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Abstract: The emitter is one of the most critical components in drip irrigation. The flow path geometry
parameters have a significant effect on the emitter’s hydraulic performance and have a direct impact
on the emitter’s irrigation uniformity and lifetime. The hydraulic characteristics of the emitter are the
key indicators of its performance. However, obtaining the hydraulic characteristics of the emitter
is complex. Typically, only a small number of calibrations are performed for specific equipment
models, making it difficult to obtain the parameter. Therefore, limited data corresponding to the
morphological parameters and the flow rate were simulated using the FLUENT software, and the
influence of the characteristics was analyzeanalyzed, based on which a flow rate prediction model
was constructed using the ensemble learning (CatBoost) model. The extended data set was generated
by stochastic simulation and parameter fitting. The flow index and flow coefficient prediction
model were built and evaluated using the CatBoost model again with the augmented data set as a
benchmark. The results show that the significant correlation between the geometric structure and
the flow index and flow coefficient provides the basis for the correlation model. CatBoost can fit
the complex nonlinear relationships between the parameters well, achieving excellent simulation
accuracy for the flow rate (R2 = 0.9987), flow index (R2 = 0.9961), and flow coefficient (R2 = 0.9946),
where the path width has the highest importance score in the model construction for the flow index
(score = 55.97) and flow coefficient (score = 45.2). Furthermore, the CatBoost models used in this
study achieved the best prediction results compared to seven typical models (XGBoost, Bagging,
Random Forest, Tree, Adaboost, and KNN).

Keywords: ensemble learning; irrigation; CFD; data-driven; numerical simulation

1. Introduction

According to the United Nations, the global population has reached 8 billion as of
November 2022. The production of food security is facing a serious challenge with the
increase in the world population. The issue of food security is related to the continuous
growth and future destiny of mankind [1]. Freshwater resources on the earth’s surface
account for only 2.5% of the total water volume [2]. Therefore, it is crucial to guarantee
food security production in a situation of water shortage [3]. Traditional agricultural irriga-
tion methods have resulted in significant water wastage due to the lack of precise control
of irrigation volume [4]. Water-saving irrigation technology must be vigorously imple-
mented to improve the shortcomings of traditional irrigation methods. To meet the water
needs of agricultural production while achieving the optimal allocation and utilization of
water resources.
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Drip irrigation, as one of the water-saving irrigation technologies, is an effective
method to solve the water shortage in arid and water-scarce areas [5]. As one of the most
critical components in the drip irrigation system, the emitter works on the principle of
pressurizing water through a narrow flow path inside and using the flow path boundary
to make the water flow turbulent and dissipate the energy completely with the help
of turbulent vortex dissipation. Finally, the water flow drips into the soil at a small
uniform flow rate [6]. The internal flow path size of the emitter is tiny, generally around
0.5–1.2 mm, and the structure is complex. The geometric parameters of the flow path
significantly affect the hydraulic performance of the emitter, which has a direct impact
on the irrigation uniformity and the operating life of the emitter [7]. The variation in the
hydraulic performance of the emitter is significantly influenced by the internal geometric
parameters of the flow path [8].

The emitter flow index and flow coefficient are important parameters for evaluating
emitter performance. The flow index can reflect the sensitivity of the water flow pattern
within the drip head and the emitter flow to pressure changes [9,10]. In [11], the effect
of tooth width, tooth base distance, and tooth height on the hydraulic performance of
the flow pattern index was investigated using the CFD numerical simulation technique
with orthogonal tests. Under a certain condition of flow path length and depth, the tooth
base distance, tooth height, and width of the rotor have significant effects on the flow
index. The flow index is positively correlated with tooth base spacing and tooth width,
and negatively correlated with tooth height. The study of [12] found that the flow path
depth was positively correlated with both the flow index and the flow coefficient; the flow
index decreased with the increase in tooth height, and the flow coefficient showed a trend
of increasing and then decreasing with the rise of tooth angle.

Of the current research in this area, there is still a relatively small amount of research
into the structural parameters of the internal flow path of the emitter. The existing research
mainly uses the development of molds or rapid prototyping technology to process dif-
ferent geometric parameters of the emitter, resulting in complex, lengthy, and expensive
experiments [13]. In recent years, with the rapid advances in computer technology, the
simulation of complex flow problems has developed rapidly. Computational Fluid Dynam-
ics (CFD) has received more and more attention. Various standard large-scale commercial
computational software, such as FLUENT, ANSYS, and CFX, have been introduced [14].
The “numerical test” method allows the designer to fully understand the flow laws and
efficiently evaluate and select multiple design options for optimal design in the fastest and
most economical way. This method significantly reduces the workload of physical exper-
imental studies such as laboratory and testing and obtains the best design by satisfying
multiple constraints [15]. In [16], the hydraulic performance of a rectangular labyrinth
emitter with a rectangular flow path model after the addition of teeth and the variation law
of the velocity field in the flow path after the addition of teeth were studied using the CFD
fluid analysis technique. In [17], the internal flow field motion of three emitters at different
pressures was compared using numerical simulation methods, and it was found that the
probability of emitter clogging increased as the operating pressure increased. However,
the CFD modeling process is complex and requires high technical requirements for the
personnel involved. Therefore, the limited simulation results based on CFD can be used to
construct an “end-to-end” hydraulic characteristic parameter prediction model through
machine learning, which can greatly improve the usability of parameter prediction in
practical applications.

The rapid development of artificial intelligence (AI) algorithms has effectively im-
proved the ability to fit complex nonlinear relationships. With the development of artificial
intelligence technology, models derived from neural networks and decision tree theory
have become the two mainstream categories of AI algorithms [18]. Although DNN models,
represented by deep learning, have become a more popular research area due to their high
accuracy of the fitting. However, DNNs usually require a longer training time, and the
collective data needed for training is more significant, so this method is not a suitable
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choice [19]. In contrast, decision tree-based methods have efficient and accurate fitting
performance in the face of small datasets and can intuitively obtain feature importance
rankings [20]. Based on this, classical decision-tree algorithms such as Random Forest,
GBDT, and XGBoost have been developed based on the theory of Ensemble Learning
(EL) [21]. CatBoost uses symmetric decision trees as the base learner, which can effi-
ciently and reasonably handle category-based features with excellent fitting performance
and breakneck training speed [22]. For other problems in agricultural water resources,
the CatBoost model has been applied as a core model [23], demonstrating its excellent
fitting ability.

Based on practical needs, this study proposes to use a small amount of data from
FLUENT software simulation as a basis. The CatBoost model is used as the core fitting
algorithm to construct an extended data set through stochastic simulation and parameter
fitting, and then the CatBoost model is used again to construct the flow index and flow
coefficient prediction models, respectively. The objectives of this study are: (1) To analyze
the effects of different morphological parameters on the flow characteristics of the flow
field in the flow path based on the simulation results of CFD. (2) To analyze the relationship
between morphological and hydraulic parameters based on the extended data set. (3) To
evaluate the simulation accuracy of the proposed CatBoost model for flow rate, flow index,
and flow coefficient and to compare the accuracy advantages with those of the commonly
used typical models.

2. Materials and Methods

The framework of this study is shown in Figure 1, where the FLUENT software was
used to simulate a model of a specific emitter type as a benchmark to simulate the flow rate
at different pressures. Based on this, a small amount of simulation data were obtained to
construct a fitting relationship between the four parameters of emitter depth, width, length
and pressure, and flow rate to build a predictive model of emitter flow rate. Based on this
model, the depth, width, and length parameters were randomly selected, as was the flow
rate at 1–15 m pressure, and then the results of 15 simulations were used for regression
analysis to derive the flow index and flow coefficient. The above process was repeated
10,000 times to form a data set of critical parameters of the emitter. Based on this, the model
relationship between depth, width, and length as input conditions and flow index and
flow was further implemented using the CatBoost model. Under the condition of a small
amount of simulated real-world data, in order to maximize the use and reflect the actual
accuracy, the model training in this study was used to evaluate the fitting accuracy by the
leave-one-out cross-validation (LOOCV) method.
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2.1. Method of Physical Simulation and Analysis of the Emitter
2.1.1. Numerical Methods

• Mathematical modeling

The standard k-ε turbulence model was used in this paper. The water flow in the
emitter was considered as an unpressurized flow with negligible heat exchange, so only
the continuity equation, the Navier-Stokes equation, and the turbulence equation were
considered as the governing equations:

Continuous equations:

∂(u)
∂x

+
∂(v)
∂y

+
∂(w)

∂z
= 0 (1)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (2)

N-S equation:
∂(ρu)

∂t
+∇·(ρuu) = µ∇2u− ∂p

∂x
+ Su (3)

∂(ρv)
∂t

+∇·(ρvu) = µ∇2v− ∂p
∂y

+ Sv (4)

∂(ρw)

∂t
+∇·(ρwu) = µ∇2w− ∂p

∂z
+ Sw (5)

k-εmodel:

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj

[(
µ+

µt
σk

)
∂k
∂xj

]
+ Gk − ρε (6)

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+

C1ε

k
Gk −C2ερ

ε2

k
(7)

where u is the velocity vector, u, v, and w are velocity components, Su, Sv and Sw are
generalized source terms, ui is the time-averaged velocity, µt is the turbulent viscosity, k is
the turbulent kinetic energy, ε is the dissipation rate, Gk is the turbulent energy generation
term due to the mean velocity gradient, C1ε = 1.44, C2ε = 1.92, ∂k = 1.0, σε = 1.3.

• Initial and Boundary Conditions

The inlet of the flow channel was set as the pressure inlet (in the range of
0.01–0.15 MPa). The value was taken as the working pressure at each 0.01 MPa inter-
val. There were 15 horizontal inlets. The pressure output was atmospheric pressure. The
wall boundary was a non-slip boundary, taking into account the influence of the viscous
subsurface, using standard wall function processing.

• Model solving

The finite volume method was used to discrete the control equations. The discrete
format was based on discrete convection terms in first-order windward format and discrete
diffusion terms in central difference format. The steady-state calculation, solved by the
separate SIMPLE algorithm, was calculated with a convergence accuracy of 0.0001.

2.1.2. Physical Model Design of the Emitter

The design of the emitter flow path mainly uses the Minkowski fractal flow path;
the basic square steps are as follows: (1) as in Figure 2 (n = 0), a straight line of length
Lm is selected; (2) as in Figure 2 (n = 1), the straight line segment is divided into five
equal parts and retains the first, third and fifth segments are retained, the second and
fourth segments are changed to the angle of 90◦ in turn perpendicular to the three long
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Lm/5 straight line segments selected path width; (3) as in Figure 2 (n = 2), the five straight
line segments of length Lm/5 are divided into five equal parts, and the first, third, and
fifth line segments in each group of five equal parts are retained, and the second and fourth
line segments are changed to three straight line segments of length Lm/25 at an angle of
90◦. The Minkowski fractal curve generated by n = 2 iterations is used as the boundary. The
distance b is extended to the other side and modified, keeping the geometric parameters
of the flow path energy dissipation unit unchanged. The Minkowski fractal flow path is
formed, as shown in Figure 2b.
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Figure 2. Minkowski fractal flow path generation schematic. (a) Minkowski curve; (b) Minkowski
flow path design diagram.

Based on their generation process and fractal characteristics (Figure 3), the generated
path energy dissipation units have the same structural parameters, such as path tooth
height and rotation angle, when a certain Euclidean length Lm is determined. Therefore,
only three independent factors of path width (b), path depth (D), and path length (L)
need to be selected as the structural geometry parameters for path design to control the
structural dimensions of the path. The Minkowski fractal flow path with 13 different
structural parameters was designed and constructed, and the geometric modeling was
conducted in the Pro/E platform.
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2.1.3. Model Validation

Digital Particle Image Velocimetry (DPIV) is a method of digitizing traditional im-
age velocimetry PIV technology. The leading equipment of the Digital Particle Image
Velocimetry system, the image acquisition equipment is the Kodak MEGA PLUS II camera
(resolution 1600× 1200, 2 M). The camera lens is an objective microscope lens (specification:
4×, model G10-211) manufactured by Beijing Daheng Camera Factory; the laser light
source system is a Q-modulated Nd: YAG double-pulse laser manufactured by LABEST.
The fluorescent particles were selected for testing. The primary material was polystyrene,
the density was about 1020 kg/m3, and the concentration was 1–2%. The image acquisition,
display, and computational analysis software are TSI insight3G, and the set interval time
is 0.01 s. Taking flow path B3 as an example, Figure 4 shows the particle distribution
images in the flow path structure unit at the adjacent moments before and after. Image
post-processing was performed using the Tecplot software included with insight 3.
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2.1.4. Numerical Design of Experiments

According to the characteristics of the fractal flow path, it is known that the width,
depth, and length of the flow path are the key parameters. Therefore, three basic parameters
were selected for the study in the following ranges: path width within [0.9 mm, 1.3 mm],
path depth within [0.9 mm, 1.3 mm], and path length within [128 mm, 256 mm]. Five levels
of each parameter were selected, with one set of duplicates, resulting in 13 different
structural geometry parameters for the paths (Table 1).

2.1.5. Analysis Method

Numerical simulations are performed using FLUENT 6.3 for the constructed fractal
flow channels with different structural parameters. By visualizing the microscopic internal
flow field, the variation of the flow field and hydraulic properties can be studied. It
facilitates the analysis of the flow characteristics and mechanism of the internal flow field.
Three groups of representative flow channels (B1, B2, E), (D1, D2, E), and (L1, L2, E) are
selected for different flow channel widths, depths, and lengths to visualize the distribution
of internal flow characteristic parameters at an operating pressure of 0.1 MPa.

• Cross-sectional velocity distribution

As in Figure 5, the fractal flow path section (Z = 0.5D) is taken, and the near wall
surface is set at 0.1 mm from the top wall as the structural change along the boundary.
The centerline of the flow path is selected from the midpoint of the inlet width of the flow
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path unit section, as shown in the schematic diagram. The Minkowski fractal flow path
has several energy dissipation units with the same structure, so the analysis was refined
to the flow path structural units. The velocity vector distribution of the cross-sectional
(Z = 0.5D) flow path structural unit is visualized, and its velocity mass motion characteristics
are analyzed.

Table 1. Experimental design parameters for different structural geometry parameters of the
Minkowski fractal flow path.

Path Type Path Width (b, mm) Path Depth (D, mm) Path Length (L, mm)

B1 0.9 1.1 192
B2 1 1.1 192
B3 1.2 1.1 192
B4 1.3 1.1 192
D1 1.1 0.9 192
D2 1.1 1.0 192
D3 1.1 1.2 192
D4 1.1 1.3 192
L1 1.1 1.1 128
L2 1.1 1.1 160
L3 1.1 1.1 224
L4 1.1 1.1 256
E 1.1 1.1 192
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• Longitudinal profile flow velocity distribution

Seven longitudinal sections in the Y-Z plane were taken equidistantly at different
locations along the forward direction of the water flow in the flow path unit section, as
shown in Figure 6. The velocity contours of the seven longitudinal sections are observed to
analyze the velocity distribution characteristics in the longitudinal sections.
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• Turbulence intensity distribution map

Turbulence intensity reflects the intensity of flow pulsation. It is an important index to
describe the turbulent motion characteristics of water flow, which can be used to measure
the strength of the flow field. Therefore, turbulence intensity is also used as an analysis
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index in this paper when analyzing the flow motion characteristics within the flow path.
The isotropic distribution of the turbulence intensity within the flow path structure unit
is analyzed.

• Hydraulics performance analysis

According to the design, 13 fractal flow paths were simulated to calculate the frac-
tal flow path discharge at 0.01 MPa operating pressure in the 0.01–0.15 MPa range. The
following equation is used to describe the hydraulic performance of the flow path, the
calculated flow value, and the operating pressure using regression calculations to ob-
tain the flow index x and flow coefficient Kd of different fractal flow paths at different
operating levels.

q = Kd·Hx (8)

where q is the flow rate, H is the working pressure, Kd is the flow coefficient, and x is the
exponent flow.

2.2. CatBoost Model

CatBoost is a gradient-boosting decision tree-based machine learning framework that
implements extensions and improvements to the Gradient Boosting Decision Tree (GBDT)
algorithm [24]. Unlike the traditional GBDT, the category feature processing process first
randomly sorts all samples. Then, for a given value taken in the category-based features,
each part of that feature to numerical is averaged based on the category label ranked before
that sample, adding weighting factors for priority and precedence. This practice reduces
the noise caused by low-frequency features in the category features. In the regression
problem, the stress calculation is generally obtained by averaging the label values. Let a
permutation be σ = (1, 2, . . . , n), then xσp,k can be replaced by:

xσp,k =
∑

p−1
j=1

[
xσj,k = xσp,k

]
Yσj + a ∗ p

∑
p−1
j=1

[
xσj,k = xσp,k

]
+ a

(9)

where, a is the weight coefficient greater than 0, and p is the added last term.
CatBoost obtains new features by combining category-based elements to improve

prediction performance. When constructing a new tree, CatBoost uses a greedy approach
to consider combinations to build the choice of split points. No variety is considered when
the tree is split for the first time. At the next split, it combines all combinations of the
current tree and category-based features with all category-based features in the dataset. It
dynamically converts the new varieties of category-based features into numerical parts.
Its pseudo code process is shown in Algorithm 1—Pseudocode for the tree construction
method of the Catboost model.

In addition, CatBoost replaces the gradient estimation method in the traditional
algorithm with ordered boosting, which reduces the bias of the gradient estimation and
improves the generalization ability of the model. To obtain unbiased gradient estimation,
CatBoost trains a separate model Mi for each sample Xi, the model Mi is obtained by using
a training set that does not contain samples Xi. The gradient estimate over the sample is
obtained using Mi. The gradient is used to train the base learner and obtain the final model.
The pseudo-code of the ordered boosting algorithm is shown in Algorithm 2—Ordered
boosting algorithm.

In this study, the default hyperparameter values (Table 2) were used for the parameter
configuration of CatBoost to facilitate model evaluation and subsequent application.
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Algorithm 1: Building a tree in CatBoost

Input: M, {(Xi, yi)}
n
i=1,α, L, {σi}s

i=1, Mode
grad ← CalcGradient (L, M, y)
r← random (1, s)
if Mode = Plain then

G← (gradr(i) for i = 1 . . . n)
if Mode = Ordered then

G←
(

gradr,σr(i)−1(i) for i = 1 . . . n
)

T← empty tree;
foreach step of top− down procedure do

foreach candidate split c do
Tc ← add split c to T
if Mode = Plain then

∆(i)← avg(gradr(p) forp : leaf r(p) = leafr(i)) for i = 1 . . . n
if Mode = Ordered then

∆(i)← avg
(

gradr,σr(i)−1(p) forp : leafr(p) = leafr(i),σr(p) < σr(i)
)

for i = 1 . . . n

Algorithm 2: Ordered boosting

Input: {(Xk, yk)}
n
k=1, I;

σ← random permutation of [1, n];
Mi ← 0 for i = 1 . . . n
for t← 1 to I do

for i← 1 to n do
ri ← yi − Mσ(i)−1(Xi)

for i← 1 to n do
∆M←

Learn Model
((

Xj, rj
)

: σ(j) ≤ i
)

Mi ← Mi + ∆M
return Mn

Table 2. Information on the main parameters of the CatBoost model.

Parameters Type Default Value Explanations

iterations int 1000 The maximum number of trees can be built when solving machine
learning problems.

learning rate float 0.03 The learning rate. It is used for reducing the gradient step.

depth int 6 Depth of the tree. The range of supported values depends on the processing unit
type and the type of the selected loss function.

l2_leaf_reg float 3 Coefficient at the L2 regularization term of the cost function. Any positive value
is allowed.

loss_function string MSE Loss function

border_count int 128
The number of splits for numerical features. Allowed values are integers from 1 to
65,535 inclusively. Recommended values are up to 255. Larger values slow down

the training.
ctr_border int 1 The number of category feature separators.

2.3. Cross-Validation and Evaluation Criteria

K-fold cross-validation is an essential method in machine learning. The data set is
randomly divided into k copies, with the training set taking k-1 copies and the test set
taking one copy. Each data set is used as a training set, and the remaining k-1 data sets
are used as training sets. Thus, a total of K iterations are required for each round of
training. Considering the small amount of data simulated by CFD simulation, this study
uses leave-one-out cross-validation (LOOCV) to evaluate the generalization fit accuracy of
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the model [25]. LOOCV is a unique form of k-fold cross-validation, which can be considered
as n-fold cross-validation when k is equal to the sample size n. This means that one datum
at a time is taken out as the only element of the test set. All remaining (n-1) data points are
the corresponding training set, and n iterations are required for each round of training. The
model hyperparameters and generalization ability are evaluated by calculating the average
error over all iterations (Figure 7). The advantage of LOOCV is that each data set is treated
individually as a test set, so it is not affected by the training of the test set. The advantage
of LOOCV is that each datum is individually conducted as a test set. It is not affected by
the test set training set partitioning method, can make full use of the data, prevent model
overfitting from occurring, and assess the actual generalization ability of the model. The
combined error LOOCV(n) can be expressed as:

LOOCV(n) =
1
n ∑n

i=1 MSEi (10)
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Four evaluation measures were selected to indicate the performance of the Cat-
Boost model.

The mean absolute error (MAE):
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The root mean squared error (RMSE):

RMSE =

√
1
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∧
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(13)
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The mean absolute percentage error (MAPE):

MAPE =
100
n

n

∑
i=1

∣∣∣∣∣
∧
yi − yi
∧
yi

∣∣∣∣∣ (14)

The coefficient of determination (R2):

R2 = 1−
∑i

( ∧
yi − yi

)2

∑i(yi − yi)
2 (15)

In the above formulas,
∧
yi is the predicted value, yi is the true value, and yi is the

average value. MAE can reflect the actual situation of the predicted value error. MSE
is the expected value of the square of the difference between the estimated and the ob-
served value; it can evaluate the degree of the data change, and the smaller the MSE,
the better accuracy of the prediction model. RMSE is the arithmetic square root of MSE.
MAPE is equivalent to normalizing the error at each point, reducing the impact of the
absolute error from individual outliers. R2 can eliminate the influence of dimension on the
evaluation measure.

2.4. Model Training

The training environment for the experiments in this study is a graphics workstation
configured with a CPU: Intel(R) Core(TM) i9-10980XE CPU @ 3.00 GHz, GPU: NVIDIA
GeForce RTX 3090, and RAM: 64 GB. Model training uses the Anaconda platform as the
model training base, Spyder as the integrated development tool, CatBoost version 0.25.1 as
the model framework, and the underlying Python version 3.7. Considering that CatBoost
models can conveniently mobilize GPU arithmetic for computation, and the configuration
of the experimental environment can further enhance the efficiency of model training.

2.5. CFD Simulation Results

The FLUENT software was used for the numerical simulation, and the k-εmodel was
selected to solve the flow field using the SIMPLE algorithm. The flow path inlet is set as a
pressure inlet, and the value is taken as the drop inlet pressure every 1 m in the range of
1–15 m, with a total of 15 horizontal inputs. The outlet of the flow path is set to atmospheric
pressure, and the wall is treated with the wall function. The simulated flow values were
obtained, as shown in Table 3.

Table 3. Simulated flow values in the fractal flow path at different working pressures.

Path Type Flow Rate (m/s)

Pressure (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B1 0.939 1.328 1.619 1.862 2.076 2.268 2.445 2.608 2.762 2.908 3.043 3.173 3.297 3.415 3.529
B2 0.986 1.376 1.671 1.918 2.135 2.338 2.534 2.692 2.862 3.016 3.152 3.289 3.421 3.548 3.670
B3 1.386 1.947 2.368 2.725 3.038 3.320 3.578 3.817 4.041 4.251 4.450 4.641 4.825 5.004 5.171
B4 1.537 2.167 2.645 3.046 3.397 3.714 4.007 4.274 4.525 4.763 4.990 5.203 5.408 5.606 5.796
D1 0.993 1.410 1.724 1.990 2.223 2.435 2.625 2.805 2.974 3.131 3.279 3.422 3.560 3.691 3.816
D2 1.223 1.730 2.116 2.441 2.726 2.982 3.217 3.436 3.640 3.832 4.015 4.187 4.353 4.514 4.665
D3 1.338 1.892 2.311 2.664 2.976 3.255 3.514 3.753 3.976 4.185 4.383 4.571 4.755 4.928 5.096
D4 1.452 2.051 2.507 2.890 3.226 3.530 3.808 4.066 4.307 4.532 4.752 4.953 5.149 5.338 5.522
L1 1.475 2.082 2.543 2.932 3.273 3.578 3.857 4.115 4.358 4.586 4.805 5.013 5.215 5.403 5.591
L2 1.320 1.866 2.282 2.630 2.939 3.213 3.466 3.698 3.920 4.123 4.324 4.510 4.683 4.861 5.023
L3 1.056 1.484 1.809 2.072 2.316 2.524 2.739 2.945 3.091 3.275 3.441 3.593 3.710 3.869 3.994
L4 1.048 1.486 1.817 2.096 2.339 2.561 2.765 2.950 3.129 3.292 3.551 3.598 3.743 3.879 4.009
E 1.212 1.714 2.097 2.418 2.700 2.952 3.186 3.402 3.606 3.793 3.973 4.147 4.309 4.468 4.617
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3. Results
3.1. Influence of Different Geometric Parameters on the Flow Characteristics of the Flow Field in
the Flow Path

(1) For the effect of flow characteristics of the flow field in the flow path of different
widths (b) (Figure 8). The overall flow characteristics of the flow field in the cross-section are
the velocity in the flow path varies periodically, the high-speed mass drives the low-speed
liquid mass, the low-speed liquid mass stalls the high-speed liquid mass flow, and mixes to
show the characteristics of turbulent flow. The flow field in the longitudinal direction of
the flow characteristics: The velocity distribution varies more in the vertical direction of
the flow channel width. The velocity variation along the channel depth x direction is small.
A secondary flow phenomenon appears within the flow field distribution. As the flow
path width increases, the velocity of the central zone and the vortex zone in the flow path
develop sufficiently, but the increase from B2 to E flow path is not significant. The overall
distribution of turbulence intensity is characterized as follows: the turbulence intensity
reaches its maximum at the corners of the flow path and out between the teeth. The
turbulence intensity in the vortex zone is over 10%, which belongs to the high turbulence
zone. The high pulsation of the turbulent flow can slow down particle deposition, while
the shear force generated by the vortex has a destructive effect on particle agglomeration.
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(2) For the effect of the flow characteristics of the flow field in the flow path at different
depths (D) (Figure 9). The maximum flow velocities of flow paths D1, D2, and E are
2.15 m/s, 2.13 m/s, and 2.13 m/s, respectively. The flow velocity at the outer edge of
the vortex region is within [0.30 m/s, 0.46 m/s] for VD1, [0.30 m/s, 0.46 m/s] for VD2,
[0.30 m/s, 0.45 m/s] for VE. From the longitudinal section, the changes in the size of the
velocity distribution in the main flow area and near the wall are insignificant as the flow
path depth increases. 1, 3, 5, and 7 wide flow path cross-sectional prominent flow area
locations are located in the middle of the cross-section. 2, 4, and 6 narrow flow path central
flow area locations are located in the upper part of the flow path cross-section, and their
locations are not shifted with the change of flow path depth. In general, the flow field
structure within the fractal flow path is similar in depth direction. With the evolution of
the flow path depth, the flow velocity, turbulence intensity distribution, and size do not
differ much. The flow characteristics are very similar in the depth direction.
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(3) For the effect of different path lengths (L) on the flow path characteristics (Figure 10).
The velocity decreases linearly as the flow path length increases, and the maximum flow
velocities in flow paths L1, L2, and E are 2.52 m/s, 2.28 m/s, and 2.13 m/s, respectively. The
velocities at the outer edge of the vortex zone are within [0.49 m/s, 0.66 m/s], [0.40 m/s,
0.53 m/s], and [0.30 m/s, 0.45 m/s]. From the longitudinal cross-sectional velocity field,
the velocity in the main flow area and near the wall shows a significant decreasing trend
with increasing path depth, which is consistent with the cross-sectional variation law. The
change in flow path depth does not shift the position of the main flow region. Based on
this in the flow path design, the flow path length can be changed to adjust the hydraulic
performance of the emitter. The turbulence intensity distribution structure is similar for
different flow path lengths, and the turbulence intensity decreases as the flow path length
increases. L1, L2, and E flow paths turbulence intensity in flow path turbulence intensity
was in the range of [6.5%, 55.6%], [6.1%, 52.5%], and [5.9%, 48.2%], respectively.

3.2. Correlation between Different Structural Geometric Parameters and Macroscopic
Hydrodynamic Properties

Figure 11 shows the variation of flow index and flow coefficient (at the 0.05 level)
under the influence of different parameters in the extended data set, calculated using
the Pearson correlation coefficient method. The values of d, D, and L are taken in the
ranges of [0.9 mm, 1.3 mm], [0.9 mm, 1.3 mm], and [128 mm, 256 mm], respectively. The
extended data set is obtained from the uniformity of the data distribution by fitting the flow
prediction model and coefficient. The uniformity of b, D, and L shows that the extended
data set can effectively cover the specified range. From the correlation of the hydraulic
characteristic parameters, the flow coefficient has the highest correlation coefficient with b
(r = 0.6114). While the flow index has the highest negative correlation relationship with L
(r = −0.2534), and the flow index and the flow coefficient show some negative correlation
relationship with each other (r = −0.2943).
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3.3. Accuracy of Flow Simulation with Small Amount of Simulation Data

Figure 12 shows the accuracy of the emitter flux prediction model based on a small
number of simulated data sets. Each point in the figure shows the relationship between the
true and predicted values for a moment in the leave-one-out cross-validation that was not
included in the model training. The overall prediction accuracy of the model is high, with
average MAE, MSE, RMSE, MAPE, and R2 of 0.0261, 0.0025, 0.0498, and 0.9987, respectively.
The flow prediction model trained by CatBoost can accurately perform flow prediction for
different emitter parameters and pressures.
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Figure 13 shows the importance scores of the input variables of the emitter flow
prediction model, demonstrating the degree of importance of the different input variables
in influencing the prediction accuracy of the model. The average importance scores of
the four input variables are ranked as follows: pressure (46.20) > b (27.28) > L (16.74) > D
(9.78). Overall, the change in pressure has the most significant effect on the prediction of
the model flow. The distribution of important scores for each indicator over the training
period is quite consistent. The 25–75% importance scores of pressures, b, L, and D were
within [40.96, 50.72], [23.39, 32.66], [12.36, 22.23] and [7.72, 12.27], respectively.

3.4. Prediction Accuracy of Flow Index and Flow Coefficient under Extended Dataset Conditions

Figure 14 shows the accuracy of the prediction model for the emitter flow index based
on the extended dataset. The figure contains a total of 10,000 iterations of cross-validation
of the actual versus predicted values of the flow index for each of the omitted test points.
The cross-validation results show that the model can predict the flow index with high
accuracy, with average MAE, MSE, RMSE, MAPE, and R2 of 0.0021, 0.00002, 0.0047, and
0.9961, respectively. The CatBoost model can accurately predict the corresponding flow
index at pressures of 1–15 m by inputting three parameters (d, D, and L).
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Figure 15 shows the importance scores of the input variables for the model prediction
of the emitter flow index. The average importance scores of the three input indicators are
ordered as b (55.97) > L (25.71) > D (18.32). Overall, the change in b has the most significant
effect on the prediction of the model flow index, and the importance score distribution of
each indicator over training is significantly clustered. The 25–75% importance scores of b,
L, and D are in the range of [55.07, 56.75], [25.15, 26.33], and [17.96, 18.69], respectively.
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Figure 16 shows the accuracy of the prediction model for the emitter flow coefficient
based on the extended data set. The figure also shows the relationship between the actual
and predicted values. The flow coefficient for each of the 10,000 iterations of cross-validation
on the full dataset, excluding the test points. The cross-validation results show that the
model can also predict the flow coefficient with high accuracy, with average MAE, MSE,
RMSE, MAPE, and R2 of 0.0261, 0.00026, 0.0161, and 0.9946, respectively. The CatBoost
model can accurately predict the corresponding flow coefficient at 1–15 m pressure by
inputting three parameters (d, D, and L).
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Figure 17 illustrates the importance scores of the input variables for the emitter flow
coefficient prediction model. In contrast to the trend of the importance scores for the flow
index, the average importance scores for the three input variables are in the following order:
b (45.20) > D (27.98) > L (26.82). The overall change in b has the most significant effect on
the prediction of the model flow coefficient, and the distribution of importance scores for
each indicator is significantly clustered. The importance of D exceeds that of L in predicting
the flow coefficient. Variables b, D, and L have importance scores in the range of 25–75%
within [44.33, 46.05], [27.13, 28.82], and [26.15, 27.50], respectively.
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3.5. Comparison of Prediction Accuracy of Different Models for Flow Rate, Flow Index and
Flow Coefficient

In order to evaluate the prediction accuracy of the proposed models, some classi-
cal machine learning models similar to CatBoost were selected for comparison, namely
XGBoost [26], Bagging [27], Random Forest [28], Tree [29], Adaboost [30] and KNN [31].
Different models were trained using the simulated and extended datasets, respectively,
and the accuracy of the model predictions was also evaluated using LOOCV. Table 4 com-
pares the accuracy of the different models in predicting flow rate, flow index, and flow
coefficient. Overall, the CatBoost model used in this study has the best accuracy in pre-
dicting different indices. The prediction accuracy of the other models is ranked as follows:
CatBoost > XGBoost > Bagging > Random Forest > Tree > Adaboost > KNN, while XGBoost,
which is also an ensemble learning model with CatBoost, also achieves good prediction ac-
curacy, while KNN has difficulty in achieving good prediction results for different metrics.

Table 4. Comparison of the accuracy of different models for predicting flow rate, flow index, and
flow coefficient.

Algorithm
Flow Rate Flow Index Flow Coefficient

MSE MAE RMSE R2 MSE MAE RMSE R2 MSE MAE RMSE R2

CatBoost 0.0025 0.0261 0.0498 0.9987 0.00002 0.0021 0.0047 0.9961 0.0003 0.0261 0.0161 0.9946
XGBoost 0.0274 0.1171 0.1655 0.9864 0.00005 0.0043 0.0072 0.9909 0.0007 0.0141 0.0258 0.9891
Bagging 0.0439 0.1174 0.2097 0.9783 0.0005 0.0044 0.0074 0.9903 0.0006 0.0143 0.0243 0.9877

Random Forest 0.0675 0.1867 0.2598 0.9667 0.00008 0.0053 0.0092 0.9851 0.0008 0.0143 0.0277 0.9841
Tree 0.1317 0.2862 0.3629 0.9351 0.0002 0.0052 0.0123 0.9729 0.0012 0.0105 0.0339 0.9763

Adaboost 0.1835 0.3476 0.4284 0.9094 0.0005 0.0184 0.0224 0.9105 0.0096 0.0836 0.0982 0.8011
KNN 0.4489 0.5047 0.6701 0.7784 0.0034 0.0461 0.0583 0.3162 0.0351 0.1465 0.1876 0.2769

4. Discussion

As one of the most efficient irrigation technologies, drip irrigation technology can
achieve more than 90% water-saving efficiency and has been widely used worldwide [17].
The small size of the emitter path, generally around 0.5–1.2 mm, and the variation of
its path geometry directly affect the hydraulic performance of the emitter, which has a
significant impact on its anti-clogging performance, irrigation uniformity, and service
life [6]. Current research on the relationship between flow path structural parameters and
hydraulic properties has received some attention [15,16]. However, the real reason for the
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change in hydraulic properties is that the change in flow path structural parameters affects
the characteristic flow parameters of the internal flow field. Studies on the relationship
between the flow path structural parameters, internal flow characteristics, and hydraulic
characteristics of emitters are rare.

There have been studies on hydraulic performance, mainly using the flow index and
flow coefficient as evaluation indices. Among the findings on the effect of structural pa-
rameters on the flow index, many studies have shown that flow path geometry parameters
have a more pronounced effect on the flow index. Ref. [32] studied the relationship between
hydraulic performance and flow path length of inlaid sheet emitters and concluded that
as the flow path length increases, there is a correlation with the flow index. Ref. [33] per-
formed an ANOVA on triangular loop flow paths and found that the flow path width had a
significant effect on the flow index. In [34], the flow path width, twist angle, height, upper
bottom width, and offset were selected as key flow path parameters to perform ANOVA
and extreme difference analysis on the hydraulic performance of the toothed labyrinth flow
path. It was found that the top-bottom width and turning angle had a significant effect on
the flow index. This is consistent with the results shown in Figure 11 of this study. Among
them, the correlation coefficient between the flow index and b reaches 0.6114, which has
a significant positive correlation. The correlation coefficient with L also reaches −0.2514,
with a more obvious negative correlation characteristic. In addition, the average model
importance score of the b parameter on the flow index is 55.97, which significantly affects
the predictive effect of the flow index (Figure 15).

As a scale factor characterizing the emitter scale, the flow coefficient has a dominant
effect on the flow rate and is proportional to the flow rate. Studies on the relationship
between flow path geometry and flow coefficient variation have all concluded that flow
path structural parameters significantly affect the flow coefficient, which is consistent
with the results of this study (Figure 11). In the case of the inlay patch flow path, [32]
concluded that the flow coefficient decreases as the length of the flow path increases.
Ref. [33] concluded that the height of the flow path unit, the inlet size, the height of the
flow path, and the depth all have a significant effect on the flow coefficient of the triangular
return flow path. Ref. [34] concluded that the depth, width, inlet size, and unit height of
the labyrinth flow path all significantly affect the flow coefficient. Ref. [13] concluded that
the flow path geometry significantly affects the flow coefficient of the patch emitter. The
flow coefficient varies significantly as the cross-sectional area increases and decreases as
the number of cells increases. This study also shows that the flow coefficient is strongly
influenced by the geometric parameters of the flow path structure and that the width, depth,
and length of the flow path are positively correlated with the flow coefficient (Figure 17).
Based on this, the MAE of the prediction model of the flow coefficient by the geometric
parameters of the flow path structure is only 0.0261 (Figure 16) and has a high correlation
(R2 = 0.9946). In addition, b also had the highest importance score (45.2) for the flow
coefficient prediction model, showing a strong influence on the flow coefficient (Figure 17).

The CatBoost model showed an excellent fit with a prediction accuracy R2 greater
than 0.99 for flow rate, flow index, and flow coefficient. As for the differences in prediction
accuracy between the different algorithms, the ensemble learning algorithm was able to
extract better features and fit trends by integrating the results of many weak learners. The
result is similar to other studies using the CatBoost model [28]. In addition, the resulting
XGBoost model has a lower prediction accuracy than the CatBoost model with default
parameters, and the studies of [22,23,34] also confirm the advantages of the CatBoost model.

5. Conclusions

In this study, a small number of morphological parameters were simulated using
FLUENT software to analyze the influence of flow rate. The CatBoost model was used
to construct a flow rate prediction model based on the simulation. The results of this
study show that the significant correlation between the geometric structure and the flow
index and flow coefficient provides the basis for the correlation model. CatBoost can
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fit the complex nonlinear relationships between the parameters well, achieving excellent
simulation accuracy for flow rate (R2 = 0.9987), flow index (R2 = 0.9961), and flow coefficient
(R2 = 0.9946), where b has the highest importance score in the model construction for the
flow regime index (score = 55.97) and flow coefficient (score = 45.2). Furthermore, the
CatBoost models used in this study achieved the best prediction results compared to their
typical counterparts (XGBoost, Bagging, Random Forest, Tree, Adaboost, and KNN). This
study can provide more reliable and efficient technical support for agricultural production,
which can help improve agricultural production efficiency and reduce water waste.

Author Contributions: Conceptualization, L.Z. and J.Y.; methodology, L.Z.; software, J.Y.; validation,
X.Z., J.Y. and L.Z.; formal analysis, R.L.; investigation, R.L.; resources, L.X.; data curation, L.X.;
writing—original draft preparation, J.Y.; writing—review and editing, R.L.; visualization, R.L.;
supervision, L.X.; project administration, J.L.; funding acquisition, J.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (51909007),
Key Research and Development Projects of Hebei Province (21327410D), Beijing Digital Agriculture
Innovation Team Digital Facility Application Scene Construction Position (BAIC10-2022-E02).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cole, M.B.; Augustin, M.A.; Robertson, M.J.; Manners, J.M. The Science of Food Security. NPJ Sci. Food 2018, 2, 14. [CrossRef]

[PubMed]
2. Owusu, P.A.; Asumadu-Sarkodie, S.; Ameyo, P. A review of Ghana’s water resource management and the future prospect. Cogent

Eng. 2016, 3, 1164275. [CrossRef]
3. Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.;

Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [CrossRef]
[PubMed]

4. Liao, R.; Zhang, S.; Zhang, X.; Wang, M.; Wu, H.; Zhangzhong, L. Development of smart irrigation systems based on real-time
soil moisture data in a greenhouse: Proof of concept. Agric. Water Manag. 2020, 245, 106632. [CrossRef]

5. Si, Z.; Zain, M.; Mehmood, F.; Wang, G.; Gao, Y.; Duan, A. Effects of nitrogen application rate and irrigation regime on growth,
yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020,
231, 106002. [CrossRef]

6. Irmak, S.; Brar, D.; Kukal, M.S.; Odhiambo, L.; Djaman, K. Automated real-time irrigation analytics inform diversity in regional
irrigator behavior and water withdrawal and use characteristics. Agric. Water Manag. 2022, 272, 107837. [CrossRef]

7. van der Kooij, S.; Zwarteveen, M.; Boesveld, H.; Kuper, M. The efficiency of drip irrigation unpacked. Agric. Water Manag. 2013,
123, 103–110. [CrossRef]

8. Ren, Z.; Lv, B.; Shi, C.; Wang, Y. Numerical Simulation and Optimization Analysis of a New Percolation Irrigator. In Proceedings
of the 2022 3rd International Conference on Intelligent Design (ICID), Xi’an, China, 21–23 October 2022; pp. 213–217.

9. Zhangzhong, L.; Yang, P.; Li, Y.; Ren, S. Effects of Flow Path Geometrical Parameters on Flow Characteristics and Hydraulic
Performance of Drip Irrigation Emitters. Irrig. Drain. 2016, 65, 426–438. [CrossRef]

10. Feng, J.; Li, Y.; Wang, W.; Xue, S. Effect of optimization forms of flow path on emitter hydraulic and anti-clogging performance in
drip irrigation system. Irrig. Sci. 2017, 36, 37–47. [CrossRef]

11. Zhang, L.; Li, S. Numerical Experimental Study of Hydraulic Performance of Drip Irrigation Tooth Type Lab-yrinth Flow Channel
Irrigator. Hydropower Energy Sci. 2017, 35, 103–106.

12. Yang, B.; Zhang, G.; Wang, J.; Gong, S.; Wang, H.; Mo, Y. Numerical Simulation Study of Hydraulic Performance of Toothed
Labyrinth Flow Channel Irrigator. J. Irrig. Drain. 2019, 38, 71–76. [CrossRef]

13. Qingsong, W.; Gang, L.; Jie, L.; Yusheng, S.; Wenchu, D.; Shuhuai, H. Evaluations of emitter clogging in drip irrigation by
two-phase flow simulations and laboratory experiments. Comput. Electron. Agric. 2008, 63, 294–303. [CrossRef]

14. Xing, S.; Wang, Z.; Zhang, J.; Liu, N.; Zhou, B. Simulation and Verification of Hydraulic Performance and Energy Dissipation
Mechanism of Perforated Drip Irrigation Emitters. Water 2021, 13, 171. [CrossRef]

15. Zhang, W.; Yang, L.; Wang, J.; Zhang, X. Analysis of Flow Channel Structure Parameter and Optimization Study on Tooth Spacing
of Drip Irrigation Tape. Water 2022, 14, 1694. [CrossRef]

16. Ma, Y.; Li, Y.; Jin, L.; Wang, C. Numerical Analysis of Hydraulic Performance of Single-Tooth Rectangular Labyrinth Irrigator.
Water Sav. Irrig. 2017, 1, 20–24.

17. Zhangzhong, L.; Yang, P.; Ren, S.; Liu, Y.; Li, Y. Flow Characteristics and Pressure-Compensating Mechanism of Non-Pressure-
Compensating Drip Irrigation Emitters. Irrig. Drain. 2015, 64, 637–646. [CrossRef]

http://doi.org/10.1038/s41538-018-0021-9
http://www.ncbi.nlm.nih.gov/pubmed/31304264
http://doi.org/10.1080/23311916.2016.1164275
http://doi.org/10.1038/nature09440
http://www.ncbi.nlm.nih.gov/pubmed/20882010
http://doi.org/10.1016/j.agwat.2020.106632
http://doi.org/10.1016/j.agwat.2020.106002
http://doi.org/10.1016/j.agwat.2022.107837
http://doi.org/10.1016/j.agwat.2013.03.014
http://doi.org/10.1002/ird.2074
http://doi.org/10.1007/s00271-017-0561-9
http://doi.org/10.13522/j.cnki.ggps.20180497
http://doi.org/10.1016/j.compag.2008.03.008
http://doi.org/10.3390/w13020171
http://doi.org/10.3390/w14111694
http://doi.org/10.1002/ird.1929


Agronomy 2023, 13, 986 21 of 21

18. Hateffard, F.; Dolati, P.; Heidari, A.; Zolfaghari, A.A. Assessing the performance of decision tree and neural network models in
mapping soil properties. J. Mt. Sci. 2019, 16, 1833–1847. [CrossRef]

19. Lin, T. Deep Learning for IoT. In Proceedings of the 2020 IEEE 39th International Performance Computing and Communica-tions
Conference (IPCCC), Austin, TX, USA, 6–8 November 2020; pp. 1–4.

20. Mienye, I.D.; Sun, Y.; Wang, Z. Prediction performance of improved decision tree-based algorithms: A review. Procedia Manuf.
2019, 35, 698–703. [CrossRef]

21. Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2012; ISBN 978-1-4419-9325-0.

22. Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for Big Data: An Interdisciplinary Review. J. Big Data 2020, 7, 94. [CrossRef]
23. Zhang, Y.; Zhao, Z.; Zheng, J. CatBoost: A New Approach for Estimating Daily Reference Crop Evapotranspiration in Arid and

Semi-Arid Regions of Northern China. J. Hydrol. 2020, 588, 125087. [CrossRef]
24. Yu, J.; Zheng, W.; Xu, L.; Meng, F.; Li, J.; Zhangzhong, L. TPE-CatBoost: An adaptive model for soil moisture spatial estimation in

the main maize-producing areas of China with multiple environment covariates. J. Hydrol. 2022, 613, 128465. [CrossRef]
25. Rad, K.R.; Maleki, A. A Scalable Estimate of the Out-of-Sample Prediction Error via Approximate Leave-One-Out Cross-Validation.

J. R. Stat. Soc. Ser. B Stat. Methodol. 2020, 82, 965–996. [CrossRef]
26. Yu, J.; Zheng, W.; Xu, L.; Zhangzhong, L.; Zhang, G.; Shan, F. A PSO-XGBoost Model for Estimating Daily Reference Evapotran-

spiration in the Solar Greenhouse. Intell. Autom. Soft Comput. 2020, 26, 989–1003. [CrossRef]
27. Himeur, Y.; Alsalemi, A.; Bensaali, F.; Amira, A. Robust event-based non-intrusive appliance recognition using multi-scale

wavelet packet tree and ensemble bagging tree. Appl. Energy 2020, 267, 114877. [CrossRef]
28. Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with Cubist, Random

Forest and kriging. Geoderma 2019, 342, 85–92. [CrossRef]
29. Friedl, M.; Brodley, C. Decision tree classification of land cover from remotely sensed data. Remote. Sens. Environ. 1997, 61,

399–409. [CrossRef]
30. Hastie, T.; Rosset, S.; Zhu, J.; Zou, H. Multi-Class Adaboost. Stat. Its Interface 2009, 2, 349–360. [CrossRef]
31. Ghawi, R.; Pfeffer, J. Efficient Hyperparameter Tuning with Grid Search for Text Categorization using kNN Approach with BM25

Similarity. Open Comput. Sci. 2019, 9, 160–180. [CrossRef]
32. Yao, B.; Liu, Z.; Zhang, J. Preliminary Study on the Effect of Flow Channel Length on the Performance Param-eters of Inlaid Patch

Drip Tip. Water Sav. Irrig. 2003, 4, 38–39.
33. Binbin, J.; Xinkun, W.; Song, H.; Erdong, F.; Hailan, Y.; Jicheng, Y.; Jianjun, Y. Effects of High-Frequency Pressure Pulse Generated

by a Jet Tee on the Clogging of Labyrinth Emitter. Trans. Chin. Soc. Agric. Eng. 2020, 36, 165–171.
34. Yu, L.; Li, N.; Liu, X.; Yang, Q.; Li, Z.; Long, J. Influence of Dentation Angle of Labyrinth Channel of Drip Emitters on Hydraulic

and Anti-Clogging Performance. Irrig. Drain. 2018, 68, 256–267. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11629-019-5409-8
http://doi.org/10.1016/j.promfg.2019.06.011
http://doi.org/10.1186/s40537-020-00369-8
http://doi.org/10.1016/j.jhydrol.2020.125087
http://doi.org/10.1016/j.jhydrol.2022.128465
http://doi.org/10.1111/rssb.12374
http://doi.org/10.32604/iasc.2020.010130
http://doi.org/10.1016/j.apenergy.2020.114877
http://doi.org/10.1016/j.geoderma.2019.02.019
http://doi.org/10.1016/S0034-4257(97)00049-7
http://doi.org/10.4310/SII.2009.v2.n3.a8
http://doi.org/10.1515/comp-2019-0011
http://doi.org/10.1002/ird.2304

	Introduction 
	Materials and Methods 
	Method of Physical Simulation and Analysis of the Emitter 
	Numerical Methods 
	Physical Model Design of the Emitter 
	Model Validation 
	Numerical Design of Experiments 
	Analysis Method 

	CatBoost Model 
	Cross-Validation and Evaluation Criteria 
	Model Training 
	CFD Simulation Results 

	Results 
	Influence of Different Geometric Parameters on the Flow Characteristics of the Flow Field in the Flow Path 
	Correlation between Different Structural Geometric Parameters and Macroscopic Hydrodynamic Properties 
	Accuracy of Flow Simulation with Small Amount of Simulation Data 
	Prediction Accuracy of Flow Index and Flow Coefficient under Extended Dataset Conditions 
	Comparison of Prediction Accuracy of Different Models for Flow Rate, Flow Index and Flow Coefficient 

	Discussion 
	Conclusions 
	References

