra and AGDB of all
samples. The correlation coefficient between R and AGDB ranged from −0.2332 to 0.2640,
and the preprocessing algorithms can improve the correlation between spectral reflectance
and AGDB to varying degrees. There were differences in the band positions when each
spectrum had a significant correlation with AGDB. In general, FD preprocessing had the
best effect on improving the correlation between original spectral reflectance and AGDB,
followed by MSC, SD, SNV, and Lg. In addition, there were some differences in the band
positions when the correlation reached the highest, which were 1400 nm, 1479 nm, 1083 nm,
741 nm, 797 nm, and 486 nm, respectively. It can be seen that each preprocessing algorithm
has different effects in reducing noise interference and amplifying useful information in
the spectral curve.
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3.3. Descriptive Statistics

In this study, 3 sample division methods, CG, KS, and SPXY, were used to divide
240 samples into the calibration set and the validation set according to the ratio of 1:1,
3:2, 2:1, 5:2, and 3:1. At the same time, for the convenience of subsequent analysis, the
division was based on the original spectrum. The data characteristics of the divided data
set are shown in Table 1. It can be seen from the table that the maximum and minimum
values of the total data set were 3.7185 and 0.0785 kg·m−2, respectively. The data sets that
were divided based on the CG and SPXY methods assigned the maximum and minimum
values to the calibration set; it ensured that the range of the model was not exceeded
when the model was validated, while the data sets that were divided based on the KS
method assigned the maximum values to the validation set and the minimum values to
the calibration set. The average value and standard deviation of the total data set were
1.3392 and 0.7196 kg·m−2, respectively. The average value and standard deviation of all
calibration sets and validation sets are close to it. The kurtosis of the total data set, the
calibration sets, and the validation sets that were divided by the CG and SPXY methods,
and the calibration sets that were divided by the KS method were all negative, indicating
that the distribution of these data sets is slower than that of the normal distribution, while
the validation sets that were divided by the KS method are steeper than that of the normal
distribution. Except for the calibration sets that were divided by the KS method under
Ratio1 and the validation sets that were divided by the SPXY method under Ratio1, Ratio2,
and Ratio3, the skewness of other data sets was positive, indicating that these data sets had
different degrees of right skewness compared with the normal distribution. Comprehensive
analysis showed that different sample division methods and division ratios have different
division effects.
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Table 1. Division effect of different sample division methods and ratios.

Division
Method Data Sets Num Max

(kg·m−2)
Min

(kg·m−2)
Avg

(kg·m−2)
SD

(kg·m−2) Kurtosis Skewness

Total 240 3.7185 0.0785 1.3392 0.7196 −0.3388 0.2536

CG

Cal-Ratio1 120 3.7185 0.0785 1.3342 0.7228 −0.2125 0.2767
Val-Ratio1 120 3.5210 0.0865 1.3442 0.7193 −0.4290 0.2336
Cal-Ratio2 144 3.7185 0.0785 1.3390 0.7199 −0.3090 0.2566
Val-Ratio2 96 3.5210 0.0865 1.3395 0.7229 −0.3373 0.2531
Cal-Ratio3 160 3.7185 0.0785 1.3385 0.7182 −0.3585 0.2398
Val-Ratio3 80 3.5210 0.0865 1.3405 0.7268 −0.2443 0.2855
Cal-Ratio4 172 3.7185 0.0785 1.3473 0.7319 −0.1795 0.3167
Val-Ratio4 68 2.7240 0.1210 1.3188 0.6922 −0.8785 0.0536
Cal-Ratio5 180 3.7185 0.0785 1.3355 0.7164 −0.4086 0.2225
Val-Ratio5 60 3.5210 0.1210 1.3501 0.7349 −0.0706 0.3477

KS

Cal-Ratio1 120 2.8690 0.0785 1.2936 0.7276 −0.9945 −0.0191
Val-Ratio1 120 3.7185 0.1470 1.3848 0.7116 0.2538 0.5605
Cal-Ratio2 144 2.8690 0.0785 1.3135 0.7234 −0.8989 0.0515
Val-Ratio2 96 3.7185 0.1470 1.3776 0.7158 0.4846 0.5797
Cal-Ratio3 160 2.8690 0.0785 1.3202 0.7180 −0.8951 0.0396
Val-Ratio3 80 3.7185 0.1970 1.3772 0.7258 0.6863 0.6796
Cal-Ratio4 172 3.5210 0.0785 1.3612 0.7315 −0.6462 0.0746
Val-Ratio4 68 3.7185 0.1970 1.2836 0.6907 0.9729 0.7826
Cal-Ratio5 180 3.5210 0.0785 1.3581 0.7348 −0.6776 0.0915
Val-Ratio5 60 3.7185 0.1995 1.2823 0.6746 1.4735 0.8602

SPXY

Cal-Ratio1 120 3.7185 0.0785 1.4037 0.8062 −0.4957 0.2753
Val-Ratio1 120 2.6310 0.0865 1.2747 0.6177 −0.7892 −0.0241
Cal-Ratio2 144 3.7185 0.0785 1.4045 0.7924 −0.5280 0.2215
Val-Ratio2 96 2.4780 0.0865 1.2412 0.5842 −0.8944 −0.0622
Cal-Ratio3 160 3.7185 0.0785 1.3955 0.7693 −0.4498 0.2321
Val-Ratio3 80 2.4780 0.0865 1.2265 0.5967 −0.8646 −0.0312
Cal-Ratio4 172 3.7185 0.0785 1.3786 0.7626 −0.4159 0.2226
Val-Ratio4 68 2.4780 0.1500 1.2396 0.5905 −0.8782 0.0748
Cal-Ratio5 180 3.7185 0.0785 1.3834 0.7503 −0.3605 0.2138
Val-Ratio5 60 2.4780 0.1500 1.2065 0.6047 −0.9547 0.1391

Note: Num, Max, Min, Avg, SD, Cal, and Val refer to number of sample, maximum, minimum, average, standard
deviation, calibration set, and validation set, respectively.

3.4. Screening Band Effect by Dimension Reduction Algorithm

In this study, the UVE algorithm was selected to screen hyperspectral bands, and the
screening results are shown in Figure 5. It can be seen from the figure that the effect of
using UVE to screen bands was different based on different preprocessing spectra. Among
them, the bands that were screened based on R were distributed mainly in the range of
500–540 nm, 750–1000 nm, and 1200–1250 nm, but the bands that were screened based
on the data sets that were divided via CG and SPXY methods were still distributed in the
range of 1300–2450 nm, while the bands that were screened via the KS method were less in
the range of 1300–2450 nm. The bands that were screened based on the Lg transformation
spectrum were similar to the R results, which were distributed mainly in the range of
400–500 nm, 700–1110 nm, 1470–1530 nm, 1650–1800 nm, and 2000–2330 nm. The bands
screened based on the MSC transformation spectrum were distributed mainly in the range
of 500–530 nm, 750–1000 nm, 1100–1220 nm, and 1310–1350 nm. Among them, the bands
that were screened based on the data sets that were divided by the KS and SPXY methods
were still distributed to a small extent in the range of 1450–2450 nm. The bands that were
screened based on the SNV transformation spectrum were distributed mainly in the range
of 500–540 nm and 750–1250 nm, and the data sets that were divided by some sample
division methods and ratios were also distributed in the range of 1400–2450 nm. The
screening results of the bands that were screened based on the FD transformation spectrum
were similar under each sample division method and ratio and were distributed mainly in
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the range of 400–1750 nm. The bands that were screened based on the SD transformation
spectrum were distributed mainly in the range of 400–1000 nm. The bands that were
screened based on the data sets that were divided by the SPXY method did not include the
bands in the range of 1660–2449 nm. As far as the number of screening bands is concerned,
the distribution ranged from 10 to 1001. The number of screening bands that were based
on the R, Lg, MSC, SNV, FD, and SD spectra was 148–344, 510–948, 76–385, 113–1001,
214–510, and 10–319, respectively. The number difference based on R is small, while the
number difference based on the SNV transformation spectrum is large. It can be seen that
there were certain differences in the effect of using UVE to screen bands based on different
preprocessing spectra, sample division methods, and division ratios.
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on the right is the number of bands; the same is true below.

SMLR is an algorithm that can screen bands during modeling. Therefore, this paper
also analyzed the bands that were used in constructing SMLR models. The SMLR modeling
bands that were based on full-spectrum bands are shown in Figure 6. Unlike the UVE bands,
SMLR modeling bands were mostly discrete bands. Among them, the SMLR modeling
bands that were based on R were distributed mainly in the near-infrared long wave
(1100–2450 nm) region, followed by the near-infrared short wave (780–1100 nm) region, and
these bands were the least distributed in the visible light (400–780 nm) region. The SMLR
modeling bands that were based on the Lg transformation spectrum varied greatly due to
the sample division method and ratio, mainly including the bands of approximately 400 nm
and 1070 nm, and the bands within the range of 1400–1800 nm. In addition, the bands that
were based on the CG method did not include bands within the range of 1100–1350 nm
and 1951–2450 nm. The bands that were based on the MSC transformation spectrum
included mainly bands in the range of 900–1150 nm and 2400–2450 nm. In addition,
bands that were based on the CG method were also generally distributed in the range of
1400–1800 nm, while bands that were based on the KS method were also distributed in the
range of 550–760 nm. The bands that were based on the SNV transformation spectrum
were distributed mainly in the range of 500–1500 nm and 2400–2450 nm, and they were
distributed less in the range of 1500–2400 nm. The bands that were based on the FD
transformation spectrum basically had uniform distribution in the full spectrum range, but
the distribution in the near-infrared band (780–2450 nm) is more than that in the visible
band (400–780 nm). Similar to FD, the bands that were based on the SD transformation
spectrum were uniformly distributed in the full spectrum range. In terms of the number
of bands, the number of SMLR modeling bands ranged from 2 to 173. Among them, the
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number of bands screened based on FD and SD transformation spectra was the largest. At
the same time, under the same sample division method and ratio, the number of bands
that were screened based on FD and SD transformation spectra is basically the same. The
number of bands that were screened based on R, Lg, MSC, and SNV transformation spectra
was generally less than 50. It can be seen that there are also some differences in the SMLR
modeling bands that were based on the different preprocessing spectra, sample division
methods, and ratios.
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Figure 6. SMLR modeling bands based on full-spectrum bands.

Figure 7 shows SMLR modeling bands that were based on UVE bands (UVE-SMLR).
As can be seen from the figure, the number of UVE-SMLR modeling bands is generally
small, ranging from 1 to 29, in contrast with the larger number of UVE bands and SMLR
modeling bands that were based on the full-spectrum bands. Among them, the number of
UVE-SMLR modeling bands that were based on R ranged from 1 to 14, mainly including
bands in the range of 750–1000 nm. The number of bands that were based on the Lg
transformation spectrum ranged from 9 to 21, mainly including bands in the range of
420 nm, 700–1100 nm, 1480–1500 nm, and 1670–1730 nm. The number of bands that were
based on the MSC and SNV transformation spectra ranged from 2 to 16 and 4 to 15, mainly
including bands in the range of 760–1350 nm, and less in the range of 1400–2450 nm. The
number of bands that were based on the FD transformation spectrum ranged from 4 to 27,
mainly including bands of approximately 650 nm, 790–1250 nm, 1670 nm, and 2237 nm.
The number of bands that were based on the SD transformation spectrum ranged from 3 to
29, mainly including the bands in the range of 470–1000 nm, while the distribution in the
range of 1000–2450 nm was less.

If the SMLR algorithm is regarded as a band-screening algorithm, combined with
the effect of UVE bands screening, it can be seen that there were different effects when
band screening was based on different preprocessing algorithms, sample division methods,
and ratios.

3.5. Modeling Results of Different Modeling Algorithms

After different preprocessing of the original spectrum and sample division according
to different sample division methods and ratios, the hyperspectral monitoring models for
the AGDB of winter wheat were constructed by using PLSR, SMLR, ANN, and SVM based
on the full-spectrum band and the band screened by UVE, respectively. The accuracy of the
calibration set model is shown in Figure 8. It can be seen from the figure that the R2

c values
of most models are above 0.6, and the RMSEc values are below 0.5 kg·m−2. However,
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different factors had different effects on the accuracy of the calibration set model. As far as
the preprocessing algorithm is concerned, the accuracy of the calibration set model based
on FD and SD preprocessing was generally higher than that of other preprocessing, and the
effect of FD preprocessing was better than that of SD. As far as the sample division method
is concerned, the calibration accuracy of the model that was constructed based on the data
set divided by the KS method was generally higher than that of the CG method and the
SPXY method. As far as the sample division ratio is concerned, under the same spectral
preprocessing algorithm, the model that was based on Ratio1 had a higher calibration
accuracy. In terms of whether to use the UVE algorithm to screen bands, the accuracy of the
models that were constructed based on the full-spectrum band was generally higher than
that of the models that were constructed based on the UVE band. As far as the modeling
method is concerned, SMLR and SVM were the most effective, followed by PLSR and ANN.
It is worth noting that the R2

c of all SMLR models that were based on the full-spectrum band
of FD and SD preprocessing, as well as R-KS-Ratio1-Full-SMLR, R-KS-Ratio2-Full-SMLR,
Lg-KS-Ratio5-Full-SMLR, MSC-KS-Ratio5-Full-SMLR, and SNV-SPXY-Ratio2-Full-SMLR,
reached 1, and the RMSEc was 0 kg·m−2. According to the number of SMLR modeling
bands that were based on the full spectrum in Figure 6, this may be related to the algorithmic
nature of SMLR. In addition, the model accuracy of SD-SPXY-Ratio2-Full-SVM was the
best, the R2

c reached 0.9997, and the RMSEc was only 0.0142 kg·m−2.
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Figure 9 shows the accuracy of the validation set model. It can be seen from the figure
that the validation accuracy and calibration accuracy are quite different. Distinct from the
high accuracy of the calibration model under SD preprocessing, the validation accuracy
corresponding to the model was generally low, and its R2

v and RPD were generally lower
than 0.6 and 1.4, respectively. In addition, the validation accuracy of models that were based
on R was generally higher than that of models that were based on other preprocessing
spectra. The validation accuracy of models that were constructed based on different sample
division methods was different due to the modeling methods and whether dimension
reduction was selected, and there was no clear rule. However, the accuracy of the models
that were constructed based on the SPXY method was generally higher than those that were
based on the CG method and KS method. The validation accuracy of models that were
constructed based on different sample division ratios is usually higher in Ratio4 or Ratio5.
Under the same conditions, the validation accuracy of models that were based on the UVE
band is generally higher than those based on the full-spectrum band. The effect of modeling
methods on model validation accuracy varied with different sample division methods. The
PLSR and SVM models that were based on CG and SPXY are generally more accurate than
SMLR and ANN models, but the models that were based on KS had higher validation
accuracy only when using SVM modeling. Among all models, the FD-CG-Ratio4-Full-SVM
model reached the highest validation accuracy, with R2

v, RMSEv, and RPD values of 0.7335,
0.3600 kg·m−2, and 1.9226, respectively. The R2

c and RMSEc of the model were 0.9487 and
0.1663 kg·m−2, respectively, indicating that the model had high calibration accuracy at this
time. Therefore, it can ensure that the model had high prediction accuracy and stability.
With the help of this model, the hyperspectral monitoring of AGDB of winter wheat can
be realized.
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3.6. Effect of Different Factors on Model Accuracy

In this study, according to the correlation coefficient between each modeling effecting
factor and RMSEv, the effect degree of each factor on the model accuracy is analyzed.
It can be seen from Table 2 that the correlation coefficient between each factor and the
model accuracy reached a very significant level, indicating that these correlations had
certain reliability. The order of correlation between each factor and model accuracy was
the sample division method, preprocessing algorithm, sample division ratio, whether to
reduce dimension, and modeling method. Among them, there was a positive correlation
between the preprocessing algorithm and the model accuracy, which may be related to
the low accuracy of the model based on SD spectrum. The model accuracy was negatively
correlated with the sample division ratio, sample division method, modeling method, and
whether to reduce dimension. This was consistent with the results that the validation
accuracy was mostly the highest under Ratio4 or Ratio5, the model accuracy constructed
via the SPXY method was higher than that constructed via the CG method and KS method,
the SVM had higher modeling accuracy, and the model validation accuracy that was based
on the UVE band was higher.

Table 2. Correlation between each factor and RMSEv.

Preprocessing Division
Method Ratio Dimension

Reduction Model

Correlation
coefficient 0.3923 ** −0.4629 ** −0.1804 ** −0.1345 ** −0.1316 **

Note: ** means the significance reached 0.01 level.

4. Discussion

Water is an important factor affecting crop growth, and a large number of studies
indicate that reasonable irrigation is an important measure to promote the normal growth
of crops [41–44]. In this study, for the jointing stage, flowering stage, and later grain-filling
stage, the AGDB of an irrigation treatment at these three growth stages was higher than
that of a non-irrigation treatment to varying degrees, which is similar to previous research
results. However, in this study, the change trend in AGDB with the growth of winter wheat
in the two-year experiment was different, which may be related to the different precipitation
and temperature that were experienced during the two-year experiment [45]. By analyzing
the relationship between irrigation and AGDB, the water demand of winter wheat can be
judged by AGDB. However, rapid acquisition of AGDB is the prerequisite for real-time
judgment. At the same time, the changes in winter wheat canopy spectral reflectance were
analyzed under different irrigation treatments. It was found that the spectral reflectance
increased with the increase in irrigation times. This showed that irrigation can change the
spectral reflectance of the winter wheat canopy by adjusting its growth. This is similar to
the research results of Yang et al. [3]. This study expects to use hyperspectral technology to
achieve rapid acquisition of AGDB.

Based on the analyses of previous studies, this study believes that the factors affecting
the accuracy of the hyperspectral model include mainly five categories: preprocessing
algorithm, sample division method, sample division ratio, whether to reduce dimensions,
and modeling method. These five factors play different roles in the modeling process. It is
generally believed that hyperspectral technology has the advantages of a large number of
bands and a large amount of spectral information, but it also increases noise interference
and spectral information redundancy [46,47]. Therefore, it is necessary to use a preprocess-
ing algorithm to denoise the original hyperspectral data and use a dimension reduction
algorithm to reduce the redundancy of spectral information. Before modeling, it is also
necessary to divide all data into the calibration set and the validation set. Different sample
division methods determine which samples are used as the calibration set and which
samples are used as the validation set [14,30,32,33]. The sample division ratio determines
the relative number of samples in the calibration set and the validation set. It is generally
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believed that only the appropriate number of samples in the calibration set and the valida-
tion set can ensure the model accuracy and reduce the computational complexity at the
same time [13,20]. While modeling methods are directly involved in constructing models,
different modeling methods will obtain different accuracy, so they can directly affect the
model accuracy [34,39,48]. When constructing the model of AGDB, the predecessors sel-
dom considered the effect of these factors on the accuracy of the model at the same time.
However, the authors of this study believed that it is necessary to consider the effect of
these five factors on the accuracy of the model before constructing a hyperspectral model.
Based on this, this study conducted a two-year irrigation experiment on winter wheat,
collected the AGDB data and canopy hyperspectral data of winter wheat, and studied the
effect of five factors on the accuracy of the hyperspectral monitoring model for the AGDB
of winter wheat.

This study analyzed the role of the preprocessing algorithm in the modeling process
by analyzing the characteristics of the spectral curve and its correlation with the AGDB of
winter wheat. At the same time, before preprocessing, referring to the previous experience,
the bands within the range of 350–399 nm, 1351–1399 nm, 1801–1950 nm, and 2451–2500 nm
that were greatly affected by water and other factors shall be eliminated to preliminarily
reduce the noise interference [3]. Authors of previous studies believed that five spectral
preprocessing, such as Lg, MSC, SNV, FD, and SD, can reduce the noise information in the
original spectrum to varying degrees [24–29]. Therefore, Lg, MSC, SNV, FD, and SD were
selected to preprocess R in this study. The preprocessing results showed that—compared
with R—Lg, FD, and SD preprocessing all affected the size and curve change trend in the
original spectrum, while MSC and SNV preprocessing changed mainly the size of the origi-
nal spectral reflectance. It can be seen that different preprocessing algorithms had different
preprocessing effects on the original spectral curve, which also preliminarily indicated
that different preprocessing algorithms may have different effects on reducing spectral
noise interference. Correlation analysis showed that different preprocessing algorithms
could improve the correlation between the spectral reflectance and the AGDB of winter
wheat to varying degrees, and FD preprocessing was the best. In addition, the bands
with the largest correlation between R and each preprocessing spectrum and the AGDB
were 1400 nm, 1479 nm, 1083 nm, 741 nm, 797 nm, and 486 nm, respectively. These bands
are important for predicting the AGDB and are close to the sensitive bands extracted by
predecessors [3,7,49]. In this study, we compared the transformation spectrum with the
original spectrum curve, and analyzed the role of preprocessing algorithm in improving
the correlation between the original spectrum and the AGDB of winter wheat. It is believed
that five spectral preprocessing algorithms, such as Lg, MSC, SNV, FD, and SD, can reduce
noise interference and improve the signal-to-noise ratio to varying degrees, which was
basically similar to the previous research results.

There are many sample division methods, among them, the CG method, KS method,
and SPXY method are three relatively simple and widely used methods [14,50]. Therefore,
these three sample division methods were selected in this study to divide the total data into
the calibration set and the validation set. When predecessors studied hyperspectral models,
there was no uniform standard for how many samples were used to construct models and
how many samples were used to validate models. Guo et al. [51] and Hong et al. [52]
used 70% of all samples to construct the model and 30% of samples to validate the model
when constructing the hyperspectral monitoring model for nitrogen accumulation in winter
wheat leaves and soil organic matter, respectively. However, Zhang et al. [17] chose to use
50% of all samples for modeling and the remaining 50% for validating the model when
constructing the winter wheat leaf water content model. Yang et al. [20] set 5 sample
division ratios of 1:1, 3:2, 2:1, 5:2, and 3:1 when constructing the hyperspectral monitoring
model of soil organic carbon content. Based on this, this study also selected these five ratios
when setting the sample division ratio. In this study, descriptive statistical analysis was
conducted on all data sets to preliminarily analyze the role of sample division methods
and ratios in the modeling process. From the results of descriptive statistical analysis,
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we can see that the data distribution characteristics of different data sets were different.
Both the CG method and the SPYX method divided the maximum and minimum values
into calibration sets; this can ensure that the range of model validation was within the
range of the calibration model, and the KS method divided only the minimum values into
calibration sets. However, the results of the CG method were affected mainly by human
operations [13], while the results of the KS method and the SPYX method were unique.
The average value and standard deviation of all calibration sets and validation sets were
close to the average value and standard deviation of the total data set, but the gap between
the data set based on the SPXY method and the total data set was large, while the gap
between the data set based on the CG method and the total data set was small. It can be
seen from the kurtosis and skewness of each data set that most data sets were right-skewed
and distributed slowly compared with the standard normal distribution. However, the
validation sets that were divided by the KS method were steeper than the standard normal
distribution, while the calibration set divided by the KS-Ratio1 and the validation set
divided by SPXY-Ratio1, SPXY-Ratio2, and SPXY-Ratio3 all showed a certain left skewness.
It can be seen that different sample division methods and sample division ratios can enrich
the data characteristics of the calibration set and the validation set, which provide more
possibilities for mining the internal relationships of data.

Hyperspectral technology has rich spectral information, which contains both useful
and useless information. Therefore, if useful spectral bands can be screened and only useful
bands are used to construct models, the prediction accuracy of models can be improved
theoretically. There are many band-screening methods. Among these methods, UVE
can eliminate invalid variables based on the stability of PLSR model coefficients [34,35].
Therefore, this study selected the UVE algorithm to screen useful information. It can be seen
from the screening results that, based on the data sets divided by different preprocessing
spectra, sample division methods, and sample division ratios, there were certain differences
in the results of using UVE to screen the bands, but there were certain distributions in
the visible light and short wave near-infrared range. Compared with 1852 bands in the
full spectrum, 45.9503% to 99.4600% of the number of spectral bands can be eliminated by
using the UVE algorithm. This paper analyzed SMLR modeling bands at the same time.
The results showed that compared with the screening effect of UVE, the number of SMLR
modeling bands that were based on the full-spectrum bands and UVE bands was less. Only
9.3413% and 1.5659% of the number of bands were retained at the highest value. It can be
seen that using the UVE algorithm to screen bands may retain more useful bands when
removing a large number of useless bands.

In this study, with the model accuracy as the final standard, the effect of the prepro-
cessing algorithm, sample division method, sample division ratio, whether to reduce the
dimension, and modeling algorithm on the hyperspectral monitoring model of winter
wheat AGDB was evaluated. It can be seen from the calibration accuracy that the R2

c of
most models reached more than 0.6, which preliminarily indicated that there may be a good
prediction relationship between the AGDB and the hyperspectral data [39]. The preliminary
analysis of different modeling factors showed that the best spectral preprocessing algorithm
and sample division method was FD and KS, respectively. The best sample division ratio
was 1:1, which meant that it was enough to provide a reasonable number of samples when
constructing the model. Too many samples were not conducive to mining the internal
relationship of data [53]. The calibration accuracy of models that were constructed based
on the UVE band was generally only slightly lower than that of the models that were
constructed based on the full spectrum, which showed that more simplified models and
higher calibration accuracy can be obtained simultaneously after using the UVE algorithm
to screen bands [34]. As far as the modeling method is concerned, SMLR and SVM were
better, but it is worth noting that the R2

c and RMSEc of some models that were constructed
based on SMLR were 1 and 0 kg·m−2, respectively. The number of bands that were used in
these models reached more than 110. Some researchers have believed that in multiple linear
regression, the R2 increased with the number of variables. Therefore, too many variables
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may be the cause of high model accuracy [54], so the comprehensive performance of SVM
was better than that of SMLR. Distinct from the model calibration accuracy, the best spectral
preprocessing algorithm for the validation set model was R (i.e., no preprocessing), the
best sample division method was SPXY, and the best sample division ratio was 5:2 or 3:1.
The model validation accuracy based on the UVE band was higher than that based on the
full-spectrum band. The best modeling method was SVM, which indicated that SVM itself
may have better data-mining ability. At the same time, this study calculated the correlation
between the accuracy of the validation set and various factors. The results showed that
there was a very significant relationship between each factor and the accuracy of the model.
At the same time, the positive and negative correlation also further confirmed the reliability
of the above analysis on the effect of various factors on the accuracy of the model.

According to the above comparison, the theoretically optimal calibration set model
should be FD-KS-Ratio1-Full-SVM, but the actual optimal model was SD-SPXY-Ratio2-Full-
SVM. Theoretically, the optimal validation set model should be R-SPXY-Ratio4-UVE-SVM,
but the actual optimal model was FD-CG-Ratio4-Full-SVM. It can be seen that when
analyzing the effect of these modeling factors on the monitoring model of AGDB, we need
to pay attention to the universality and particularity of the data at the same time. In view
of its universality, a stable model with high prediction accuracy can be obtained by using
the original spectrum, by dividing the calibration set and the validation set according to
the ratio of 5:2 based on the SPXY method, by using UVE to screen the bands, and by
using SVM to construct the model. In another study [3], we used SPA to screen bands and
multiple linear regression to construct a hyperspectral monitoring model for winter wheat
AGDB. The results showed that the R2

c, RMSEc, R2
v, and RMSEv were 0.64, 0.30, 0.54, and

0.26, respectively. However, according to R-SPXY-Ratio4-UVE-SVM, we constructed the
model by using the same data set, and the results showed that its R2

c, RMSEc, R2
v, and

RMSEv reached 0.8006, 0.2037, 0.8575, and 0.1567, respectively. Compared to the model in
the original literature, the accuracy is higher, indicating that the model has a certain degree
of reliability. This provides a strong theoretical basis for using the model to manufacture
monitoring instruments for AGDB in the next step. In view of its particularity, because
the calibration accuracy and validation accuracy of FD-CG-Ratio4-Full-SVM were high, its
R2

c, RMSEc, R2
v, RMSEv, and RPD were 0.9487, 0.1663 kg·m−2, 0.7335, 0.3600 kg·m−2, and

1.9226, respectively. The validation accuracy of SD-SPXY-Ratio2-Full-SVM was low, with
R2

v, RMSEv, and RPD values of 0.4571, 0.4328 kg·m−2, and 1.3500, respectively. Therefore,
FD-CG-Ratio4-Full-SVM was the model with the best accuracy in this study.

In this study, because the preprocessing algorithm, the sample division method, the
sample division ratio, whether to reduce dimensions, and the modeling method were
considered at the same time, the workload of modeling and analysis was large. Therefore,
in this study, only 5 spectral preprocessing algorithms of Lg, MSC, SNV, FD, and SD;
3 sample division methods of CG, KS, and SPXY; 5 sample division ratios of 1:1, 3:2, 2:1, 5:2,
and 3:1; a band-screening algorithm of UVE; and 4 modeling algorithms of PLSR, SMLR,
ANN, and SVM were considered. In the subsequent research, SG smoothing, baseline
correction, wavelet transform, and other preprocessing algorithms; the random method,
the duplex method, the GN distance method, and other sample division methods; more
scientific sample division ratio; the vegetation index, spectral characteristic parameters,
PCA, and other dimension reduction algorithms; random forest, decision tree, and limit
learning machine; and other modeling algorithms should be further considered to study
the effect on the accuracy of the AGDB model of winter wheat. Precision agriculture and
intelligent agriculture are the main development directions of agriculture at present and in
the future. They all require the use of various electronic and intelligent devices to varying
degrees, as these devices can help agronomists improve field management efficiency
and reduce time and labor costs. For example, there are currently SPAD-502 [55], which
can measure the relative chlorophyll content of crops, and Plant Canopy Analyzer [56],
which can measure the leaf area index. This study aims to provide a theoretical basis for
developing a device that can quickly and non-destructively measure AGDB. This study is
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still at the stage of theoretical research, but through further analysis of the results of the
literature [3], it can be seen that the theoretical model proposed in this study has certain
reliability. In the next step, if we can further analyze the effect of five categories factors on
the AGDB model of winter wheat and construct a model with higher accuracy that can be
used stably, we can create an instrument that can quickly and non-destructively obtain the
AGDB according to this model and provide technical support for judging the irrigation
demand of winter wheat according to the AGDB.

5. Conclusions

This study took winter wheat as the research object; the AGDB and canopy hyperspec-
tral reflectance of winter wheat were measured. The effects of different irrigation treatments
on the AGDB of winter wheat were analyzed. In total, 5 spectral preprocessing methods of
Lg, MSC, SNV, FD, and SD; 3 sample division methods of CG, KS, and SPXY; and 5 sample
division ratios of 1:1, 3:2, 2:1, 5:2, and 3:1 were set up. Hyperspectral monitoring models
for the AGDB of winter wheat were constructed based on the full-spectrum band and
UVE band by using four modeling methods of PLSR, SMLR, ANN, and SVM. The main
conclusions were as follows:

(1) Irrigation can improve the AGDB and canopy spectral reflectance of winter wheat.
(2) The preprocessing algorithm can change the original spectral curve to varying degrees

and improve the correlation between the original spectrum and the AGDB of winter
wheat. At the same time, 1400 nm, 1479 nm, 1083 nm, 741 nm, 797 nm, and 486 nm
with high correlation with AGDB were selected.

(3) The calibration set and the validation set were divided based on different sample division
methods, and sample division ratios had different data distribution characteristics.

(4) The UVE method can obviously eliminate some bands in the full-spectrum band and
reduce the model complexity.

(5) In modeling algorithm, SVM had a better effect.
(6) According to the universality of the data, by using the original spectrum, combining

the SPXY method to divide the samples according to the ratio of 5:2, using UVE to
screen the bands, and using SVM to construct the model, we can obtain a stable and
high accuracy model when using other data to construct the hyperspectral monitoring
model for the AGDB of winter wheat.

(7) According to its particularity, the FD-CG-Ratio4-Full-SVM model had the highest
accuracy in this study, with R2

c, RMSEc, R2
v, RMSEv, and RPD values of 0.9487,

0.1663 kg·m−2, 0.7335, 0.3600 kg·m−2, and 1.9226, respectively, which can realize
hyperspectral monitoring for the AGDB of winter wheat.
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