
Citation: Wang, Y.; Zhang, L.; Meng,

F.; Lou, Z.; An, X.; Jiang, X.; Zhao, H.;

Zhang, W. Responses of Soil

Microbial Communities in

Soybean–Maize Rotation to Different

Fertilization Treatments. Agronomy

2023, 13, 1590. https://doi.org/

10.3390/agronomy13061590

Academic Editor: Monika

Mierzwa-Hersztek

Received: 19 April 2023

Revised: 2 June 2023

Accepted: 7 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Responses of Soil Microbial Communities in Soybean–Maize
Rotation to Different Fertilization Treatments
Yunlong Wang 1, Liqiang Zhang 1, Fangang Meng 2, Zixi Lou 1, Xiaoya An 1, Xinbo Jiang 1, Hongyan Zhao 1,*
and Wei Zhang 2,*

1 College of Agronomy, Yanbian University, Yanji 133002, China; 2021050850@ybu.edu.cn (Y.W.);
2020010597@ybu.edu.cn (L.Z.); 2021050830@ybu.edu.cn (Z.L.); 2021010832@ybu.edu.cn (X.A.);
2021010595@ybu.edu.cn (X.J.)

2 Soybean Research Institute, Jilin Academy of Agricultural Sciences,
National Engineering Research Center of Soybean, Changchun 130033, China; mengfg2013@163.com

* Correspondence: zhy@ybu.edu.cn (H.Z.); zw.0431@163.com (W.Z.)

Abstract: Rotation and fertilization are important methods used to improve crop yield. In particular,
crop rotation is an effective means of enhancing ecosystem diversity; however, there exist relatively
few studies regarding the effects of long-term maize–soybean rotation and fertilization on soil mi-
crobial communities. To further understand the changes in soil microbial community structure
under long-term maize–soybean rotation and fertilization, we used a 9-year-old experimental site
with maize–soybean rotation as the research object and soybean continuous cropping as a control.
We explored the growth effects of soybean and the changes in soil microbial communities under
the soybean–maize rotation system and fertilization treatments by analyzing the physicochemical
properties of the soil, crop agronomic traits, yield, and changes in soil microbial community structure.
The results show that, in comparison with soybean continuous cropping, the yield of soybeans was
increased by 12.11% and 21.42% under maize–soybean rotation with different fertilization treatments,
respectively. Additionally, there was a significant increase in the agronomic effects of nitrogen
following rotation combined with fertilization. Moreover, the soil pH, SOM, and nutrient status
were also improved. Bryobacter, Gemmatimonas, and Rhodanobacter were the dominant bacteria.
Rotation treatment increased the relative abundance of Bryobacter and Rhodanobacter, and fertil-
ization treatment increased the relative abundance of Gemmatimonas. Rotation also increased the
stability of the bacterial community structure and strengthened the symbiotic relationship between
species. The prediction of nitrogen-related functional genes indicates that rotation increased soil
ammonification and nitrification. Heterocephalacria and Mrakia were the dominant fungal genera
under crop rotation. The abundance of Saccharomyces Mrakia was significantly positively correlated
with ammonium nitrogen levels and crop yield. Crop rotation increased the abundance of Saccha-
romyces Mrakia and reduced the abundance of Fusarium, but fertilization increased the abundance
of Fusarium. Functional gene prediction also indicates that the relative abundance of plant pathogens
was significantly reduced. This study provides a theoretical basis for soil microbial diversity and
ecosystem service function in long-term soybean–maize rotation.

Keywords: soybean–maize rotation; fertilization; soil microbial communities

1. Introduction

The planting pattern of intensively used farmland is one of the most important fac-
tors affecting soil’s physical, chemical, and biological properties. Changes in the planting
pattern will inevitably lead to changes in soil fertility and nutrients [1]. Rotation is a
key method to alleviate the continuous cropping barrier, rationally utilize soil nutrients,
coordinate crop nutrient absorption, and balance soil nutrients [2]. Understanding the
effects of rotation on crops is therefore critical for the development of nutrient management
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strategies to optimize yields, while maintaining the sustainability of cropping patterns.
The rotation of leguminous and gramineous crops is the essence of traditional agriculture,
which can effectively overcome the obstacles of soybean continuous cropping [3] and
drastically reduce the occurrence of disease, insect pests, and weeds in soybean production.
Rotation maintains soil health, increases soil microbial diversity, and improves soil micro-
bial activity. In particular, proper rotation of crops can reduce the rate of chemical fertilizer
use [4,5] and improve the utilization efficiency of nitrogen and other nutrients to promote
yield [6,7]. However, the effects of different fertilization rates on soil properties and crop
yield in soybean rotation, especially the contribution of soil microorganisms, have not been
well studied.

The importance of soil microbial communities in the regulation of farmland structure
and function has received increasing attention from the ecological field [8]. Research has
confirmed that the effects of different fertilization types and rates on the composition
of soil bacterial and fungal communities are different [9,10]. The response of microbial
communities to long-term nutrient fertilization greatly regulates plant production in agroe-
cosystems [11,12]. The relationship between microbial community structure and diversity
under different fertilization methods has been studied. Based on a 35-year long-term
fertilization experiment, it was confirmed that fertilization can directly affect soil nitrogen
fixation activity, but also indirectly by influencing soil physicochemical properties and
nitrogen-fixing bacterial communities [13–15]. Many studies have indicated the effects of
different fertilization methods on crop yield and soil physicochemical properties; however,
there remains a lack of understanding of the mechanism underlying the relationship among
soil microbial communities, crops, and nutrient fertilization. Therefore, studying the regu-
lation of soil microbial community structure, following different fertilization methods in
relation to soil physicochemical properties, crop yield, and agronomic traits, is meaningful
for the reduction in fertilization rates and improvement in soil ecological environments.

Soil microorganisms can regulate soil microecology, promote the circulation of material
and nutrient elements of minerals, and promote the diversity of soil nutrients [16–19]. Soil
microorganisms are closely related to soil physicochemical properties and crop growth,
and participate in the decomposition of soil organic matter, the formation of soil humus,
soil material transformation, and nutrient cycling. At the same time, the composition of soil
microbial communities and changes in soil microbial abundance can be used to evaluate soil
quality, fertility, and crop productivity. Many studies have shown that the cropping system
is the main factor affecting microbial community structure [10,15,20], which is also changed
by crop rotation [21]. One study found that it was only the abundance of Actinobacteria in
soybean–maize rotation that was significantly higher than that in maize rotation [22], and
another study reported that the abundance of Actinomycetes and Firmicutes in the wheat–
maize–soybean rotation system increased significantly in comparison with that in soybean
continuous cropping [6]. Other studies have highlighted that changes in soil community
structure are related to changes in soil total nitrogen, organic matter, available nitrogen,
phosphorus, and soil pH [23]. An evaluation of the parameters of soybean–maize rotation
and soybean monoculture demonstrated that crop rotation is one of the most promising
cultivation methods to improve soil microbial diversity and nutrient cycling, which is
beneficial to the growth of crops [24]. Moreover, it is expected that the soil microbial
abundance in continuous maize cropping will be decreased in comparison with that in
soybean–maize rotation. It has been demonstrated that different soybean planting patterns
can affect soil microbial function and life history strategies by changing soil nutrients [25];
therefore, it is necessary to explore the changes in soil microbial communities under a
soybean rotation system.

Crop rotation is an ancient farming system with a significant amount of evidence
indicating its ability to improve crop yield. However, the mechanisms underlying improve-
ments in crop yield and soil physicochemical properties by long-term crop rotation, and
the manner by which changes in microbial community occur, are less studied. Therefore,
the present study evaluates the 10-year soybean–maize rotation cropping system following
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different fertilization and non-fertilization methods with a view to exploring the ecological
relationship among soil properties, soybean yield, agronomic traits, and microbial com-
munities and functions. We reveal the succession of soil microbial communities under the
long-term rotation of soybean at different growth stages, furthering our understanding of
the ecological functions of soil microorganisms.

2. Materials and Methods
2.1. Experimental Site and Design

This experiment was conducted in April 2019 at the Yanming Lake Seed Company
base (128◦21′33′′ E; 43◦26′24′′ N) located in Guandi Town, Dunhua city, Yanbian Korean
Autonomous Prefecture, Jilin Province. The soil type is medium level albic, and the soil
fertility grade is three. Soybean (Glycine max, ‘Deyu 576’) and maize (Zea mays, ‘Jiyu 47’)
were used in this experiment. The base fertilizer provided for maize is N, P2O5, and K2O
at 75 kg/hm2, 90 kg/hm2, and 75 kg/hm2, respectively. The topdressing for maize was
provided at the V12 stage. The base fertilizer provided for soybean is N, P2O5, and K2O at
60 kg/hm2, 75 kg/hm2, and 75 kg/hm2, respectively.

The field experiment included four treatments: (1) maize–soybean rotation with regu-
lar fertilization (RC1); (2) maize–soybean rotation without fertilization (RC0); (3) soybean
continuous cropping with fertilization (CC1); and (4) soybean continuous cropping without
fertilization (CC0). All treatments were performed in triplicate. The planting area of each
group was 36 m2; 12 rows of crops were planted in each group; the length of each row was
5 m; and the row spacing was 0.6 m.

2.2. Soil Sample Collection

Soil was randomly collected from around 10 soybean plants for each treatment (in
triplicate) and mixed as one sample. The collected soil samples were placed in an ice
box and transported to the laboratory, where plant roots, plant residues, and stones were
removed. After sieving through a 2 mm mesh, one part of the rhizosphere soil samples
was stored at −80 ◦C until total DNA extraction and the other part was dried at room
temperature for the determination of soil physicochemical properties.

2.3. Measurement of Soil Properties

Soil pH and EC (electrical conductivity) were measured in deionized water at a
soil:water ratio of 1:5 using a pH meter (SX-620, Leizi, Shanghai, China) and an EC meter
(DDSJ-308A, Leizi, Shanghai, China), respectively. The soil organic carbon (SOC) was
subjected to additional heat treatment following the addition of Cr2O7 solution to react
with the carbon in the soil sample and titrated with FeSO4 for 24 h. The Fang method was
used to measure AP and TP [26], while AK and TK were measured using flame emission
spectrometry. Air-dried soil samples were extracted with 1 M CaCl2 to determine AN
and NN using a previously described protocol [27], while TN was measured using the
Kjeldahl method.

2.4. Agronomic Indexes and Yield

After crop harvest, the agronomic indexes, such as plant height, stem diameter,
and stem node number, were determined. Meanwhile, 10 representative plants were
selected from each experimental plot to determine the total grain weight per plant and
100-grain weight of soybean, and the theoretical yield was calculated. Agronomic effi-
ciency of nitrogen fertilizer is expressed as the ratio of crop yield to the amount of nitrogen
fertilizer applied.

2.5. Microbiological Analysis

Genomic DNA was extracted from each soil sample using a Fast E.Z.N.A.® Kit for Soil
(Omega Bio-tek, Norcross, GA, USA) according to the manufacturer’s instructions. The
abundance of total bacterial and fungal communities was quantitated by qPCR of 16S rDNA
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and 18S rDNA, respectively. DNA was purified using an AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA). The universal primer gene sequences used
were 338F (5′-ACTCCTACGGGAGGCAGCA-3′), 806R (5′-GGACTACHVGGGTWTCTAAT-
3′), 357F (5′-CCTACGGGAGGCAGCAG-3′), and 518R (5′-ATTACCGCGGCTGCTGG-3′).
Three replicates were carried out for each sample. Sequencing was performed using the
Miseq PE300 platform of Illumina Inc. (San Diego, CA, USA) [27]. Table 1 shows the soil
microbial analytical methods.

Table 1. Soil microbial analytical methods.

Analytical
Software/Database Version Number Use

Uparse 7.0.1090 OTU clustering
RDP Classifier 2.11 Sequence classification annotation

Usearch 7 OTU statistics
Mothur 1.30.2 Analysis of alpha diversity

PICRUSt 1.1.0
KEGG, COG, and Pfam
functional predictions

of the 16S sequence
SILVA 138 rRNA database
UNITE 8 Fungal ITS database

FunGene 9.6 Functional gene database
MaarjAM 81 Fungal 18S rRNA database

HPB -- 16S rRNA database of human pathogens
Funguild 1 Database of fungal functional annotation
MAFFT 7.2 Multiple sequence alignment

2.6. Data Analysis

SPSS 20.0 was used for statistical analysis. The collation of experimental data and
creation of graphs were performed using GraphPad Prism 9. Differences in soil microbial
diversity indexes between treatments were compared using the Meiji platform. The igraph
and vegan toolsets in the R 4.2.1 environment were used to organize and plot data.

3. Results
3.1. Effect of Soybean–Maize Rotation and Fertilization Treatments on Soil Properties

Rotation and fertilization have certain effects on soil physicochemical indicators [28].
As can be seen from Table 2, the EC value of CC1 soil was the highest, followed by RC1,
RC0, and CC0 soil. Moreover, the EC value of CC1 soil was 1.6 times higher than that of
RC1 soil, indicating that rotation effectively reduced the soil salt ion concentration. The
pH of RC0 and CC0 soil was higher than that of RC1 and CC1 soil, and the pH of RC0
soil was almost 0.5 times higher than that of CC1 soil, indicating that rotation improved
soil pH, which is in accordance with previous studies. The organic matter content of RC1
and RC0 soil was higher than that of CC1 and CC0 soil, suggesting that rotation was more
conducive to the accumulation of soil nutrients by soybean. The total phosphorus and
available phosphorus content of RC0 soil was higher than that of RC1 soil. Fertilization
after rotation promoted the absorption of phosphorus by plants. The total nitrogen and
total potassium content of RC0 soil was higher than that in RC1 soil, and the ammonium
nitrogen, nitrate nitrogen, and available potassium content was lower, indicating that
fertilization after rotation inhibited the formation of available nitrogen and potassium in
soil, thus improving crop quality.
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Table 2. Soil chemical properties.

Treatment EC (µS/cm) pH TN (g/kg) TP (g/kg) TK (g/kg) SOC (g/kg) AN (mg/kg) AP (mg/kg) AK (mg/kg) NN (mg/kg)

RC1 27.22 ± 1.44 b 5.6 ± 0.06 c 0.6 ± 0.002 b 1.17 ± 0.25 a 6.66 ± 0.02 c 76.6 ± 2.3 c 4.69 ± 0.54 a 48.4 ± 2.13 c 76.59 ± 2.5 b 14.45 ± 0.2 b
RC0 14.32 ± 0.75 d 5.98 ± 0.02 a 0.87 ± 0.004 c 1.37 ± 0.02 b 7.16 ± 0.06 a 78.16 ± 0.93 c 4.04 ± 0.11 b 27.82 ± 0.48 c 109.32 ± 2.65 b 13.46 ± 0.05 a
CC1 42.98 ± 4.01 a 5.49 ± 0.05 d 0.66 ± 0.02 b 1 ± 0.12 a 7.2 ± 0.02 c 66.99 ± 0.55 c 3.67 ± 0.05 c 57.27 ± 0.34 a 97.01 ± 1.3 b 16.44 ± 0.2 d
CC0 12.4 ± 0.99 a 5.63 ± 0.02 c 0.51 ± 0.1 a 0.98 ± 0.09 b 7.18 ± 0.06 a 67.41 ± 1.48 c 2.33 ± 0.41 a 23.77 ± 0.6 b 176.29 ± 0.19 a 13.11 ± 0.13 c

Note: TN, total nitrogen; TP, total phosphorus; TK, total phosphorus; SOC, soil organic carbon; NN, nitrate nitrogen; AP, available phosphorus; AK, available potassium; and AN,
ammonium nitrogen. All data are expressed as the mean ± standard error, n = 3. Means within each column and main effects followed by different letters are significantly different
(p < 0.05) according to Duncan’s multiple-range test.



Agronomy 2023, 13, 1590 6 of 22

3.2. Effects of Soybean–Maize Rotation and Fertilization Treatments on Soybean Growth

Table 3 shows that there was a significant effect of rotation treatment on plant height
and stem diameter (p < 0.05). The height and stem diameter of plants grown in RC1 soil
were decreased by 3.69% and 4.67%, respectively, in comparison to those grown in CC1 soil.
Additionally, the height and stem diameter of plants grown in RC0 soil were increased by
19.51% and 6.97%, respectively, in comparison to those grown in CC0 soil. Moreover, there
was a very significant effect of fertilization on plant height and stem diameter (p < 0.01).
The height and stem diameter of plants grown in RC1 soil were increased by 1.39% and
7.49%, respectively, in comparison to those grown in RC0 soil. Additionally, the height
and stem diameter of plants grown in CC1 soil were increased by 25.82% and 20.62%,
respectively, in comparison to those grown in CC0 soil. Furthermore, the combination of
rotation and fertilization had a significant effect on plant height (p < 0.01). The height of
plants grown in CC0 soil was significantly lower than that of those grown in the other soils.

Table 3. Growth indexes of soybean under corn–soybean rotation combined with fertilization.

Treatment Height/cm Stem Diame-
ter/mm

Number of
Nodes

Rotation system RC1 91.70 ± 4.16 a 7.75 ± 0.38 a 17.17 ± 0.31 a
RC0 89.72 ± 1.60 a 6.42 ± 0.21 b 16.30 ± 1.00 b

Continuous cropping CC1 95.21 ± 2.75 a 8.13 ± 0.26 a 17.11 ± 0.91 a
CC0 75.67 ± 0.96 b 6.74 ± 0.17 c 16.97 ± 0.56 ab

Two-factor variance analysis(F)
Cropping pattern
Mode of fertilization
Cropping pattern ×Mode of fertilization

8.084 * 6.208 * 2.418
13.970 ** 47.391 ** 2.149
21.311 ** 0.059 2.938

Note: All data are expressed as the mean ± standard error, n = 3. Means within each column and main effects
followed by different letters are significantly different (p < 0.05) according to Duncan’s multiple-range test. * and **
represent significance at p < 0.05 and p < 0.01, respectively. RC1, maize–soybean rotation with regular fertilization;
RC0, maize–soybean rotation without fertilization; CC1, soybean continuous cropping with fertilization; and CC0,
soybean continuous cropping without fertilization.

3.3. Effects of Soybean–Maize Rotation and Fertilization Treatments on Soybean Yield and
Nitrogen Utilization

Table 4 shows the very significant effect of the tillage method on the total grain weight
(p < 0.01). The total weight of grain grown in RC1 soil was increased by 25% in comparison
to that of grain grown in CC1 soil. Additionally, the total weight of grain grown in RC0
soil was increased by 2.56% in comparison to that of grain grown in CC0 soil. Moreover,
there was a significant effect of fertilization method on the total grain weight (p < 0.05).
The total weight of grain grown in RC1 soil was increased by 31.25% in comparison to that
of grain grown in RC0 soil. Additionally, the total weight of grain grown in CC1 soil was
7.69% higher than that of grain grown in CC0 soil. Furthermore, the tillage method had
very significant effects on crop yield and on the agronomic efficiency of nitrogen fertilizer
(p < 0.01). The crop yield of plants grown in RC1 soil was 12.11% higher than that of plants
grown in CC1 soil, and the agronomic efficiency of nitrogen fertilizer was 52.81% lower.
Additionally, the crop yield of plants grown in RC0 soil was 21.42% higher than that of
plants grown in CC0 soil. Likewise, the fertilization method had a very significant effect on
the agronomic efficiency of nitrogen fertilizer (p < 0.01), and the effect on crop yield was
significant (p < 0.05). The crop yield of plants grown in RC1 soil was 9.32% higher than that
of plants grown in RC0 soil, and the nitrogen agronomic efficiency decreased by 14.85%.
The crop yield of plants grown in CC1 soil was 18.41% higher than that of plants grown in
CC0 soil. The combination of rotation and fertilization had a very significant effect on the
agronomic efficiency of nitrogen fertilizer (p < 0.01): CC1 > RC1.
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Table 4. Yield components of soybean under different tillage methods combined with fertilization.

Treatment Yield/(kg/ha)
N-Fertilizer
Agronomic

Efficiency/[kg/(kg·hm2)]

Total Grain
Weight/g

100-Grain
Weight/g

Rotation cropping RC1 2941.18 ± 101.89 a 10.32 ± 0.36 c 3.15 ± 0.07 a 22.00 ± 0.80 a
RC0 2725.5 ± 290.17 ab 12.12 ± 1.29 b 2.86 ± 0.34 ab 22.64 ± 0.51 a

Continuous
cropping

CC1 2623.53 ± 92.45 b 21.87 ± 0.78 a 2.52 ± 0.31 bc 22.20 ± 1.78 a
CC0 2215.69 ± 97.08 c 23.57 2.34 ± 0.20 c 19.34 ± 1.61 b

Two-factor variance analysis (F)
Cropping pattern
Mode of fertilization
Cropping pattern ×Mode of fertilization

49.838 ** 2095.038 ** 135.903 ** 43.805 **
35.397 ** 135.611 ** 14.916 ** 25.396 **
8.477 * 30.929 ** 2.946 18.228 *

Note: All data are expressed as the mean ± standard error, n = 3. Means within each column and main effects
followed by different letters are significantly different (p < 0.05) according to Duncan’s multiple-range test. * and **
represent significance at p < 0.05 and p < 0.01, respectively. RC1, maize–soybean rotation with regular fertilization;
RC0, maize–soybean rotation without fertilization; CC1, soybean continuous cropping with fertilization; CC0,
soybean continuous cropping without fertilization.

3.4. Response of Soil Bacterial Community to Soybean–Maize Rotation and
Fertilization Treatments
3.4.1. Effects on Bacterial Diversity

According to Table 5, the coverage index of each treatment was greater than 0.95,
indicating that the sequencing results can express most of the microbial community changes.
The smaller the Simpson index, the greater the microbial diversity of the sample; the
Simpson index of each treatment was less than 0.01, indicating that the microbial diversity
of the four samples is higher. Moreover, the Shannon index of each treatment shows various
differences. The Shannon index of CC1 was the largest and that of CC0 was the smallest,
indicating that the bacterial diversity of CC1 is higher, while that of CC0 is relatively
low. The chao1 index of CC0 was higher, and that of RC1 was the lowest, indicating that
the bacterial richness following CC0 treatment is relatively high in comparison with that
following other treatments, while the richness of RC1-treated bacteria is relatively low.

Table 5. The indexes of bacterial alpha diversity.

Sample Shannon Chao1 Coverage Simpson

RC1 6.339251 3118.223 0.968376 0.004401
RC0 6.3424 3241.878 0.96706 0.005188
CC1 6.360753 3220.631 0.968456 0.004995
CC0 6.30414 3246.365 0.966342 0.00628

Note: RC1, maize–soybean rotation with regular fertilization; RC0, maize–soybean rotation without fertilization;
CC1, soybean continuous cropping with fertilization; CC0, soybean continuous cropping without fertilization.

The effects of soybean–maize rotation and fertilization treatments on soil bacterial com-
munity and diversity are shown in Figure 1. The dominant bacteria in soil of all treatments
were Candidatus_Solibacter, Bryobacter, Gemmatimonas, Rhodanobacter, Sphingomonas,
and Bradyrhizobium; however, their relative abundance in the soil of each treatment was
very different. Under rotation, the relative abundance of Bryobacter in RC1 and RC0 soil
was higher than that in CC1 (14.55%) and CC0 (15.56%) soil, respectively. Under fertil-
ization, the relative abundance of Bryobacter in RC1 and CC1 soil was lower than that
in RC0 (6.15%) and CC0 (5.33%) soil, respectively. The main function of Bryobacter is to
decompose lignin and cellulose.
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The relative abundance of Gemmatimonas in RC1, RC0, CC1, and CC0 soil was
2.49%, 2.16%, 2.69%, and 2.44%, respectively. Under rotation, the relative abundance of
Gemmatimonas in RC1 and RC0 soil was lower than that in CC1 (7.43%) and CC0 (11.48%)
soil, respectively. Under fertilization, the relative abundance of Gemmatimonas in RC1
and CC1 soil was higher than that in RC0 (15.28%) and CC0 (10.25%) soil, respectively.
Gemmatimonas has been reported to decompose organic matter in soil, but its existence in
a high abundance can reduce plant resistance.

The relative abundance of Bradyrhizobium in RC1, RC0, CC1, and CC0 soil was
1.73%, 2.02%, 3.63%, and 4.52%, respectively. Under rotation, the relative abundance of
Bradyrhizobium in RC1 and RC0 soil was lower than that in CC1 (24.79%) and CC0 (55.31%)
soil, respectively. Under fertilization, the relative abundance of Bradyrhizobium in RC1 and
CC1 soil was lower than that in RC0 (14.36%) and CC0 (19.69%) soil, respectively. Studies
have shown that Bradyrhizobium can promote the formation of nodules and fix nitrogen in
the air for plant nutrition.

Sphingomonas and Rhodanobacter have good degradation ability. The relative abun-
dance of Sphingomonas in RC1, RC0, CC1, and CC0 soil was 2.27%, 3.8%, 3.5%, and 4.06%,
respectively. Under rotation, the relative abundance of Sphingomonas in RC1 and RC0 soil
was lower than that in CC1 (35.14%) and CC0 (6.4%) soil, respectively. Under fertilization,
the relative abundance of Sphingomonas in RC1 and CC1 soil was lower than that in RC0
(40.26%) and CC0 (13.79%) soil, respectively. The relative abundance of Rhodanobacter
in RC1, RC0, CC1, and CC0 soil was 4.17%, 5.46%, 0.62%, and 0.77%, respectively. Under
rotation, the relative abundance of Rhodanobacter in RC1 and RC0 soil was higher than
that in CC1 (572.58%) and CC0 (609.09%) soil, respectively. Under fertilization, the relative
abundance of Rhodanobacter in RC1 and CC1 soil was lower than that in RC0 (23.63%) and
CC0 (19.48%) soil, respectively.

In summary, rotation treatment increased the relative abundance of Bryobacter and
Rhodanobacter, and inhibited the relative abundance of Candidatus_Solibacter, Gemma-
timonas, Bradyrhizobium, and Sphingomonas. Fertilization treatments increased the
relative abundance of Gemmatimonas and inhibited the relative abundance of Candida-
tus_Solibacter, Bryobacter, Bradyrhizobium, Sphingomonas, and Rhodanobacter.

3.4.2. Soil-Bacterial-Community-Associated Environmental Factors

Based on the Bray–Curtis coefficient of variation, run 999 times, PCA analysis was
used to compare the degree of similarity in the diversity of different samples. Figure 2
shows that the tillage method and fertilization treatment had a significant effect on the soil
bacterial community and diversity. Among them, AN, TN, TP, and SOM were positively
correlated with RC1 rhizosphere soil, which is consistent with the previous analysis of
soil physicochemical indicators. Soil pH and AP were positively correlated with RC0 soil,
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indicating that soil rotation without fertilization improved AP accumulation and soil pH,
which is in accordance with previous studies [29].
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Figure 2. Principal component analysis of bacterial community structure.

3.4.3. Correlation between Soil Bacterial Community Structure and Soil
Environmental Factors

The correlation among the soil microbial community at the genus level, crop yield,
and soil physicochemical indexes is shown by the Heatmap in Figure 3. Arthrobacter
was significantly positively correlated with available potassium and negatively correlated
with EC. Bacillus and Gemmatimonas were significantly positively correlated with EC
and negatively correlated with pH. Organic matter and total potassium were significantly
positively correlated with Mycobacterium and negatively correlated with Sporosarcina.
Total phosphorus content was significantly negatively correlated with Blastococcus and
Bradyrhizobium, and significantly positively correlated with Rhodanobacter. Ammonium
nitrogen was significantly positively correlated with Chujaibacter and crop yield was
negatively correlated with Sporosarcina.
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Agronomy 2023, 13, 1590 10 of 22

3.4.4. Molecular Ecological Network Structure

In nature, there are generally complex interactions among microorganisms, and these
interactions are an important characteristic of microbial communities. Therefore, it is im-
portant to study the synergistic mechanism to reveal the structure and function of microbial
communities. To explore the relationship between the bacterial species in the soil and
the processes of rotation and fertilization, soil bacteria were subjected to high-throughput
sequencing. The top 100 most abundant genera were selected, and molecular networks
were constructed for RC1, RC0, CC1, and CC0 soil. As shown in Figure 4, the molecular
networks of RC1, RC0, CC1, and CC0 soil had 3508, 3730, 3306, and 3354 connections,
respectively (Figure 5a). The number of negative correlation lines in the bacterial networks
of RC1, RC0, CC1, and CC0 soil was 1619, 1573, 2262, and 1895, respectively. The proportion
of the corresponding total number of connections was 47.86%, 42.17%, 68.42%, and 56.5%,
respectively, indicating that the proportion of competitive relationships among bacterial
species was very different in the four soils. Sphingomonas had the largest number of
connections, followed by Candidatus_Solibacter, Bradyrhizobium, Gemmatimonas, Rho-
danobacter, and Bryobacter. The treatment centrality of RC1, RC0, CC1, and CC0 soil was
0.39, 0.4, 0.37, and 0.36, respectively (Figure 5b); thus, rotation effectively increased the
stability of the soil bacterial network structure.
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The number of bacterial genus connections in the network was different in each soil.
As shown in Figure 5c, the number of connections for Sphingomonas and Rhodanobac-
ter increased after rotation and decreased after fertilization. Additionally, the number
of connections for Candidatus_Solibacter, Bradyrhizobium, and Gemmatimonas were
higher after rotation than in continuous cropping. Moreover, the number of connections
for Candidatus_Solibacter and Gemmatimonas decreased after fertilization; however, for
Bradyrhizobium they were increased. Furthermore, the number of connections for Bry-
obacter in CC1 and CC0 soil was 19 and 17, respectively, which is significantly less than 48
and 58 in RC1 and RC0 soil, respectively. In summary, crop rotation increased the relative
abundance of Sphingomonas, Rhodanobacter, Bryobacter, and other beneficial bacteria.
The bacterial ecological network structure of the four soils was significantly different. The
competitive relationship among species in the bacterial ecological network was strongest in
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CC1 soil, while the symbiotic relationship among species in the bacterial ecological network
was strongest in RC0 soil.
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3.4.5. Molecular Ecological Network Structure

According to the PICRUSt gene prediction, nitrogen-metabolism-related enzymes, and
gene expression abundance in different soil samples, were selected from the gene function
annotation data obtained by metagenomic sequencing, and the abundance was analyzed
(Table 6). There were differences in the gene expression levels of nitrogen metabolic
enzymes among the different soils. The gene expression levels of enzymes involved in
denitrification were 49.59% higher than those in crop rotation systems. The expression
levels of enzymes involved in nitrification and ammonification were higher than those
in continuous cropping, by 32.69% and 25.44%, respectively. The expression levels of
nitrogenases involved in nitrogen fixation were 45.44% higher than those in continuous
cropping. These data indicate that rotation reduced soil denitrification, as well as NO and
N2O emissions, thereby reducing the loss of nitrogen from the soil. Moreover, rotation
enhanced soil ammonification, nitrification, and nitrogen fixation, in addition to increasing
soil NO3

−-N and NH4
+-N content [30–32].

Table 6. Gene expression levels of nitrogen-related metabolic enzymes in the different soils.

Metabolic
Pathway

Enzyme
Number Enzyme RC1 RC0 CC1 CC0

1.7.2.6 Hydroxylamine
reductase 99.50 63.00 69.00 85.00

Nitrification 1.14.18.3 Methane
monooxygenase 73.00 70.00 59.00 58.00

1.14.99.39 Ammonia
monooxygenase 73.00 70.00 59.00 58.00

1.7.2.5 Nitric oxide
reductase 1241.33 898.65 2195.47 2564.67



Agronomy 2023, 13, 1590 12 of 22

Table 6. Cont.

Metabolic
Pathway

Enzyme
Number Enzyme RC1 RC0 CC1 CC0

Denitrification 1.7.2.1 Nitrite reductase 2421.03 2099.65 3157.49 3542.19

1.7.99.1 Hydroxylamine
reductase 649.03 649.43 769.32 664.72

1.7.2.4 Nitrous oxide
reductase 1270.53 1195.15 1502.66 1662.69

1.7.7.2 Nitrate reductase 706.65 597.82 695.66 790.99
3.5.5.1 Nitrilase 2242.52 2212.55 1845.52 1847.66

Ammoniation 1.4.1.4 Glutamate
dehydrogenase 3701.32 3346.57 3703.46 3292.57

1.4.1.2 Glutamate
dehydrogenase 11,380.13 8804.01 8569.94 9067.96

2.7.2.2 Carbamate kinase 2353.5 1761.50 1325.72 1261.13
3.5.1.49 Formamidase 3708.94 3123.03 2036.37 2043.31
4.2.1.104 Hydrogenase 2813.80 2884.13 1729.50 1805.40
1.18.6.1 Nitrogenase 2846.84 3032.04 1438.33 1660.12

Nitrogen fixation

Note: RC1, maize–soybean rotation with regular fertilization; RC0, maize–soybean rotation without fertilization;
CC1, soybean continuous cropping with fertilization; CC0, soybean continuous cropping without fertilization.

3.5. Effects of Soybean–Maize Rotation and Fertilization on Soil Fungal Community
3.5.1. Fungal Community Diversity in Soil

According to Table 7, the coverage index of each treatment was greater than 0.99,
indicating that the sequencing results could express most of the fungal community changes.
The Simpson index was greater than 0.01 but less than 0.1, indicating that the fungal
diversity of the four samples was higher, but that the diversity of fungi was less than
that of bacteria. The Shannon index of RC0 was the largest and that of CC1 was the
smallest. Moreover, the Chao1 index of RC0 was also higher and that of CC1 was the
lowest, indicating that the diversity and richness of fungi following RC0 treatment were
relatively high in comparison with other treatments, while the diversity and richness of
fungi treated with CC1 were relatively low.

Table 7. The indexes of fungal alpha diversity.

Sample Shannon Chao1 Coverage Simpson

RC1 3.275589 252.5172 0.999179 0.077116
RC0 3.528299 299.3871 0.998921 0.056446
CC1 3.249732 233.3226 0.999155 0.075076
CC0 3.495963 267.75 0.999179 0.057651

Note: RC1, maize–soybean rotation with regular fertilization; RC0, maize–soybean rotation without fertilization;
CC1, soybean continuous cropping with fertilization; CC0, soybean continuous cropping without fertilization.

The effects of soybean–maize rotation and fertilization on soil fungal community and
diversity are shown in Figure 6. The dominant fungal genera in all treatments were Mrakia,
Heterocephalacria, Tolypocladium, Fusarium, and Chaetomium; however, the relative
abundance in each treatment varied greatly. The relative abundance of Mrakia in RC1, RC0,
CC1, and CC0 soil was 10.2%, 6.1%, 5.9%, and 0.99%, respectively. Under rotation, the
relative abundance of Mrakia in RC1 and RC0 soil was higher than that in CC1 (72.88%) and
CC0 (516.16%) soil, respectively. Under fertilization, the relative abundance of Mrakia in
RC1 and CC1 soil was higher than that in RC0 (67.21%) and CC0 (495.96%) soil, respectively.
Previous studies have confirmed that Mrakia can loosen soil, as well as produce a large
number of antibiotics and induce a variety of disease resistances to effectively increase crop
yield and quality [33].
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The relative abundance of Heterocephalacria in RC1, RC0, CC1, and CC0 soil was
8.1%, 12.4%, 3.8%, and 5.8%, respectively. Under rotation, the relative abundance of
Heterocephalacria in RC1 and RC0 soil was higher than that in CC1 (161.29%) and CC0
(113.79%) soil, respectively. Under fertilization, the relative abundance of Heterocephalacria
in RC1 and CC1 soil was lower than that in RC0 (34.68%) and CC0 (34.48%) soil, respectively.
Previous studies have demonstrated that Heterocricephalcria decomposes cellulose, lignin,
and pectin in soil to improve nutrient status.

The relative abundance of Tolypocladium in RC1, RC0, CC1, and CC0 soil was 2.5%,
2.6%, 4.8%, and 6.9%, respectively. Under rotation, the relative abundance of Tolypocladium
in RC1 and RC0 soil was lower than that in CC1 (47.91%) and CC0 (62.32%) soil, respectively.
Under fertilization, the relative abundance of Tolypocladium in RC1 and CC1 soil was
higher than that in RC0 (4%) and CC0 (43.75%) soil, respectively.

The relative abundance of Fusarium in RC1, RC0, CC1, and CC0 soil was 6%, 3.5%,
7.1%, and 11.6%, respectively. Under rotation, the relative abundance of Fusarium in RC1
and RC0 soil was lower than that in CC1 (15.49%) and CC0 (69.83%) soil, respectively.
Under fertilization, the relative abundance of Fusarium in RC1 soil was higher than that in
RC0 (71.43%) soil, and the relative abundance of Fusarium in CC1 soil was lower than that
in CC0 (38.79%) soil. Previous studies have shown that Fusarium can infect a variety of
economically important crops, causing soybean Fusarium root rot [34,35], Soybean soreshin
blight [36], and Sclerotinia sclerotiorum (Lib.) de Bary [37].

The relative abundance of Chaetomium in RC1, RC0, CC1, and CC0 soil was 12.2%,
11.3%, 21.3%, and 14.6%, respectively. Under rotation, the relative abundance of Chaetomium
in RC1 and RC0 soil was lower than that in CC1 (42.72%) and CC0 (22.6%) soil, respectively.
Under fertilization, the relative abundance of Chaetomium in RC1 and CC1 soil was
higher than that in RC0 (7.96%) and CC0 (45.89%) soil, respectively. Previous studies
have indicated that Chaetomium can effectively degrade cellulose and organic matter
as well as protect against plant pathogens. In summary, the relative abundance of yeast
Mrakia and Heterocephalacria was increased under rotation, and the relative abundance of
Heterocephalacria was decreased under fertilization. Furthermore, fertilization after crop
rotation increased the abundance of Fusarium.

3.5.2. Fungal Species Composition

Figure 7 demonstrates that rotation and fertilization had significant effects on soil
fungal community and diversity. There was a strong positive correlation among AN,
TN, and RC1 rhizosphere soil, indicating that the increase in soil nitrogen content after
rotation was a key factor affecting the diversity of the soil fungal community. There was
a positive correlation among pH, TP, AP, SOM, and RC0 soil, indicating that the absence
of fertilization after rotation was more conducive to an improvement in soil pH, organic



Agronomy 2023, 13, 1590 14 of 22

matter, and phosphorus accumulation. EC and NN were positively correlated with CC1 soil,
and TK and AK were positively correlated with CC0 soil, indicating that the concentration
of salt ions in soil increased after continuous cropping of soybean; and the absence of
fertilization treatment was more conducive to the accumulation of potassium in soil.
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3.5.3. Correlation between Soil Fungal Community Diversity and Soil
Environmental Factors

The relationship between fungal community diversity and environmental factors
indicates that Mrakia was significantly positively correlated with ammonium nitrogen
content, extremely significantly positively correlated with crop yield, and significantly neg-
atively correlated with organic matter and total potassium content (Figure 8). Additionally,
Heterocephalacria was significantly positively correlated with pH, and Chaetomium was
significantly negatively correlated with pH. Moreover, Chaetomium and Tolypocladium,
which are harmful to soybean growth, were significantly negatively correlated with crop
yield and ammonium nitrogen content.
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3.5.4. Molecular Ecological Network Structure of Fungal Community Diversity

To explore the relationship between the fungal species in the soil and the processes of
rotation and fertilization, soil fungi were subjected to high-throughput sequencing. The
top 100 most abundant genera were selected, and molecular networks were constructed
for RC1, RC0, CC1, and CC0 soil (Figure 9). Overall, RC1, RC0, CC1, and CC0 soil
had 3528, 3188, 3794, and 3289 connections, respectively (Figure 10a). The number of
negative correlation lines in the fungal network of RC1, RC0, CC1, and CC0 soil was 1928,
2155, 1757, and 1460, respectively. The proportion of the corresponding total number
of connections was 54.65%, 67.59%, 46.3%, and 44.39%, respectively, indicating that the
proportion of competitive relationships among fungal species in the four soils was very
different. Chaetomium had the most connections, followed by Fusarium, Heterocephalacria,
Mrakia, and Tolypocladium. The treatment centrality of RC1, RC0, CC1, and CC0 soil was
0.36, 0.33, 0.39, and 0.33, respectively (Figure 10b); thus, rotation reduced the stability of
the soil fungal network structure.
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The number of fungal species connections in the four networks was different in each
soil. As shown in Figure 10c, Chaetomium and Fusarium showed a decrease in the number
of connections after rotation and an increase in the number of connections after fertiliza-
tion. The number of connections for Tolypocladium after rotation was lower than that in
continuous cropping, and the number of connections was decreased after fertilization. The
number of connections for Heterocephalacria and Mrakia was increased after rotation and
fertilization. It is worth noting that the number of connections for Heterocephalacria in
CC1 and CC0 soil was 27 and 18, respectively, which was significantly smaller than that in
RC1 and RC0 soil (54 and 69, respectively). In summary, there were differences among the
fungal ecological network structures of the four soils. The competition among species in
the fungal ecological network was strongest in RC0 soil, while the symbiotic relationship
among species in the fungal ecological network was strongest in CC1 soil. The addition of
chemical fertilizer increased the relative abundance of potential plant pathogens such as
Fusarium. Rotation treatment not only increased the abundance of beneficial bacteria such
as Mrakia, but also increased soil nutrients to protect against plant pathogens.
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3.5.5. FUNGuild Prediction of Soil Fungal Genes

According to FUNGuild gene prediction, the expression levels of saprophytic and
pathogenic fungal genes in soil samples under rotation and fertilization treatments were
evaluated (Figure 11). The relative abundance of saprophytic fungal genes in RC1, RC0,
CC1, and CC0 soil was 1.13%, 1.83%, 0.56%, and 1.21%, respectively. Under rotation, the
relative abundance of saprophytic fungal genes in RC1 and RC0 soil was higher than that
in CC1 (101.79%) and CC0 (51.24%) soil, respectively. Under fertilization, the relative
abundance of saprophytic fungal genes in RC1 and CC1 soil was lower than that in
RC0 (38.25%) and CC0 (53.72%) soil, respectively. These data indicate that Dung/Wood
saprotrophs increased the content of organic matter in soil, which was the main reason for
the increase in soil nutrients after rotation. The relative abundance of pathogenic fungal
genes in RC1, RC0, CC1, and CC0 soil was 0.79%, 1.63%, 0.86%, and 0.95%, respectively.
Under rotation, the relative abundance of pathogenic fungal genes in RC1 soil was lower
than that in CC1 (8.14%) soil, and the relative abundance of pathogenic fungal genes in
RC0 soil was higher than that in CC0 (71.59%) soil. The relative abundance of pathogenic
fungal genes in RC1 and CC1 soil was lower than that in RC0 (51.53%) and CC0 (9.47%)
soil, respectively. Rotation increased the relative abundance of Dung/Wood saprotrophs,
and fertilization treatment after rotation further increased their relative abundance.
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4. Discussion

Soybean is an important source of food and oil in China; therefore, it is imperative
to achieve a high crop yield and protect soil fertility. The ecological and environmental
problems caused by excessive fertilization have attracted increasing attention [38,39]. In the
present study, we explored the ecological associations among soil physicochemical proper-
ties, soybean yield and agronomic traits, and soil microbial community and function using
different non-fertilization methods under the 10-year soybean–maize rotation cropping
system. We found that soybean agronomic traits were closely related to crop yield, which
is consistent with previous reports demonstrating that the ratio of main stem length to
stem diameter is an important indirect indicator of soybean yield [40] and that there is a
significant positive correlation between soybean stem diameter and yield per plant [41].

Here, there was a significant effect of rotation on plant height and stem diameter
(p < 0.05). The height and stem diameter of plants grown in RC0 soil were increased by
19.51% and 6.97%, respectively, in comparison with those of plants grown in CC0 soil.
Additionally, there was a very significant effect of fertilization on plant height and stem
diameter (p < 0.01). The height and stem diameter of plants grown in RC1 soil were
increased by 1.39% and 7.49%, respectively, in comparison with those of plants grown in
RC0 soil. The height and stem diameter of plants grown in CC1 soil were increased by
25.82% and 20.62%, respectively, in comparison with those of plants grown in CC0 soil.
Moreover, the tillage method had an extremely significant effect on crop yield (p < 0.01).
The crop yield of plants grown in RC1 soil was 12.11% higher than that of plants grown
in CC1 soil, and the crop yield of plants grown in RC0 soil was 21.42% higher than that
of plants grown in CC0 soil. Furthermore, fertilization had a very significant effect on the
agronomic efficiency of nitrogen fertilizer (p < 0.01) and a significant effect on crop yield
(p < 0.05). The crop yield of plants grown in RC1 soil was 9.32% higher than that of plants
grown in RC0 soil, and the crop yield of plants grown in CC1 was increased by 18.41% in
comparison with that of plants grown in CC0 soil, indicating that rotation and fertilization
increased crop yield. The nitrogen agronomic efficiency of soybean continuous cropping
was higher under fertilization than under rotation. Due to biological nitrogen fixation by
soybean itself, the transformation and maintenance of soil’s available nitrogen content are
of great significance for successful nitrogen absorption [10]. Under rotation, although the
crop yield in the absence of fertilization is lower than that with normal fertilization, the
agronomic efficiency of nitrogen fertilizer in the absence of fertilization is higher than that
with normal fertilization. Due to the high nitrogen application rate of the current crop,
succeeding crops grown in the absence of additional nitrogen fertilizer also display efficient
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nitrogen absorption and an improved utilization rate of residual nitrogen fertilizer [42].
Soil nitrate nitrogen is the available nitrogen that can be directly absorbed and utilized
by plants and is an important indicator of soil nitrogen level. The amount of soil nitrate
nitrogen residue depends mainly on the absorption of soil nitrate nitrogen by crop roots,
and changes in soil nitrate nitrogen content significantly affect the nitrogen content of
plants [43]. Our study demonstrates that rotation and fertilization, and the combination
of tillage and fertilization, had very significant effects on nitrate nitrogen content during
the crop maturation period (p < 0.01). Principal component analysis (PCA) was used to
comprehensively analyze the differences in bacterial and fungal community composition
among the soil samples under different treatments. The results indicate that nitrate nitrogen
content affected soil microbial community structure. In terms of leguminous plants and
productivity, it is necessary to further understand how nitrate nitrogen affects crop yield to
improve cultivation measures, yield, and soil fertility.

Microbial communities have an important impact on plant health and growth [44].
Leguminous plants play a key role in the integrated management of soil fertility, and the
symbiotic relationship between leguminous crops and rhizobia can fix N2, which provides
organic resources. Moreover, other limitations such as competition between crops and
weeds can be offset by enhancing fertilizer uptake and inhibiting weeds [45]. Rhizobia
can promote the formation of nodules and provide nitrogen sources for crops, while crops
can provide carbon sources for rhizobia. The enrichment of rhizobia can also inhibit some
pathogens [15]. The results show that rhizobia caused an increase in all 13 functional bacte-
ria within the nitrogen cycle, which may be related to the number of beneficial functional
bacteria in prokaryotic microbial communities in the rhizosphere, and rhizobia favor the
strengthening of nitrogen cycle function [46]. Studies have shown that the reasonable
application of nitrogen fertilizer can promote nodule formation and improve the nitrogen
fixation capacity of soybean; however, when the exogenous nitrogen level is high, nitrogen
will exert a negative effect. An excessive application of nitrogen fertilizer inhibits nodule
formation, resulting in a significant reduction in the number of nodules and a decrease
in soybean yield [47]. An appropriate reduction in nitrogen application during soybean
cultivation can significantly enhance the nitrogen fixation capacity of nodules, increase
dry matter accumulation, and effectively increase the number of pods per plant, as well
as the number of grains per plant, thereby increasing crop yield [48]. A prediction of bac-
terial functional genes indicates that enzymes related to ammonification and nitrification
were higher in soil during continuous cropping than under rotation. Under the action of
soil nitrogen-cycling microorganisms, nitrogen-fixing microorganisms convert N2 from
the biosphere into ammonia nitrogen by nitrogen fixation. Furthermore, nitrogen-fixing
microorganisms convert ammonia nitrogen into organic or nitrate nitrogen by ammonifica-
tion and nitrification. Finally, organic and nitrate nitrogen are converted into N2 or NO
by denitrification [49,50]. The present study also confirmed a high agronomic efficiency
of continuous cropping with nitrogen fertilizer and rotation. The relative abundance of
Bradyrhizobium in RC0 (2.02) soil was higher than that in RC1 (1.73) soil under rotation.
However, the crop yield of plants grown in RC1 soil was higher than that of plants grown
in RC0 soil, but this did not lead to a reduction in crop yield. Although legume rotation can
improve the soil environment and increase the nitrogen fixation capacity, fertilization is
still the main reason for the large increase in crop yield. Bradyrhizobium was significantly
negatively correlated with total grain weight and yield. Due to nitrogen fixation by soy-
bean, continuous cropping resulted in an increase in Bradyrhizobium, the high abundance
of which reduced crop yield. According to the predicted bacterial functional genes, the
abundance of nitrogenases in continuous cropping was 45.44% higher than that in rotation.
Additionally, the abundance of nitrogenases was also higher in RC0 soil than in RC1 soil,
which is consistent with the abundance of Bradyrhizobium. This finding indicates that
rotation changed the abundance of microorganisms related to nitrogen transformation in
soil. Fusarium is a large and complex fungal genus that includes many plant pathogens,
such as Fusarium oxysporum and Fusarium equiseti. These pathogens can lead to root
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rot disease in soybean. The increase in Fusarium abundance suggests that soybean con-
tinuous cropping may increase the occurrence of disease [10]. Studies have shown that
soybean–maize rotation increases the yield by 74% in comparison with monoculture, and
that soybean yield is significantly negatively correlated with disease incidence (−0.90) [24].
In our experiment, the relative abundance of Fusarium under rotation was lower than that
in continuous cropping. The relative abundance of Fusarium in RC1 soil was 47.32% lower
than that in CC1 soil, and the relative abundance of Fusarium in RC0 soil was 69.55% lower
than that in CC0 soil. Fusarium was significantly negatively correlated with 100-grain
weight. These results are similar to those previously reported [46]. It is worth noting that
the relative abundance of Fusarium in RC1 soil was higher than that in RC0 soil under
maize–soybean rotation, indicating that the application of fertilizer resulted in an increase
in Fusarium abundance. Fertilization increased the diversity of fungal pathogens and the
risk of disease occurrence during soybean production.

Analysis of the bacterial and fungal ecological networks demonstrated that rotation
significantly affected the community and diversity of bacteria and fungi, which was very
different among the soils. Changes in soil physicochemical properties play a leading role
in the network structure. It has been reported that the bacterial community is strongly
affected by soil pH and that the optimum growth pH range of most bacteria is narrow [51].
The significant changes in soil pH under different fertilization treatments may lead to the
instability of the bacterial network structure. At the same time, the fungal network can
transmit soil environmental changes to the entire network over a very short period of
time, resulting in an unstable network structure [52]. The number of network connections
for Sphingomonas, Rhodanobacter, and Bryobacter in RC1 soil was significantly higher
than that in CC1 soil, which is in accordance with previous data [53]. The number of
network connections for Chaetomium was found to be the highest among the fungi, which
is consistent with its identity as the key species of the fungal network in paddy soils in
eastern Asia [54].

5. Conclusions

Our data explain the theoretical causes, the effects of changes in metabolic function
from a microscopic perspective, and reveal the number and structure of soil microbial
communities. These results help us to more accurately describe the mechanism under-
lying functional soil changes, which is of great significance in improving the stability of
agricultural ecosystems and rational scientific fertilization. Both rotation and fertilization
affected crop yield and soil microbial community. Rotation increased soybean yield in the
presence or absence of fertilization, and a combination of rotation and fertilization had a
significant effect on nitrogen agronomic efficiency. Rotation can increase the community
diversity index of soil bacteria and fungi, as well as increase the relative abundance of
certain beneficial bacteria such as Sphingomonas, Rhodanobacter, and Bryobacter, while
reducing the relative abundance of plant pathogenic fungi, such as Fusarium.
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