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Abstract: Studying carbon dioxide fluxes in wheat fields is becoming increasingly important. The
dry semi-humid area in China is an important wheat production area, but the variations in carbon
dioxide fluxes in wheat fields and the mechanisms associated with the carbon dioxide flux response
to meteorological factors and water-nitrogen management have rarely been studied systematically
in this area. Thus, we conducted a monitoring experiment in order to clarify the responses of
CO2-C fluxes to meteorological factors and water-nitrogen management in wheat fields in this dry
semi-humid area, and modeled the relationships between CO2-C fluxes and meteorological factors
under different water-nitrogen managements. Four water-nitrogen treatments were tested in wheat
fields: rain-fed (no water and nitrogen added), irrigation (150 mm water added), rain-fed plus
nitrogen application (225 kg ha−1 nitrogen added), and irrigation plus nitrogen application (150 mm
water and 225 kg ha−1 nitrogen added). The CO2-C fluxes and meteorological indicators were
monitored and analyzed, before fitting the relationships between them. The direct and total effects of
precipitation, air temperature, and water vapor pressure on CO2-C fluxes in wheat fields were all
positive, and their total effect coefficients were more than 0.7 and significant. Irrigation and nitrogen
application increased the CO2-C fluxes in wheat fields by 6.82–14.52% and 51.59–55.94%, respectively.
The fitting results showed that partial least squares regression models of the relationships between
meteorological factors and CO2-C fluxes in wheat fields under different treatments were all effective,
with R2Y (cum) and Q2 (cum) values around 0.7. Overall, these results suggest that precipitation, air
temperature, water vapor pressure, and water and nitrogen addition have positive effects on CO2-C
fluxes from wheat fields in dry semi-humid areas. The partial least squares regression method is
also suitable for modeling the relationships between meteorological factors and CO2-C fluxes. These
results may provide a scientific basis for predicting and regulating CO2-C fluxes in wheat fields in
dry semi-humid areas, and provide a methodological reference for ecosystem carbon dioxide flux
simulation studies.

Keywords: carbon dioxide flux; meteorological variable; partial least squares regression; path
analysis; prediction model; water and nitrogen management

1. Introduction

Carbon is increasingly flowing into the atmospheric carbon pool, where atmospheric
CO2 concentration in 2019 increased to 410 ppm [1,2]. This increase in atmospheric carbon
will lead to increased global warming and frequent meteorological disasters, thereby posing
severe challenges to global development [1,3]. Agriculture is considered one of the most
important sources of carbon dioxide emissions [4,5]. The microbial decomposition of soil
organic matter, the respiratory metabolism of crop roots, and the mineralization of soil
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organic matter are important processes in the conversion of agricultural soil carbon to
atmospheric carbon [2,3,6]. Agriculture is also threatened by severe reductions in farmland
carbon pools and the frequent occurrence of extreme climate events caused by carbon
dioxide emissions [3,6]. Monitoring and studying agricultural carbon dioxide emissions
can provide a theoretical basis for coping with global climate change and ensuring the
healthy development of agriculture, and it has become one of the most important issues in
the world.

Exploring the factors that influence carbon dioxide emissions and understanding
their relationships has always been a major focus of research into agricultural carbon
dioxide emissions [2,7–11]. Agricultural production relies on natural water, light, and
heat resources, and thus agricultural carbon dioxide emissions are closely related to me-
teorological factors [9,10,12]. Air temperature and precipitation can regulate the carbon
cycle process by affecting plant growth and soil properties, and they are considered to
be important factors that drive carbon dioxide emissions [3,9,12,13]. The water vapor
status in the air (relative humidity, water vapor pressure, vapor pressure deficit, etc.) and
light status (sunshine duration, solar radiation, photosynthetically active radiation, etc.)
can affect plant stomatal conductance, the photosynthetic level, and soil hydrothermal
dynamics, which may have complex effects on carbon dioxide emissions [2,7,9,10,12–14].
Many previous studies have explored the total effects of various meteorological factors on
agricultural carbon dioxide emissions, but their direct and indirect effects have rarely been
considered and they require further analysis. Constructing a model based on the effects
of meteorological factors on carbon dioxide emissions is helpful for applying abundant
meteorological data to predicting and evaluating agricultural carbon dioxide emissions [14].
However, few modeling studies have addressed this problem, and thus further research is
required. In addition, the samples that can be used for modeling often vary under different
research conditions, so modeling methods with strong sample inclusiveness are more ap-
propriate. The partial least squares regression (PLS) method is particularly advantageous,
but it is rarely used in agricultural carbon dioxide flux modeling research and should
be introduced.

Agricultural production also relies on anthropogenic inputs of water and nitrogen
resources [15–18], so agricultural carbon dioxide emissions are also regulated by water and
nitrogen management techniques [10,19,20]. Irrigation has diverse regulatory effects on car-
bon dioxide emissions by affecting soil aeration, microbial activity, and plant growth [8,21].
Nitrogen application can regulate carbon dioxide emissions by affecting plant root growth
and the soil microbial community composition, and these regulatory effects vary under
different conditions [10,22–24]. Therefore, the effects of water and nitrogen management on
agricultural carbon dioxide emissions need to be further studied. In addition, both water
and nitrogen management and meteorological factors have effects on agricultural carbon
dioxide emissions, but few studies have considered them simultaneously, so there is a need
to study them together.

Wheat is the grain crop with the largest planting area throughout the world, with
about 220 million hectares [25], and thus carbon dioxide emissions from wheat fields are
an important part of agricultural carbon dioxide emissions. Due to its high environmen-
tal adaptability and relatively low water requirements, wheat is one of the main cereal
crops grown in the dry semi-humid area of China (more than 15.3 million hectares of
arable land in this area) [26–29]. However, relatively few studies have investigated car-
bon dioxide emissions from wheat fields in this dry semi-humid area. The inter-monthly
distribution of precipitation in this area is uneven due to the influence of the monsoon
climate, and agricultural production is often threatened by the occurrence of drought [30].
Decreased precipitation due to climate warming will lead to more severe water shortages in
agriculture [30]. In addition, the farmland in this area is threatened by soil degradation [31],
and carbon dioxide emission processes can affect soil carbon pools and the quality of
farmland. Therefore, it is very important to study the carbon dioxide emissions from wheat
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fields in this area in the context of the increasing atmospheric carbon concentration and
global warming.

Thus, we conducted experiments with different water and nitrogen treatments in
wheat fields in the dry semi-humid study area and monitored CO2-C fluxes and meteoro-
logical indicators. The aims of this study were: (1) to determine the characteristic changes
in meteorological factors and CO2-C fluxes; (2) to explore the effects of water and nitrogen
management techniques and meteorological factors on CO2-C fluxes; and (3) to model
the relationships between CO2-C fluxes and meteorological factors. We aimed to provide
a scientific basis for reducing emissions from wheat fields and improving the quality of
farmland in the dry semi-humid study area, and to provide a methodological and technical
reference for predicting agricultural carbon dioxide emissions in further studies.

2. Materials and Methods
2.1. Experimental Site Description

The experiment was conducted at the Institute of Water-Saving Agriculture in Arid Ar-
eas of China (longitude 108◦04′ E, latitude 34◦17′ N; altitude 506 m), located on Guanzhong
Plain. In the dry semi-humid study area, the annual average temperature, total solar
radiation, and precipitation were 13.0 ◦C, 4800 MJ m−2, and 600 mm, respectively. The
experimental field was flat. The soil in the field was Lou soil, which is classified as Eum-
Orthric Anthrosol. Before starting the experiment, the basic properties of the soil (0–40 cm)
were as follows: bulk density = 1.25 g cm−3, soil organic matter = 12.55 g kg−1, total
nitrogen = 0.72 g kg−1, total potassium = 11.48 g kg−1, and total phosphorus = 0.69 g kg−1.

2.2. Experimental Design and Implementation

The experiment was conducted for three winter wheat growing seasons (October
2018 to June 2021) using a randomized block design with three blocks and the following
four treatments: rain-fed (R), irrigation (I), rain-fed plus nitrogen application (RN), and
irrigation plus nitrogen application (IN). The rain-fed treatments were dependent on
natural precipitation. The treatments requiring irrigation were irrigated with 75 mm water
at the early overwintering stage and jointing stage for wheat (total 150 mm water). In the
treatments requiring nitrogen application, 225 kg ha−1 of pure nitrogen (using urea) was
applied before sowing wheat. The application amounts of phosphorus and potassium
fertilizer in each treatment were consistent, with basal application rates of 75 kg ha−1 P2O5
(using calcium superphosphate) and 150 kg ha−1 K2O (using potassium chloride) before
sowing wheat. Xinong 979 (the main local wheat variety) was used as the test material,
and artificial drilling and harvesting were conducted around October 20 each year and
early June in the following year, respectively. The wheat row spacing was 20 cm and basic
seedlings of 2.25 million plants ha−1 were maintained in all plots. The plot area was 7.2 m2

(3.0 m × 2.4 m). In order to prevent interference by water and fertilizer between plots,
the plots were separated by 1 m wide walkways. Other management measures in the
experimental field were consistent with local production practices. After wheat harvesting,
the field was fallow in summer and uniformly tilled before autumn sowing.

2.3. Indicator Monitoring Methods
2.3.1. CO2-C Flux Measurement

CO2-C flux sampling was conducted in wheat fields by using the static chamber
method. The static chamber comprised a top box and base made of polyvinyl chlo-
ride and stainless steel, respectively, with dimensions of 40 cm × 30 cm × 40 cm and
40 cm × 30 cm × 15 cm. The top box was wrapped with heat-insulating reflective material
and equipped with a thermometer and gas sampling pipe. The lower part of the base was
a fixed frame (in the soil) and the upper part was a groove. The long side of the base was
perpendicular to the planting row and the area covered by the base included the planting
row and inter-row areas. Monitoring began after fertilization and sowing, and gas samples
were collected every 5 days for the first half a month and then every half a month until



Agronomy 2023, 13, 1925 4 of 17

the wheat was harvested. Gas samples were always collected at 8:00–11:00 a.m. The top
box was connected to the base groove and the seam was sealed with water, before extract-
ing well-mixed gas samples using syringes at intervals of 0, 10, 20, and 30 min, and the
temperature was also recorded. The CO2 concentrations were determined in the samples
by using a GC-2010 Plus gas chromatograph (Shimadzu, Kyoto, Japan). The CO2-C fluxes
were calculated according to Formula (1) [32]:

F = k × 273.15
T
×H × ∆c

∆t
× 24 (1)

where F is the CO2-C flux (mg m−2 d−1), k is taken as 0.536 (kg C m−3), T is the mean
temperature inside the static chamber (K), H is the height of the sampling box (m), ∆c/∆t
is the rate of change in the CO2 concentration (ppm h−1), and 24 is the conversion factor
(h d−1). ∆c/∆t was estimated with linear regression analysis, and flux value was accepted
when r > 0.95. Cumulative CO2-C emissions were estimated by integrating the monthly
average CO2-C fluxes during the wheat growing season [33].

2.3.2. Meteorological Factor Monitoring

The detailed precipitation, air temperature, water vapor pressure, relative humid-
ity, and sunshine duration data required for the study were obtained from the Yangling
National General Weather Station. This station is located at the Institute of Water-Saving
Agriculture in Arid Areas of China, about 200 m away from the experimental field. The
station is used for the long-term continuous observation of meteorological data and service
scientific experiments.

2.4. Statistical Analysis

Data from the 2018–2019 and 2020–2021 wheat growing seasons (complete moni-
toring) were used to analyze the relationships between CO2-C fluxes and meteorolog-
ical factors, and to construct models. Data from the 2019–2020 wheat growing season
(with some interruptions in CO2-C flux monitoring due to the pandemic) were used for
model validation.

The direct and indirect relationships between the monthly scale y (average CO2-C flux)
and x1 (average air temperature (AT)), x2 (average relative humidity (RH)), x3 (average
water vapor pressure (WVP)), x4 (average daily precipitation (P)), and x5 (average daily
sunshine duration (SD)) were determined with path analysis. The relationships between y
and xi are shown in Table 1. In Table 1, bi is the direct effect coefficient of xi on y, rij*bj is
the indirect effect coefficient of xi on y through xj, riy is the total effect coefficient of xi on
y obtained by summing the direct and all indirect effect coefficients of xi on y, e refers to
other factors that affect y, and R(i) is the decision coefficient representing the comprehensive
determining effect of xi on y, which can be calculated using Formula (2) [34].

R(i) = 2bi × riy − b2
i (2)

Table 1. Path coefficients for effects of meteorological factors on CO2-C fluxes in wheat fields under
different water and nitrogen treatments.

Factors bi
rij*bj riy R(i) R2 and e

AT RH WVP P SD

R

AT 0.1412 - −0.0122 0.4983 0.2798 −0.1206 0.7866 0.2022

0.7717 and 0.4778
RH −0.2373 0.0073 - 0.1133 0.1639 0.0865 0.1337 −0.1198

WVP 0.5136 0.1370 −0.0523 - 0.3100 −0.0983 0.8100 0.5682
P 0.4108 0.0962 −0.0947 0.3876 - −0.0179 0.7820 0.4737

SD −0.2248 0.0757 0.0913 0.2246 0.0327 - 0.1994 −0.1402
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Table 1. Cont.

Factors bi
rij*bj riy R(i) R2 and e

AT RH WVP P SD

I

AT 0.1410 - −0.0106 0.5191 0.2435 −0.1277 0.7653 0.1959

0.7275 and 0.5220
RH −0.2063 0.0073 - 0.1180 0.1427 0.0916 0.1532 −0.1058

WVP 0.5350 0.1368 −0.0455 - 0.2698 −0.1041 0.7920 0.5612
P 0.3575 0.0960 −0.0823 0.4038 - −0.0190 0.7560 0.4127

SD −0.2381 0.0756 0.0794 0.2339 0.0285 - 0.1792 −0.1420

RN

AT 0.0668 - −0.0124 0.6892 0.1914 −0.1153 0.8197 0.1050

0.7815 and 0.4675
RH −0.2414 0.0034 - 0.1567 0.1121 0.0827 0.1135 −0.1131

WVP 0.7104 0.0648 −0.0532 - 0.2121 −0.0940 0.8400 0.6888
P 0.2810 0.0455 −0.0963 0.5361 - −0.0171 0.7491 0.3420

SD −0.2150 0.0358 0.0929 0.3106 0.0224 - 0.2467 −0.1523

IN

AT 0.0415 - −0.0123 0.7340 0.1578 −0.1176 0.8034 0.0650

0.7433 and 0.5067
RH −0.2386 0.0021 - 0.1669 0.0924 0.0844 0.1072 −0.1081

WVP 0.7565 0.0403 −0.0526 - 0.1748 −0.0959 0.8231 0.6731
P 0.2316 0.0283 −0.0952 0.5710 - −0.0175 0.7182 0.2790

SD −0.2194 0.0223 0.0918 0.3308 0.0184 - 0.2439 −0.1552

Note: bi, rij*bj, riy, R(i), and e denote the direct effect coefficient, indirect effect coefficient, total effect coefficient,
decision coefficient, and residual path coefficient, respectively. R represents rain-fed treatment (no water and
nitrogen added); I represents irrigation treatment (150 mm water added); RN represents rain-fed plus nitrogen
application treatment (225 kg ha−1 nitrogen added); and IN represents irrigation plus nitrogen application
treatment (150 mm water and 225 kg ha−1 nitrogen added). WVP, RH, P, SD, and AT represent the monthly scale
average water vapor pressure, average relative humidity, average daily precipitation, average daily sunshine
duration, and average air temperature, respectively.

The relationships between CO2-C fluxes and meteorological factors were modeled
based on PLS. PLS maximizes the explained covariance between variables by extracting
components that adequately reflect the original variable information from the set of vari-
ables, and the extracted components are then used to construct a predictive model for
the response variable [35]. PLS is applicable to cases with obvious collinearity between
independent variables and small sample sizes [36]. Variable importance in projection (VIP)
is a variable screening metric based on PLS, which is used to measure the explanatory
ability of the independent variable with respect to the dependent variable. An independent
variable with a VIP value greater than 1.0 is considered important and an independent
variable with a VIP value less than 0.5 is considered less influential [35]. The VIP value can
be calculated using Formula (3) [36]:

VIPi =
√

p ×∑m
h=1 Rd (Y; th)× w2

hi/ ∑m
h=1 Rd (Y; th) (3)

where VIPi is the VIP value of the independent variable xi, p is the number of independent
variables, m is the number of extracted components, th is the h-th extracted component, Rd
(Y; th) is the explanatory ability of th with respect to the dependent variable Y, and whi is
the weight of xi on th, which reflects the marginal contribution of xi to th.

The PLS model was selected based on R2Y (cum) and Q2 (cum). R2Y (cum) indicates the
degree to which the model fits the dependent variable Y, and Q2 (cum) is a measure of the
predictive ability of the model as assessed by cross-validation, and thus larger values of R2Y
(cum) and Q2 (cum) indicate better model performance [37]. By analyzing the observed and
corresponding predicted values of the CO2-C fluxes during the 2019–2020 wheat growing
season, the model was further validated using the correlation coefficient (r), root mean
square error (RMSE), and symmetric mean absolute percentage error (SMAPE). The values
of r, RMSE, and SMAPE can be calculated using Formulas (4–6), respectively [38,39]:

r = ∑n
i=1(yi − Y)× (fi − F)/

√
∑n

i=1(yi − Y)2/
√

∑n
i=1(fi − F)2 (4)
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RMSE =

√
1
n
×∑n

i=1(fi − yi)
2 (5)

SMAPE =
100%

n
×∑n

i=1
|fi − yi|

(|fi|+ |yi|)/2
(6)

where n is the sample size, yi is the i-th observed value, fi is the i-th predicted value, Y
is the average of the observed values, and F is the average of the predicted values. The
performance of a model is better when r is closer to 1, SMAPE is farther away from 200%,
and RMSE is smaller.

Path analysis was performed using SAS 8.1 (SAS, Cary, NC, USA). Collinearity be-
tween variables was analyzed using IBM SPSS Statistics 20 (IBM, Armonk, NY, USA). PLS
analysis and model construction were performed with SIMCA 14.1 (UMETRICS, Umea,
Sweden). The figures were prepared using OriginPro 2023 (OriginLab, Northampton,
MA, USA).

3. Results
3.1. Dynamics of CO2-C Fluxes in Wheat Fields

Figure 1 shows that the CO2-C fluxes in wheat fields under different water and
nitrogen treatments exhibited similar seasonal patterns of variation during the wheat
growing seasons, where they decreased initially, before increasing and finally decreasing.
The CO2-C fluxes decreased to the lowest values in December–January (overwintering
stage) and rose to the peak values in May (filling stage). Irrigation increased the average
CO2-C fluxes in the wheat season under the same nitrogen level. The average CO2-C
fluxes were 6.82–14.52% higher under I compared with R and 6.82–11.32% higher under
IN compared with RN. Under the same water management pattern, the CO2-C fluxes
in nitrogen-treated wheat fields were higher in all stages. The average CO2-C fluxes
were 55.14–55.94% higher under RN compared with R and 51.59–55.15% higher under IN
compared with I (Figure 1).

Agronomy 2023, 13, x FOR PEER REVIEW 6 of 17 
 

 

RMSE =  �1
n

 ×  ∑ (fi  −  yi)2n
i=1   (5) 

SMAPE =  100%
n

 ×  ∑ |fi − yi|
(|fi| + |yi|)/2

n
i=1   (6) 

where n is the sample size, yi is the i-th observed value, fi is the i-th predicted value, Y is 
the average of the observed values, and F is the average of the predicted values. The 
performance of a model is better when r is closer to 1, SMAPE is farther away from 
200%, and RMSE is smaller. 

Path analysis was performed using SAS 8.1 (SAS, Cary, NC, USA). Collinearity between 
variables was analyzed using IBM SPSS Statistics 20 (IBM, Armonk, NY, USA). PLS analysis 
and model construction were performed with SIMCA 14.1 (UMETRICS, Umea, Sweden). 
The figures were prepared using OriginPro 2023 (OriginLab, Northampton, MA, USA). 

3. Results 
3.1. Dynamics of CO2-C Fluxes in Wheat Fields 

Figure 1 shows that the CO2-C fluxes in wheat fields under different water and ni-
trogen treatments exhibited similar seasonal patterns of variation during the wheat 
growing seasons, where they decreased initially, before increasing and finally decreasing. 
The CO2-C fluxes decreased to the lowest values in December–January (overwintering stage) 
and rose to the peak values in May (filling stage). Irrigation increased the average CO2-C 
fluxes in the wheat season under the same nitrogen level. The average CO2-C fluxes were 
6.82–14.52% higher under I compared with R and 6.82–11.32% higher under IN compared 
with RN. Under the same water management pattern, the CO2-C fluxes in nitrogen-treated 
wheat fields were higher in all stages. The average CO2-C fluxes were 55.14–55.94% higher 
under RN compared with R and 51.59–55.15% higher under IN compared with I (Figure 1). 

 
Figure 1. Dynamics of CO2-C fluxes under different water and nitrogen treatments in fields during 
the wheat growing seasons in 2018–2019 and 2020–2021. Note: R represents rain-fed treatment (no Figure 1. Dynamics of CO2-C fluxes under different water and nitrogen treatments in fields during the

wheat growing seasons in 2018–2019 and 2020–2021. Note: R represents rain-fed treatment (no water
and nitrogen added); I represents irrigation treatment (150 mm water added); RN represents rain-fed
plus nitrogen application treatment (225 kg ha−1 nitrogen added); and IN represents irrigation plus
nitrogen application treatment (150 mm water and 225 kg ha−1 nitrogen added). The Akima spline
curve represents the trend in the CO2-C fluxes with time.
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Figure 2 shows that April–May was the key period for CO2-C emissions from wheat
fields, and the cumulative CO2-C emissions in this stage accounted for more than 60% of
the cumulative CO2-C emissions in the whole wheat growing season. Under different water
and nitrogen treatments, the cumulative CO2-C emissions in the wheat growing season
were 3896.65–7195.28 kg ha−1. Irrigation increased the cumulative CO2-C emissions in the
wheat growing season under the same nitrogen level. The cumulative CO2-C emissions
were 264.04–602.71 kg ha−1 higher under I compared with R and 413.57–730.41 kg ha−1

higher under IN compared with RN. Nitrogen application also increased the cumulative
CO2-C emissions in the wheat growing season under the same water management pattern.
The cumulative CO2-C emissions were 2146.28–2320.86 kg ha−1 higher under RN compared
with R and 2295.81–2448.56 kg ha−1 higher under IN compared with I (Figure 2).
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Figure 2. Cumulative CO2-C emissions under different water and nitrogen treatments during the
wheat growing seasons in 2018–2019 (A) and 2020–2021 (B). Note: the column length represents the
mean ± standard error for newly added cumulative CO2-C emissions in each stage.

3.2. Dynamics of Meteorological Factors

Figure 3 shows that the monthly variations in all meteorological factors (monthly
averages) were relatively clear in the wheat growing season. The characteristic variations in
WVP were basically the same in the two growing seasons, where it decreased initially and
then increased, with a range of 3.0–16.0 hPa and the lowest period in December–January.
The variations in RH were relatively complex and inconsistent in the two growing seasons,
with a range of 46–76% (Figure 3). The variations in AT were similar to those in WVP, with
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an overall “tick”-shaped trend and a range of 0.0–24.5 ◦C. The variations in SD differed
greatly between the two growing seasons, with more abundant sunshine in the 2020–2021
growing season. The distributions of P were generally similar in the two growing seasons,
with less in the early stage (drought in the winter and spring) and more in the late stage
(Figure 3).
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3.3. Responses of CO2-C Fluxes to Meteorological Factors
3.3.1. Correlation Analysis

Figure 4 shows that the CO2-C fluxes under different water and nitrogen treatments
were significantly positively correlated with AT and WVP, with correlation coefficients
ranging from 0.765 to 0.820 and 0.792 to 0.840, respectively. Irrigation decreased the
correlation coefficients between CO2-C fluxes and AT and WVP under the same nitrogen
level, whereas nitrogen application increased the correlation coefficients between CO2-C
fluxes and AT and WVP under the same water management pattern. Significant positive
correlations were also found between the CO2-C fluxes and P under different water and
nitrogen treatments, with correlation coefficients ranging from 0.718 to 0.782. Irrigation
and nitrogen application both decreased the correlation coefficients between CO2-C fluxes
and P (Figure 4). The CO2-C fluxes under different treatments were positively correlated
(but not significantly) with RH and SD, with correlation coefficients ranging from 0.107
to 0.153 and 0.179 to 0.247, respectively. Under the same water management pattern,
nitrogen application decreased the correlation coefficients between CO2-C fluxes and RH,
but increased the correlation coefficients between CO2-C fluxes and SD (Figure 4). The
responses of CO2-C fluxes to meteorological factors were influenced by the water and
nitrogen management patterns.
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3.3.2. Path Analysis

The effects of meteorological factors (AT, RH, WVP, P, and SD) on CO2-C fluxes could
be explained effectively by path analysis, and the R2 values for the equations under each
treatment were in the range of 0.7275–0.7815 (Table 1). Under different water and nitrogen
treatments, the direct effects of RH and SD on CO2-C fluxes were negative and weak,
whereas the direct effects of AT, WVP, and P on CO2-C fluxes were all positive. The
direct effect coefficient of WVP was the largest (in the range of 0.5136–0.7565) under each
treatment (Table 1). AT and P were significantly positively correlated with WVP (Figure 4),
so the total effects of these three factors on CO2-C fluxes were all relatively large (Table 1).
Under different water and nitrogen treatments, the R(i) values for meteorological factors
followed the order of WVP > P > AT > 0 > RH > SD (Table 1). Thus, WVP and P were the
main decision variables, whereas RH and SD were restrictive variables. Both irrigation
and nitrogen application decreased the direct and comprehensive determining effects of
P on CO2-C fluxes, whereas both increased the direct effects of WVP on CO2-C fluxes. In
addition, nitrogen application increased the comprehensive determining effects of WVP on
CO2-C fluxes (Table 1).
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3.4. Modeling Based on PLS Analysis

Figure 5 shows that the VIP values for meteorological factors were different, thereby
indicating that they had different abilities to influence the CO2-C fluxes in wheat fields.
Under different treatments, the VIP values were all greater than 1.0 for WVP, AT, and P,
and the 95% confidence intervals for these VIP values did not contain 0. Thus, these three
factors had significant effects on CO2-C fluxes. By contrast, the VIP values for SD and RH
were less than 0.5, and the 95% confidence intervals for these VIP values contained 0, so
the effects of SD and RH on CO2-C fluxes were not significant (Figure 5). Both irrigation
and nitrogen application increased the VIP values for WVP and AT, but both decreased the
VIP values for P (Figure 5). Table 2 shows that the variance inflation factor (VIF) values for
AT and WVP were greater than 10 and their tolerance values were less than 0.1. Therefore,
obvious collinearity was detected between AT and WVP.
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Table 2. Collinearity statistics for meteorological factors.

Meteorological Factors Tolerance VIF

AT 0.029 34.216
RH 0.446 2.244

WVP 0.027 37.079
P 0.342 2.926

SD 0.496 2.015
Note: VIF represents variance inflation factor.

Table 3 shows that different combinations of variables were formed by gradually
removing meteorological factors with VIP values less than 0.5 and selectively removing
(retaining at least one of them) meteorological factors with VIF values greater than 10, and
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different models were constructed using the PLS method based on these combinations for
optimal model selection. Under R and I, the models based on the combination of P and AT
were optimal (with the largest R2Y (cum) and Q2 (cum) values), and the models based on
the combination of P, AT, and WVP were optimal under RN and IN (Table 3). The specific
forms of the optimal models under each treatment are shown in Table 4.

Table 3. Performance of response models for wheat field CO2-C fluxes relative to different combina-
tions of meteorological factors under different water and nitrogen treatments.

Model
Number

Meteorological
Factors

R I RN IN

R2Y
(cum)

Q2

(cum)
R2Y

(cum)
Q2

(cum)
R2Y

(cum)
Q2

(cum)
R2Y

(cum)
Q2

(cum)

1 P, AT, WVP, RH, SD 0.696 0.669 0.659 0.626 0.715 0.684 0.679 0.641
2 P, AT, RH, SD 0.693 0.651 0.653 0.600 0.698 0.643 0.658 0.593
3 P, WVP, RH, SD 0.687 0.651 0.648 0.601 0.694 0.646 0.655 0.598
4 P, AT, WVP, RH 0.714 0.702 0.676 0.662 0.733 0.716 0.696 0.674
5 P, AT, WVP, SD 0.701 0.678 0.663 0.636 0.720 0.696 0.683 0.655
6 P, AT, WVP 0.724 0.714 0.684 0.675 0.743 0.731 0.704 0.690
7 P, AT, RH 0.714 0.698 0.672 0.652 0.719 0.692 0.678 0.645
8 P, AT, SD 0.701 0.668 0.659 0.618 0.704 0.665 0.664 0.618
9 P, WVP, RH 0.696 0.678 0.658 0.636 0.700 0.673 0.661 0.629

10 P, WVP, SD 0.704 0.676 0.664 0.629 0.708 0.675 0.668 0.628
11 P, AT 0.732 0.724 0.688 0.679 0.735 0.720 0.692 0.675
12 P, WVP 0.723 0.713 0.683 0.674 0.724 0.709 0.683 0.666

Note: R2Y (cum) indicates the degree to which the model fits the dependent variable, and Q2 (cum) is a measure
of the predictive ability of the model as assessed by cross-validation.

Table 4. Optimal partial least squares regression model under each water and nitrogen treatment.

R I RN IN

SC UC SC UC SC UC SC UC

AT 0.468 # 0.124 95.297 0.455 # 0.144 102.214 0.314 # 0.090 100.678 0.308 # 0.104 108.605
WVP - - - - 0.322 # 0.069 190.014 0.315 # 0.085 204.925

P 0.465 # 0.151 952.450 0.450 # 0.137 1015.100 0.287 # 0.135 924.994 0.275 # 0.126 975.974
Const 1.075 −71.969 1.073 −21.553 1.078 −698.781 1.063 −717.445

Note: SC and UC represent standardized coefficients and unstandardized coefficients, respectively. # value
represents the distance from the coefficient to the upper or lower limit of its 95% confidence interval.

3.5. Model Validation

Based on the P, AT, and WVP data during the 2019–2020 wheat growing season
(Figure S1), the optimal model under each treatment was used to predict CO2-C fluxes.
These predicted values were in good agreement with the corresponding observed values
(Figure 6). The ranges of r, RMSE, and SMAPE were 0.985–0.993, 265.72–551.84 mg m–2 d−1,
and 16.40–22.78%, respectively (Table 5). Therefore, these results indicated the good
performance of each optimal model.

Table 5. Validation results for the optimal model under each water and nitrogen treatment.

r RMSE (mg m−2 d−1) SMAPE

R 0.985 324.05 22.01%
I 0.988 265.72 16.40%

RN 0.993 551.84 22.78%
IN 0.989 517.40 19.29%

Note: r, RMSE, and SMAPE denote the correlation coefficient, root mean square error, and symmetric mean
absolute percentage error, respectively.
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4. Discussion
4.1. Responses of Ecosystem Carbon Dioxide Fluxes to Meteorological Factors

Ecosystem CO2 fluxes are often influenced by multiple meteorological factors [10,14,40].
Wang et al. [9] found that precipitation could affect the fluctuations in CO2 fluxes in
farmland ecosystems. Fatumah et al. [3] conducted experiments in banana–coffee farms
in Uganda, and showed that precipitation was a key meteorological factor for regulating
the carbon dioxide flux levels, and that the CO2 fluxes increased as the precipitation
increased. Similar to previous studies, the results obtained in the present study showed
that precipitation was an important meteorological factor for regulating the variations in
CO2-C fluxes in wheat fields, and it had a positive regulatory role. The positive regulatory
effect of precipitation on farmland carbon dioxide fluxes may be explained by increasing
precipitation improving the soil microbial activity, promoting the crop’s physiological
metabolism, increasing the disturbance of the soil structure, and accelerating the soil pore
gas efflux [3]. In addition, Golovatskaya and Dyukarev [41] found reliable relationships
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between the air temperature and peat soil CO2 fluxes at all time scales. Huang et al. [42]
showed that carbon dioxide fluxes in plantation ecosystems in the hilly areas of north China
increased as the monthly mean air temperature increased. Similar to previous studies, we
found significant positive correlations between the air temperature and CO2-C fluxes in
wheat fields. The positive regulatory effect of air temperature on ecosystem CO2 fluxes may
be explained by higher temperatures promoting soil microbial metabolism and soil organic
carbon decomposition [10,43]. Furthermore, water vapor pressure, which is influenced
by both precipitation and air temperature, is considered to have effects on water- or heat-
dependent ecophysiological processes [44]. In the present study, water vapor pressure had
significant positive effects on CO2-C fluxes in wheat fields.

However, the effects of the sunshine duration and relative humidity on ecosystem
CO2 fluxes are relatively complex. An increase in the sunshine duration can provide
more light to promote plant photosynthetic carbon fixation [45], but also more heat to
promote soil CO2 emissions [7], and thus the sunshine duration can have diverse effects
on ecosystem carbon cycling processes. Dhadli et al. [10] showed that the correlations
between the sunshine duration and farmland CO2 fluxes were not significant during the
maize and wheat growing seasons. In the present study, the sunshine duration also had
weak effects on CO2-C fluxes in wheat fields, with negative direct effects and positive
total effects. In addition, the relative humidity can have diverse effects on ecosystem
carbon cycling processes. Increased relative humidity can alleviate plant drought stress
and increase stomatal conductance and photosynthetic carbon fixation [45,46], and higher
relative humidity is not conducive to air flow, which has a limiting effect on ecosystem
CO2 emissions [47]. However, the improved moisture conditions associated with higher
relative humidity may promote carbon metabolism in soil microbes and plant roots [14,48].
Melling et al. [49] found that relative humidity was the main regulatory factor for CO2
fluxes in forest ecosystems, but it had less effect on CO2 fluxes in crop cultivation systems,
including no significant effect on CO2 fluxes in sago cultivation systems. In the present
study, the effects of relative humidity on CO2-C fluxes in wheat fields were also insignificant,
with negative direct effects and positive total effects.

4.2. Responses of Ecosystem Carbon Dioxide Fluxes to Water and Nitrogen Managements

Water is an important component of soil and an essential resource for plant growth
and development, and water management can affect the soil properties and plant traits to
regulate ecosystem CO2 fluxes [50]. Jia et al. [51] found that water addition increased the
soil CO2 fluxes in bunge needlegrass grassland and purple alfalfa grassland in semi-arid
areas. Similarly, Liu et al. [52] conducted experiments in spring maize fields on the Loess
Plateau in China and showed that irrigation increased the soil CO2 fluxes compared with
rain-fed growing. Moreover, Sainju et al. [19] found that irrigation increased farmland
carbon dioxide fluxes by 13% when increasing the soil water content in North Dakota,
USA. Similar to previous studies, we found that irrigation increased the CO2-C fluxes by
6.82–14.52% in wheat fields in a dry semi-humid area. The increased ecosystem CO2 fluxes
under irrigation may be explained by the improved water conditions increasing the plant
root activity, microbial metabolism, and substrate availability [51,52]. Furthermore, in the
present study, we found that irrigation changed the effects of meteorological factors on
CO2-C fluxes in wheat fields. Similarly, Liu et al. [52] showed that irrigation changed the
relationships between meteorological factors and soil CO2 fluxes in maize fields.

Nitrogen is an important nutrient that exists in many forms in soils and organisms,
and it participates in a wide range of metabolic activities. Thus, nitrogen management can
regulate the soil environment, microbial composition, and plant growth to affect ecosystem
CO2 fluxes [53,54]. Shao et al. [55] found that nitrogen application (90–360 kg N ha−1)
increased carbon dioxide fluxes in winter wheat fields in northwest China. In addition,
Sainju et al. [19] showed that nitrogen application increased the carbon dioxide fluxes in
both conventional-till and no-till malt barley fields in North Dakota. Similar to previous
studies, we found that nitrogen application increased the CO2-C fluxes in wheat fields
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compared with no nitrogen application. The increased ecosystem CO2 fluxes under nitrogen
application may be explained by increases in soil fertility, soil microbial diversity, and the
root biomass and exudates [10,24]. Furthermore, we found that nitrogen application
changed the relationships between meteorological factors (precipitation, air temperature,
water vapor pressure, etc.) and CO2-C fluxes in wheat fields to some extent. Similarly,
Dhadli et al. [10] found that nitrogen application changed the effects of meteorological
variables on farmland CO2 fluxes.

4.3. Modeling the Relationships between Ecosystem Carbon Dioxide Fluxes and
Meteorological Factors

Modeling the relationships between ecosystem CO2 fluxes and meteorological factors
can help to explain and predict changes in ecosystem CO2 fluxes through meteorological
data [14]. Constructing these models often involves identifying important independent vari-
ables and establishing response relationships between variables, and thus previous studies
have introduced many relevant methods and explored their characteristics [10,12,38,56].
Dhadli et al. [10] used stepwise multiple linear regression analysis to model the relation-
ships between farmland CO2 fluxes and meteorological variables in Ludhiana, India, and
showed that meteorological variables could explain 22–56% of the changes in farmland CO2
fluxes through these models. This method can include both important variable screening
and model construction, and it is simple and convenient to use. Qin et al. [56] used the
Bayesian technique for automatic relevance determination to analyze the importance of
input variables and modeled the response of carbon dioxide exchange to input variables in
summer maize fields in the North China Plain region with the feed-forward back propaga-
tion neural network technique, and the predictive ability of this model was much better
than that of the stepwise linear regression model. However, the use of the neural network
technique to construct models is affected by problems such as difficulties in determining the
network structure, explaining the model, and ensuring the reliability of the model under
small sample sizes [56]. Cai et al. [38] modeled the response in terms of net ecosystem
carbon exchange to environmental variables in evergreen needleleaf forest ecosystems in
temperate oceanic climate regions using the gradient boosting regression method, and
analyzed the importance of environmental variables using the random forest algorithm,
which achieved good results. Gradient boosting regression improved the performance
by combining a series of weak prediction models to form a strong prediction model, and
this method has the advantages of accurate prediction, good stability, and widespread
application [38]. However, the serial fitting of several weak prediction models by using
this method may incur high computational overheads. The situations investigated in eco-
logical and environmental studies are complex and diverse, and the availability of a small
number of measurements is typical in ecology [56], which may demand applying modeling
methods with strong sample size inclusiveness. The PLS method can be used in situations
with low numbers of observed samples and it has great potential for application in the
field of environmental monitoring [12]. In addition, the VIP metric based on this method
can be used to measure the ability of the independent variable to explain the dependent
variable [36], thereby helping to identify important variables conveniently and quickly.
Yang et al. [12] used the PLS method to study the importance of each independent variable
and to model the relationships between carbon dioxide exchange and meteorological vari-
ables in an apple orchard on the Loess Plateau, and good simulation and prediction results
were obtained. Similarly, based on the experimental situation, we used the PLS method
to effectively assess the ability of meteorological factors to explain CO2-C flux changes in
wheat fields under different water and nitrogen treatments, and to successfully model the
relationships between CO2-C fluxes and meteorological factors, where the R2Y (cum) and
Q2 (cum) values for the models were about 0.7.



Agronomy 2023, 13, 1925 15 of 17

5. Conclusions

The variations in CO2-C fluxes in wheat fields in a dry semi-humid area all exhibited
a seasonal pattern, with decreases followed by increases and then decreases again under
different water and nitrogen treatments. The precipitation, air temperature, and water
vapor pressure were the most important meteorological factors that affected the variations
in CO2-C fluxes in wheat fields, and their direct and total effects were positive. Irrigation
and nitrogen application both increased the CO2-C fluxes in wheat fields, and also affected
the relationships between CO2-C fluxes and meteorological factors. The PLS models of
the relationships between meteorological factors and CO2-C fluxes in wheat fields all
performed well under different water and nitrogen treatments. The results obtained in this
study provide a scientific basis for the prediction and assessment of CO2-C fluxes, and for
formulating emission reduction measures in wheat fields in dry semi-humid areas, as well
as serving as a methodological reference for carbon dioxide flux simulation studies in other
areas and ecosystems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agronomy13071925/s1, Figure S1: Meteorological data
used for model validation during the 2019–2020 wheat growing season.
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