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Abstract: The fraction of absorbed photosynthetically active radiation (FPAR), which represents the
capability of vegetation-absorbed solar radiation to accumulate organic matter, is a crucial indicator of
photosynthesis and vegetation growth status. Although a simplified semi-empirical FPAR estimation
model was easily obtained using vegetation indices (VIs), the sensitivity and robustness of VIs and
the optimal inversion method need to be further evaluated and developed for canola FPAR retrieval.
The objective of this study was to identify the robust hybrid inversion model for estimating the winter
canola FPAR. A field experiment with different sow dates and densities was conducted over two
growing seasons to obtain canola FPARs. Moreover, 29 VIs, two machine learning algorithms and the
PROSAIL model were incorporated to establish the FPAR inversion model. The results indicate that
the OSAVI, WDRVI and mSR had better capability for revealing the variations of the FPAR. Three
parameters of leaf area index (LAI), solar zenith angle (SZA) and average leaf inclination angle (ALA)
accounted for over 95% of the total variance in the FPARs and OSAVI exhibited a greater resistance to
changes in the leaf and canopy parameters of interest. The hybrid inversion model with an artificial
neural network (ANN-VIs) performed the best for both datasets. The optimal hybrid inversion model
of ANN-OSAVI achieved the highest performance for canola FPAR retrieval, with R2 and RMSE
values of 0.65 and 0.051, respectively. Finally, the work highlights the usefulness of the radiation
transfer model (RTM) in quantifying the crop canopy FPAR and demonstrates the potential of hybrid
model methods for retrieving the canola FPAR at each growth stage.

Keywords: FPAR; vegetation indices; radiation transfer model; machine learning; canola

1. Introduction

The FPAR is the ratio of photosynthetically active radiation absorbed by the green
part of the vegetation canopy to total photosynthetically active radiation (PAR) within the
wavelength range of 400–700 nm. It is an important parameter for describing vegetation
photosynthesis and physiological characteristics [1]. Since the 1990s, the FPAR has been
extensively used in various areas, including assessing vegetation productivity [2], guid-
ing vegetation growth management [3], and diagnosing drought and climate change [4].
Moreover, the FPAR has been recognized as one of the key climate variables that influence
global climate change according to the Global Climate Observation System (GCOS) [5].
Therefore, accurate and reliable FPAR acquisition is of great significance for depicting
terrestrial ecosystem processes and estimating crop yields [6].

FPAR estimation methods are usually divided into two categories: empirical methods
based on vegetation indices (VIs) and physical model inversion based on the radiation
transfer model (RTM). Vegetation indices can quantify the absorption and reflection of
solar radiation by a vegetation canopy and are widely used for estimating the FPAR due to
their fewer parameters and high computational efficiency [7]. Over the past few decades,
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numerous Vis, such as the normalized difference VI (NDVI) [8], enhanced VI (EVI) [9] and
simple ratio index (SR) [10], have been developed, evaluated and shown to be effective in
estimating the FPARs for various vegetation types. However, there are still several issues
associated with the VI approach that need to be addressed. First, while VIs can reveal the
physiological and ecological characteristics of vegetation, they cannot fully capture the
changes in solar effective radiation within the canopy and surface [11,12]. Furthermore,
estimating VIs introduced uncertainty due to factors like variations in solar elevation angle
and soil background. Moreover, most VI methods were statistically based and exhibited
different relationships between VIs and FPARs for various spatial and temporal vegetation
dynamics, resulting in regional restrictions in their application. Glenn et al. [13] suggested
that VIs could be simply used to determine canopy light absorption without involving the
canopy structural level.

In contrast, the RTM could elucidate and simulate the process of FPAR change by
incorporating explicit geometric models of the canopy structure [14]. Meng et al. [15] quan-
titatively retrieved the spatial distribution of the absorbed FPAR in salt marsh vegetation
from satellite images using the soil–canopy–photochemical and energy flux observation
coupling model (SCOPE). Liu et al. [16] employed the modified simultaneous heat and
water radiation model (MSHAW) to simulate the vertical profile of FPAR within the canopy.
The RTM demonstrated greater adaptability to diverse environments and background
conditions for FPAR simulation, but the model uncertainties associated with the input
parameters also affected the RTM accuracy. Computational technology advances, more
optimization algorithms (e.g., gradient methods, genetic algorithms and simulated anneal-
ing) and machine learning algorithms (artificial neural networks (ANNs), support vector
regression (SVR) and random forest (RF)) have been combined with RTMs to improve the
FPAR inversion accuracy [17,18]. For example, Verger et al. [19] used the PROSAIL model
in conjunction with a neural network algorithm to investigate a series of measured crop
FPARs and model the simulated FPARs.

In addition to the mechanism-based inversion model, other studies also evaluated
robust estimation models through sensitivity analysis, which investigates the impacts of
parameter variations on simulation results (e.g., band reflectance and VI) [20,21]. For exam-
ple, Leolini et al. [22] constructed the relationship between the rescaled VIs (NDVI, OSAVI,
etc.) and the observed FPAR, and validated this relationship using independent datasets.
Dong et al. [23] analyzed the sensitivity and correlation between the three modified VIs
and the FPAR using reflectance data simulated by the PROSAIL model. However, most
sensitivity analyses of VIs primarily focus on their influence on LAI changes, and limited
studies on FPAR changes have been reported. Although LAI and FPAR are strongly corre-
lated based on the Beer–Lambert law, the relationship is also modulated by the extinction
coefficient, introducing a certain degree of uncertainty. Moreover, most previous studies
focused on a single empirical or physical method, but few combined multiple methods
for FPAR inversion. Hou et al. [24] used the PROSAIL model and a look-up table (LUT)
algorithm to investigate the FPAR inversion from satellite data for different vegetation types
in various regions. Kolassa et al. [25] proposed an empirical model calibration method
to distinguish vegetation types based on the deviation between the simulated FPAR and
MODIS-observed FPAR. Furthermore, studies on crop FPAR retrieval mainly focused on
crops such as wheat, maize and soybean [26,27], but limited studies were performed on
canola. Monitoring canola FPAR dynamics could effectively diagnose growth status and
stage nodes, providing key variables for crop productivity models. Due to differences in
the canopy structure between different crops, existing FPAR estimation models developed
for other crops need further evaluation and validation when applied to canola [28,29].

Therefore, to identify the robust hybrid estimation methods for improving the canola
FPAR retrieval accuracy, the PROSAIL model, which is a classical model mechanism
of radiative transfer for vegetation canopy, was employed and recompiled to simulate
FPAR variations. A total of 29 VIs and two machine learning algorithms were devoted to
retrieving the FPAR. The model-estimated and in situ measured FPAR from a two-year
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field experiment were used to evaluate the inversion performance. The main objectives of
this study were to (1) reveal the capability of different VIs in interpreting FPAR variation,
(2) analyze the sensitivity of VIs to changes in leaf and canopy parameters, and (3) identify
the robust hybrid estimation methods that consider inversion accuracy in different canola
growth stages.

2. Materials and Methods
2.1. Study Area

From 2020–2022, a field experiment on canola was conducted at the Yangzijin Ecologi-
cal Experimental Field of Yangzhou University. The experimental station was located in
the middle of Jianghuai Plain, at coordinates 119◦24′ E and 32◦21′ N, with an elevation
of 5 m above sea level and belonging to the subtropical monsoon climate zone (Figure 1).
The annual average frost-free period, air temperature, evaporation and precipitation were
223 days, 14.8 ◦C, 937 mm and 1063 mm, respectively. The soil type in the experimental
field was sandy loam, with pH value, field capacity, wilting point and bulk density of 8.14,
25%, 7.8% and 1.24 g cm−3, respectively. The initial nutrient contents in the top 20 cm of
soil surface were as follows: organic matter 10.2 g kg−1, total nitrogen 0.97 g kg−1, available
phosphorus 16.3 mg kg−1 and available potassium 151.2 mg kg−1 [30].
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Figure 1. Location of the study in Jianghuai Plain, Jiangsu, China. The red triangle represents
the study site. The false color image is the FPAR on 22 December 2020, and the RGB image was
photographed by a UAV with a DJI Zenmuse camera on 10 March 2021.

2.2. Experimental Design

In this experiment, the canola variety tested was “Deaiyou 558”. The 12 different
sowing scenarios were designed and performed in the winter canola growing season
(Figure 2). Referring to local practices, four sowing dates and three sowing densities
were created to modulate the crop growth process. For the sowing date treatments, four
periods denoted early (ES 21 September), normal (NS1 6 October, NS2 23 October) and
late (LS 6 November) were chosen. Regarding the sowing density treatments, low (LD
12.5 plants m−2), medium (MD 25 plants m−2) and high densities (HD 37.5 plants m−2)
were adopted. Thus, a total of 12 treatments and 36 plots (each treatment with three
replicates) were established. Each plot area was 5 m × 5 m and the interval between
adjacent plots was 2 m. The seeds were manually sown with a row spacing of 40 cm and
a plant spacing of 10 cm. After the emergence of canola seedlings, the seedlings were



Agronomy 2023, 13, 2147 4 of 22

thinned at the 3-leaf stage and the seedlings were fixed at the 5-leaf stage. Other field
management practices, such as weeding, insecticide and disease prevention, followed the
local field practices.
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Figure 2. (a) The layout of the experimental plot for various sowing dates and densities. Blue letters
indicate the sowing date levels and red letters indicate the sowing density levels; (b) the schematic
diagram of the canola planting with three sowing densities.

2.3. Canopy Multispectral Image Acquisition

During the growth period of the canola, multispectral images were obtained using the
Rededge-mx multi-spectrometer (MicaSense, Inc., Seattle, WA, USA), which was mounted
on a DJI Inspire 2 UAV remote sensing platform (DJI Inc., Shenzhen, China) (Figure 3). The
spectral images were captured approximately 7–10 days after sowing, and the UAV remote
sensing operation was carried out from 11 am to 1 pm, specifically in sunny and windless
weather conditions. During each flight, five images with a resolution of 1280 × 960 pixels
were obtained, corresponding to the blue (475 nm), green (560 nm), red (668 nm), red edge
(717 nm) and near-infrared (840 nm) bands. During each flight operation, images of a
reference plate were synchronously captured for radiation calibration. The flight height
during the operation was set at 20 m, with an along- and cross-track overlap of 75%. The
camera lens was pointed in the downward direction, capturing multispectral images with a
ground resolution of 1.4 cm at a field of view of 47.2◦. After each flight, the raw images were
automatically processed using Pix4Dmapper software, including camera optimizing, photo
aligning, radiometric correction and orthomosaic building. Finally, image reflectance data
for each pixel throughout crop growth seasons were generated. For each plot, the average
band reflectance was extracted using the selected region of interest (ROI) that excluded two
rows of canola from the boundary area to avoid interference from plot edge effects, where
crops grew more vigorously due to better lighting, ventilation and population competition.
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2.4. Canopy FPAR Measurements

The canola canopy FPAR measurements were performed after the UAV image acquisi-
tion using the LP-80 PAR/LAI Ceptometer (AccuPAR, Decagon Devices Inc., Pullman, WA,
USA). The LP-80 probe contained 80 independent sensors, which were evenly spaced 1 cm
apart. The photosensors measured the PAR in the 400 to 700 nm waveband (µmol/(m2s)).
During the FPAR measurement, the probe was placed along the row direction within the
canopy. Four positions and directions were considered to obtain comprehensive PAR data,
i.e., the incident PAR, the top of canopy reflected PAR, the bottom of canopy transmission
PAR and the bottom of soil reflection PAR. Each plot was repeated five times to calculate
the average value and the canola canopy FPAR was then calculated using Equation (1) [31].
A summary of the statistics of the canola FPAR acquired in situ is given in Table 1.

FPAR =

(
Ic↓ − Ic↑− (Iuc↓ − Iuc↑))

Ic↓
(1)

where Ic↓ is the solar downward radiation at the canopy top, Ic↑ is the solar radiation
emitted from the canopy, Iuc↓ is the solar downward radiation under the canopy and Iuc↑ is
the solar radiation reflected by the soil under the canopy.

Table 1. Summary statistics of the canopy FPAR in three stages from 2020 to 2022.

Year Growth Stages N Max Min Mean SD

2021
Seedling 62 0.780 0.465 0.621 0.095

Flowering 40 0.741 0.409 0.605 0.082
Maturity 40 0.706 0.404 0.564 0.075

2022
Seedling 18 0.770 0.442 0.616 0.104

Flowering 60 0.770 0.417 0.590 0.084
Maturity 16 0.705 0.530 0.602 0.057

Note: The table reports the sample number (N), maximum value (max), minimum (min), mean (mean) and
standard deviation (SD) of the observations.

2.5. PROSAIL RTM and Data Simulation

To investigate the optimal inversion method for estimating the FPAR based on the
RTM, the crop canopy spectra were simulated using the PROSAIL model. The primary
PROSAIL model was proposed by Baret et al. [32], who coupled the PROSPECT leaf optical
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properties model [33] with the SAIL canopy bidirectional reflectance model [34] to describe
the variations in the canopy spectral reflectance as a function of the biochemistry and
architecture parameters. At the leaf level, the PROSPECT model parameters included leaf
chlorophyll a + b content (Cab), carotenoid content (Car), brown pigment content (Cbrown),
equivalent water thickness (Cw), dry matter content (Cm) and leaf internal structure param-
eter (N). For the canopy level, the SAIL model parameters included the LAI, ALA, hot spot
size parameters (hspot), SZA, observer zenith angle (OZA), relative azimuth angle (psi)
and soil brightness parameters (psoil).

In general, the canopy structure parameters (e.g., LAI, SZA, ALA and psoil), as well
as the leaf-level parameters (Cab and N), have been found to have an effect on the FPAR
variation [12,35]. According to the prior information, the LAI, Cab, ALA and SZA were
identified as particularly influential factors that affect the FPAR. To explore the effects of
different parameters and ranges on the FPAR, two simulated datasets were generated. One
was a general dataset parameter distribution according to the literature [36–38]. Based on
prior information and the previous research results of Dong et al. [39], the specific dataset for
canola was determined by reducing the value range and step size of the canopy structure
parameters (e.g., Cab and LAI) and illumination parameter (SZA). The parameter ranges and
specific meanings within the PROSAIL model for both datasets are shown in Table 2.

Table 2. PROSAIL parameters range and specific meaning.

Model Parameters Typical
Values

General Dataset 1
Range

Specific Dataset 2
Range Step

PROSPECT

Cab (µg cm−2) 40 10–80 30–60 0.5
Car (µg cm−2) 8 5–20 5–20 10
Cbrown (µg cm−2) 0.0 0–0.5 0–0.5 0.05
Cw (cm) 0.01 0.005–0.05 0.005–0.05 0.005
Cm (g cm−2) 0.009 0.001–0.015 0.001–0.015 0.001
N 1.5 1–3 1–3 0.1

SAIL

LAI (m2 m−2) 1 0.25–7.5 1–5 0.5
ALA (◦) 30 10–80 30–60 10
hspot (m m−1) 0.01 0–1 0–1 0.2
SZA (◦) 30 0–90 10–60 10
OZA (◦) 10 0–90 0–90 10
psi (◦) 0 0–90 0–90 10
psoil 0 0–1 0–1 0.25

The FPAR could be derived by combining the law of conservation of energy with the
PROSAIL model [40]. First, the leaf reflectance and transmittance were obtained using
the PROSPECT part of the PROSAIL model. Second, the multiple scattering effect caused
by the interaction between the canopy and background soil was partially accounted for
by the SAIL component of the PROSAIL model. Finally, the canopy FPAR was solved by
calculating both the direct and scattered PAR. The total FPAR, direct FPAR and diffuse
FPAR were calculated using the following Equations (2)–(6):

α∗s = αs +
τssrsd + τsdrdd

1 − rddρ
b
dd

αd (2)

α∗d = αd +
τddrdd

1 − rddρ
b
dd

αd (3)

αs= 1− ρsd − τsd − τss (4)

αd= 1 − ρdd − τdd (5)

FPAR =
∑λ=700

λ=400 (α
∗
s Et

dir + α∗dEt
dif
)

∑λ=700
λ=400

(
Et

dir + Et
dif
) = FPARdir + FPARdif (6)
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where α∗s and α∗d are the canopy absorptance for direct solar incident flux and hemispherical
diffuse incident flux, respectively; αs and αd are the isolated canopy layer absorptance
for direct solar incident flux and hemispherical diffuse incident flux respectively; τss and
τsd are the direct and bi-hemispherical transmittance for solar flux respectively; τdd is the
bi-hemispherical transmittance; rsd is the directional-hemispherical reflectance factor for
solar incident flux and rdd is the bi-hemispherical reflectance factor; ρsd and ρdd are the
directional-hemispherical reflectance for solar flux and bi-hemispherical reflectance above
the canopy, respectively; ρb

dd is the bi-hemispherical reflectance at the bottom of the canopy;
and Et

dir and Et
dif are the direct PAR and diffuse PAR, respectively.

2.6. Vegetation Indices (VIs)

Based on the simulated and measured canopy spectral data, a total of 29 VIs con-
structed using near-infrared and visible bands were selected (Table 3). The selected VIs,
including the NDVI, SR and difference vegetation index (DVI), as well as modified indices,
were employed to investigate the correlation between the FPAR and VIs. In order to identify
the VIs suitable for FPAR estimation using general and specific simulation datasets, the
first step was to establish the relationship between the simulated VIs and the FPAR by
employing curve-fitting models, such as linear, exponential, power and logarithm models.
The second step was to determine the major VIs that exhibited a good correlation with the
FPAR using estimated error metrics. Subsequently, the VIs were evaluated by calculating
the rank sum and arranging them in ascending order accordingly.

Table 3. Multispectral VIs for the FPAR estimation.

Vegetation Index Formulation References

Atmospherically resistant Vegetation
index (ARVI)

R840−(2 × R717−R475)
R840+(2 × R717−R475)

[41]

Chlorophyll index green (CIgreen) R840
R560
− 1 [42]

Chlorophyll index red-edge
(CIred-edge)

R840
R717
− 1 [42]

Difference vegetation index (DVI) R840 − R664 [43]
Enhanced vegetation index (EVI) 2.5 × R840 − R668

R840 + 6 × R668 − 7.5 × R475 + 1 [44]
Enhanced vegetation index 2 (EVI2) 2.5 × R840 − R668

1 + R840 + 2.4 × R668
[45]

Green normalized difference
Vegetation index (GNDVI)

R840 − R560
R840 + R560

[46]

Green ratio vegetation index
(RVIgreen)

R840
R560

[47]

Green-red vegetation index (GRVI) R560 − R668
R560 + R668

[48]
Modified chlorophyll absorption ratio

vegetation index (MCARVI) ((R840 − R717) − 0.2 × (R840 − R560)) ×
(

R840
R717

)
[49]

Modified normalized difference
vegetation index (mNDVI)

R840 − R680
R840 + R680 − 2 × R475

[50]

modified normalized difference
vegetation index red-edge

(mNDVIred-edge)

R840 − R717
R840 + R717 − 2 × R475

[51]

Modified simple ratio (mSR)
R840
R668

− 1√(
R840
R668

+ 1
) [52]

Modified simple ratio red-edge
(mSRred-edge)

R840
R717

− 1√(
R840
R717

+ 1
) [53]

Modified triangular vegetation index
2 (MTVI2)

((1.5 × (1.2 × (R840 − R560) − 2.5 × (R668 − R560))
√
(((2 × R840 + 1)2 − (6 × R840 − 5 × √(R668) − 0.5))))

[54]

Modified soil adjusted vegetation
index (mSAVI) 0.5 ×

(
2 × R840 + 1 − (2 × R840 + 1)2 − 8 ×

√
R840 − R668

)
[55]

Normalized difference vegetation
index red-edge (NDVIred-edge)

R840 − R717
R840 + R717

[56]
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Table 3. Cont.

Vegetation Index Formulation References

Normalized difference vegetation
index (NDVI)

R840 − R668
R840 + R668

[57]

Modified normalized difference water
index (mNDWI)

R560 − R840
R560 + R840

[58]

Optimized soil-adjusted vegetation
index (OSAVI)

R840 − R668
R840 + R668 + 0.16 [59]

Optimized soil-adjusted vegetation
index red-edge (OSAVIred-edge)

R840 − R717
R840 + R717 + 0.16 [49]

Renormalized difference vegetation
index (RDVI)

R840 − R668√
R840 + R668

[60]

Renormalized difference vegetation
index red-edge (RDVIred-edge)

R840 − R717√
R840 + R717

[61]

Ratio vegetation index (RVI) R668
R840

[62]
Soil-adjusted vegetation index (SAVI) 1.5 × R840 − R668

R840 + R668 + 0.5 [63]
Simple ratio (SR) R840

R668
[64]

Simple ratio red-edge (SRred-edge) R717
R668

[65]
Visible-band difference vegetation

index (VDVI)
2 × R560 − R668 − R475
2 × R560 + R668 + R475

[66]

Wide dynamic range vegetation index
(WDRVI)

0.2 × R840 − R668
0.2 × R840 + R668

[67]

2.7. Sensitivity Analysis

To evaluate the influence of various leaf and canopy parameters on the variability of
the FPAR, a global sensitivity analysis based on the extended Fourier amplitude sensitivity
test (EFAST) algorithm was conducted. The EFAST is a variance-based global sensitivity
analysis method that combines the computational efficiency of the classical FAST method
with the global capability of the Sobol method. It is well-suited for nonlinear models,
non-monotone models and interactions between parameters [68].

The EFAST analysis enabled the derivation of two indices: the first- and the total-order
indices. The first-order index quantifies the individual contribution of each parameter to
the overall variability, whereas the total-order index takes into account its interaction effect
with other parameters. The 10,000 sample sets were generated based on the Monte Carlo
method [69]. Subsequently, the FPAR was derived from the PROSAIL model and was then
used to quantify the relative contribution of each model parameter.

In addition to the global sensitivity analysis, the local sensitivity of VIs to changes in
the model parameters was further investigated. Appropriate VIs were not only sensitive
to changes in the FPAR but also insensitive to other crop, soil and ambient factors. Hence,
several sensitivity parameters determined beforehand using the EFAST method (e.g., LAI,
SZA, ALA and psoil) were selected to evaluate the robustness of the VIs, while other
insensitive parameters were kept fixed at the typical values (Table 2).

2.8. Inversion Modeling Algorithm

The regression relationship used in this study was established as an explicit parametric
expression between the VIs and simulated FPAR from the PROSAIL model. The fitting
functions could be linear or nonlinear (e.g., exponential or power function). Nonparametric
algorithms, on the other hand, usually interpreted the strong nonlinearity of functional
dependence between the biophysical/biochemical parameters and the spectral reflectance,
such as ANN and SVR regression, which were more accurate and rational for the estab-
lishment of the inversion model. In this study, both the ANN and SVR algorithms were
employed to establish a hybrid model with the selected VIs. For both the general and
specific datasets, 80% of the samples were randomly extracted as the training (modeling)
set, while the remaining samples were used for the model testing (validating) set. The
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process of establishing and validating hybrid inversion models based on the PROSAIL
model and UAV images is presented in Figure 4.
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2.8.1. The ANN Algorithm

The ANN algorithm mainly used the PROSAIL model as the training model and
trained the ANN with the corresponding relationship between the canopy VIs and the
FPAR. After the training, the top of the canopy reflectance extracted from the UAV images
was used to evaluate the model performance. When applying the network model, the
input layer was the VIs and the output layer was the FPAR. Training an ANN necessitated
determining the network type and structure (i.e., the number of hidden layers and nodes
per layer), and appropriately initializing the weights and regularization parameters to
prevent overfitting. A two-layer feed-forward network with sigmoid hidden neurons and
linear output neurons using the Levenberg–Marquardt algorithm was optimized. The
ANN weights were randomly initialized according to the Nguyen–Widrow method, and a
cross-validation procedure was implemented to mitigate overfitting [70].

2.8.2. The SVR Algorithm

The SVR is an empirical model based on a regression-type support vector machine,
which can transform nonlinear regressions into linear ones by mapping the original low-
dimensional input space into a higher-dimensional feature space based on various kernel
functions [71]. To ensure its performance, the SVR required a training process that de-
termined a set of model parameters by minimizing the generalization error. Predictions
were done in the SVR by using an optimal hyperplane of a Gaussian radial basis kernel to
minimize the prediction error. The kernel parameters (e.g., penalty and loss function) were
determined via a grid search based on the least mean square error.

3. Results
3.1. Appropriate VIs for FPAR Estimation

To investigate the capability of VIs for interpreting the variations in the FPAR, the
empirical regression models between different VIs and simulated FPAR based on two
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PROSAIL datasets are depicted in Table 4. The results indicate that the performances
of different VIs for retrieving the FPAR varied across the two datasets, of which the
parameter ranges were non-equivalent. Generally, the performance of the VIs could be
summarized into four types of features. First, some VIs, like MCARVI, RDVIred-edge
and MSAVI, presented good estimation performance for the general dataset but showed
worse accuracies in the specific dataset, with a decline in R2 and an increase in RMSE.
Contrarily, certain VIs (e.g., NDVI, RVI, SR and mNDVI) displayed superior regression
model performance only with a specific dataset. The third type of VIs demonstrated stable
and consistent model capabilities for both general and specific datasets, including OSAVI,
WDRVI, mSR and OSAVIred-edge. Lastly, the remaining VIs exhibited poor model properties
compared with the others, indicating that these limited the effectiveness of capturing the
FPAR under common conditions. Therefore, considering the modeling signatures and
accuracy ranking for both datasets, the top three VIs of OSAVI, WDRVI and mSR, which
presented robustness and adaptableness among the 29 VIs, were identified as effective
variables for further retrieving the crop FPAR.

Table 4. Regression equation derived from simulated general and specific datasets.

VI

General Dataset 1 Specific Dataset 2

Total RankRegression
Equation R2 RMSE Rank Regression

Equation R2 RMSE Rank

OSAVI y= 1.217x0.807 0.817 0.054 1 y= 1.164x0.634 0.771 0.100 5 6
WDRVI y= 0.405x + 0.650 0.766 0.061 4 y= 0.463x + 0.648 0.823 0.088 2 6

mSR y= 0.556x0.335 0.766 0.061 6 y= 0.559x0.344 0.818 0.089 4 10
MTVI2 y= 0.983x0.412 0.776 0.060 2 y= 0.977x0.335 0.712 0.112 9 11

RVI y= 0.4548x−0.227 0.753 0.063 10 y = 0.253x−0.391 0.821 0.089 3 13
NDVI y= 0.910x + 0.055 0.744 0.064 12 y= 0.893x + 0.108 0.840 0.084 1 13

OSAVIred-edge y= 1.442x0.634 0.764 0.057 8 y= 1.315x0.475 0.726 0.109 8 16
MCARVI y= 0.883x0.237 0.769 0.061 3 y= 0.895x0.195 0.689 0.117 13 16

SR y= 0.455x0.227 0.753 0.063 11 y= 0.431x0.247 0.756 0.103 6 17
RDVIred-edge y= 1.332x0.565 0.766 0.061 5 y= 1.259x0.458 0.696 0.115 12 17

RDVI y= 1.187x0.646 0.754 0.063 9 y= 1.133x0.517 0.707 0.113 10 19
MSAVI y= 1.029x0.488 0.755 0.063 7 y= 1.021x0.403 0.665 0.121 15 22
mNDVI y= 0.908x1.580 0.683 0.071 17 y= 0.934x1.208 0.747 0.105 7 24

NDVIred-edge y= 1.189x0.637 0.691 0.070 16 y= 1.153x0.505 0.703 0.114 11 27
SAVI y= 1.159x0.588 0.729 0.066 13 y= 1.097x0.439 0.656 0.123 19 32
EVI2 y= 1.038x0.511 0.728 0.066 14 y= 1.018x0.412 0.659 0.122 18 32

GNDVI y= 1.175x− 0.037 0.671 0.073 18 y= 2.289x− 0.898 0.673 0.120 14 32
EVI y= 1.014x0.508 0.710 0.068 15 y= 0.997x0.402 0.630 0.127 20 35

mNDWI y= −1.175x− 0.037 0.671 0.073 19 y= −1.077x + 0.067 0.660 0.122 17 36
mSRred-edge y= 0.758x0.403 0.665 0.073 20 y= 0.793x0.340 0.664 0.121 16 36
CIred-edge705 y= 0.596x0.285 0.633 0.077 21 y= 0.633x0.245 0.594 0.133 22 43

CIgreen y= 0.496x0.287 0.604 0.080 23 y= 0.529x0.256 0.563 0.138 23 46
SRred-edge y= 0.476x0.415 0.610 0.079 22 y= 0.506x0.373 0.548 0.140 25 47

DVI y= 1.187x0.394 0.599 0.080 24 y= 1.133x0.327 0.549 0.140 24 48
GRVI y= 0.522x + 0.635 0.517 0.088 28 y= 0.666x + 0.595 0.600 0.132 21 49

mNDVIred-edge y= 1.147x0.731 0.538 0.086 26 y= 1.105x0.561 0.543 0.141 26 52
GRVI y= 0.427x0.340 0.581 0.082 25 y= 0.457x0.304 0.520 0.145 28 53
ARVI y= 0.824x + 0.597 0.518 0.088 27 y= 0.708x + 0.635 0.415 0.160 29 56
VDVI y= 0.581x + 0.577 0.472 0.092 29 y= 0.717x + 0.529 0.543 0.141 27 56

3.2. Sensitivity Analysis
3.2.1. Global Sensitivity Analysis of the FPAR

A global sensitivity analysis was conducted using simulated canopy spectral data
with the PROSAIL model and the EFAST algorithm to quantify the relative contributions
of the leaf and canopy parameters to the variation in the FPAR (Figure 5). The results
consistently indicated that the three parameters of LAI, SZA and ALA produced the
dominant influences on the variability of the FPAR among the nine parameters of in-
terest, accounting for over 95% of total variance. Cab and psoil ranked fourth and fifth,
respectively, in terms of their contributions. Although there was a slight difference in the
total-order indices between the general and specific datasets, LAI remained the greatest
contributor to the variations in the FPAR. For the general dataset, the ALA and SZA jointly
dominated the variability of the FPAR, making up about 10% of the variance, except for
the LAI. Meanwhile, as the parameters distribution narrowed (specific dataset), the sensi-
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tivity index of the LAI decreased from 0.79 to 0.67, and the sensitivity of ALA increased
from 0.08 to 0.17. Although the influences of Cab and psoil on the FPAR variation were
relatively weak, they were still much higher than those of the other four parameters (i.e.,
N, Cm, hspot and Cw), of which the influences on the FPAR changes were less than one
thousandth and could be considered negligible.
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3.2.2. Local Sensitivity Analysis of the FPAR

In addition to the global sensitivity analysis, the variabilities of the VIs and FPAR as
functions of each parameter were investigated as well. Theoretically, a robust VI should
not only have a significant relationship with the target variable (FPAR) but also display
resistance to changes in other variables. For the ALA parameter, the variations in ALA had
a great influence on three VIs. The amount of canopy light interception decreased as ALA
increased, resulting in a decline in the values of the VIs and FPAR (Figure 6a). A good linear
regression between the VIs and FPAR could be observed when the ALA was less than 70◦.
Similar variabilities of OSAVI and mSR were achieved with increasing and decreasing ALA,
but the WDRVI presented remarkable changes beyond −100% and 100% (Figure 7a).

The leaf chlorophyll content was another important indicator for considering the sensi-
tivity of the VIs. Figures 6b and 7b depict the variations in the VIs and FPAR with the Cab
changes. In general, the VIs decreased with a drop in Cab due to an increase in the spectral
reflectance of visible light. Compared with the mSR and WDRVI, the OSAVI presented
excellent robustness for Cab changes. The relationships between OSAVI and FPAR were fully
consistent in most cases, with variations only observed at a Cab of 10 µg cm−2. The VIs of
mSR and WDRVI showed good robustness with higher Cab. Meanwhile, the sensitivities
of mSR and WDRVI to Cab variations were significantly increased when Cab was lower
than 30 µg cm−2. Substantial variations for mSR and WDRVI were noticed with a Cab of
10 µg cm−2, implying that the estimation accuracy was exacerbated during the crop maturity
period when the leaves turned yellow.

The effects of SZA changes on three VIs were illustrated in Figures 6c and 7c. The
SZA had a minimal effect on the three VIs, except for slight changes at the lowest SZA
(0◦). Although the VIs presented a strong resistance to changes in SZA, the regressions
between the VIs and FPAR were slightly different, with a high linear correlation with mSR
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and a nonlinear correlation with both OSAVI and WDRVI. These results indicated that the
estimated FPAR suppressed the impact from SZA, which broke through the common time
for capturing images at noon. The psoil was the important parameter in the PROSAIL,
which could significantly influence the canopy spectral reflectance by controlling the soil
brightness from dark (1) to bright (0). The variabilities in the VIs and FPAR in psoil are
shown in Figures 6d and 7d. The VIs would be decreased with the increase in psoil. A
smaller amplitude of regression for the variation in psoil was observed in OSAVI and the
sensitivity of the psoil parameter was decreased under a higher canopy cover (FPAR > 0.8).
Compared with OSAVI, WDRVI and mSR exhibited more variability and weaker resistance
to changes in psoil, particularly when the FPAR was between 0.4 to 0.6.
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3.3. Performance of the Inversion Model with the Validation Dataset

Although the robustness results of the VIs of OSAVI, WDRVI and mSR for interpreting
the variability in FPAR were given in the previous section, the performance of the optimal
estimation model was unstable when applied to different datasets. Therefore, in order to
address this issue, hybrid inversion models based on the ANN and SVR were established
to explore the optimal estimation of FPAR. The inversion performances of these models
are displayed in Table 5. Consistent results were achieved showing that OSAVI had better
predictive capability than the other VIs for all three inversion methods, with an outstanding
R2 and minimum RMSE. Among the three inversion methods, the ANN algorithm worked
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best, surpassing both the curve fitting and SVR methods. Overall, the ANN-OSAVI hybrid
inversion model based on PROSAIL model data presented the optimal capability for
estimating FPAR, with an R2 of 0.822 and RMSE of 0.055 for general dataset 1 and an R2 of
0.775 and RMSE of 0.059 for specific dataset 2.

Table 5. Comparison of the hybrid inversion models for estimating FPAR.

Dataset Inversion Method VIs
Model Performance

R2 RMSE

General dataset 1

Curve fitting
OSAVI 0.801 0.077
mSR 0.703 0.122

WDRVI 0.750 0.080

ANN
OSAVI 0.822 0.055
mSR 0.772 0.069

WDRVI 0.769 0.062

SVR
OSAVI 0.817 0.067
mSR 0.741 0.088

WDRVI 0.768 0.072

Specific dataset 2

Curve fitting
OSAVI 0.740 0.073
mSR 0.680 0.120

WDRVI 0.735 0.080

ANN
OSAVI 0.775 0.059
mSR 0.750 0.079

WDRVI 0.752 0.066

SVR
OSAVI 0.749 0.066
mSR 0.722 0.083

WDRVI 0.737 0.069

3.4. Evaluation of the Optimal Inversion Model for Estimating Canola

Although the ANN-OSAVI-based hybrid model exhibited the optimal accuracy com-
pared with WDRVI and mSR, the difference between the three hybrid models was minimal,
from which it is challenging to determine the capability in estimating the canola FPAR due
to potential discrepancies between the RTM model and real field conditions. Therefore,
hybrid models of the ANN algorithm combined with three VIs were evaluated using the
canola FPAR of each growing stage and the whole growing stages (Figure 8).

In general, the inversion accuracies of the hybrid model in the seedling stages were
significantly higher than those in other stages. Similar trends were observed for the
flowering and maturity stages. Specifically, for the seedling stage, ANN-OSVAI exhibited
the highest accuracy, with R2 and RMSE values of 0.78 and 0.043, respectively. ANN-
WDRVI and ANN-mSR also performed well but had slightly lower R2 values around
0.7 due to the discrete samples. Additionally, these models presented underestimated
tendencies when the FPAR > 0.6 (Figure 7a). With respect to the flowering stage, the ranges
of FPAR were narrower and mainly concentrated between 0.5 and 0.7. The underestimation
trend was greatly aggravated for all hybrid models, inducing increased estimated errors.
ANN-OSAVI produced the closest fit to the 1:1 reference, followed by ANN-mSR and
ANN-WDRVI. Overall, the ANN-OSAVI hybrid model presented the optimal capability for
retrieving FPAR in canola growth periods, with the highest estimation accuracy of R2 of
0.65 and an RMSE of 0.051. Based on the optimal inversion method, the estimation and
inversion of the FPAR in different growth stages of winter canola were mapped, as shown
in Figure 9.
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4. Discussion
4.1. Sensitivity Analysis of the FPAR and VIs

The purpose of the sensitivity analysis was to reveal the influences of the different leaf
and canopy parameters on the variation in the crop FPAR and filter VIs with high resistance
capability. For the EFAST, the range of PROSAIL model parameters also changed the
contribution to the final FPAR. Previous studies showed that PROSAIL model parameters
exhibited varying sensitivities across different spectral bands. For example, the red and near-
infrared bands were sensitive to changes in Cab and LAI while being relatively insensitive
to the soil matrix and atmospheric conditions [72]. ALA was sensitive to the near-infrared
band, whereas the visible light band was more sensitive to SZA [73,74]. The results of
two datasets with wide and narrow parameter ranges showed that the FPAR was mainly
sensitive to the vegetation canopy structure parameters, including the LAI, ALA and SZA
(Figure 5). Both LAI and ALA determined the canopy absorption efficiency by adjusting
the direct and diffuse directional transmittance and reflectance. SZA ultimately affected
the FPAR simulation value by altering the total incoming PAR above the canopy [75].
Dong et al. [12] suggested that SZA, LAI, ALA, Cab and the canopy background reflectance
had significant effects on the FPAR, while other parameters (hspot, Car, Cm) had lesser
effects on the FPAR. The results of this study indicate that Cab and psoil also exerted certain
effects on the FPAR.

The VIs are formed using a mathematical combination of different bands’ reflectances
to enhance the target signatures and eliminate other interferences [76,77]. Therefore,
the relationships between the VIs and FPAR are comprehensively affected by various
factors, such as atmospheric environment, vegetation type and remote sensing data
quality [23,78,79]. For example, OSAVI eliminated effects from the soil background [80]
and mSR might be less sensitive to canopy optical and geometric properties than NDVI [81].
WDRVI used NDVI near-infrared band reflectance for weighting calculations, reducing the
weight of these bands under medium- and high-biomass conditions [82]. The sensitivity
analysis of the VIs to the PROSAIL model parameters showed that the relationship
between OSAVI and FPAR was less affected by psoil and Cab in comparison with mSR and
WDRVI (Figure 6). The findings regarding psoil agreed well with the proposal of Bannari
and Staenz [83], but the results for Cab contradicted those reported by Liu et al. [84] and
Bannari and Staenz [83]. This discrepancy can be attributed to the change in Cab content
having a small effect on the FPAR at low LAI values. Moreover, this study did not observe
the advantage of mSR being less sensitive to canopy optical and geometric properties (e.g.,
ALA and SZA). Xie et al. [85] also showed that mSR was susceptible to environmental
impacts. WDRVI exhibited more fluctuations with Cab compared with OSAVI. In contrast,
the anti-interference capability of WDRVI to parameter changes was the worst compared
with OSAVI and mSR (Figure 7).
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4.2. Comparison of Modeling Inversion Methods

Although the RTM is susceptible to the limitations of the inversion method and
the complexity of the canopy radiation interaction process, it is considered a sounder
mechanism for retrieving vegetation canopy signatures than the empirical model [86].
Among various inversion methods based on the RTM, the hybrid inversion method has
the advantages of simplicity, accuracy and does not require initial values [40]. It has better
potential for estimating crop biophysical and biochemical parameters when applied to
remote sensing data [87]. In this study, the RTM combined with hybrid inversion was used
to obtain the optimal method for estimating the FPAR. The results of the fitting regression
showed that OSAVI, mSR and WDRVI exhibited higher correlations with the FPAR than
other VIs and presented better performances in estimating the FPAR. Similar results were
also reported by Leolini et al. [22], Dong et al. [88], and Viña and Gitelson [89]. Some
classical VIs, such as SR, NDVI and RVI, performed well only with the specific dataset, and
the overall rankings were slightly lower than with OSAVI, mSR and WDRVI. Therefore,
although most VIs were shown to be effective in retrieving vegetation properties, their
performances vary with different ranges [90].

It is necessary to determine the optimal VIs based on prior information. According
to the results of Table 5, the ANN showed the best fitting effect, and the fitting accuracy
of the SVR was higher than that of curve fitting but did not greatly improve the accuracy.
Although curve fitting as an empirical model has high computational efficiency, it did not
consider the complex transfer of solar radiation within the canopy, which may introduce
large errors. The SVR was computationally efficient and optimized to be more accurate
than other algorithms [91]. However, the SVR was more suitable for a small amount of
sampled data and may become unpredictable when simulating a large amount of data,
thereby weakening the predictive capability and ability to reflect the underlying patterns
of the sample [92]. The ANN, on the other hand, has the greatest potential for solving
nonlinear problems due to its accurate mapping capability [93]. The GEOV2 FPAR product
uses ANN for FPAR estimation [94]. Therefore, when the ANN algorithm is combined
with the VIs, it offers the advantages of easy interpretation, anti-interference and higher
inversion accuracy.

4.3. Estimating the FPAR in Canola Growth Periods with Hybrid Models

This study demonstrated that the hybrid inversion models combining ANN and VIs
were reliable for estimating the FPAR across the canola growth stages. However, comparing
the FPAR estimated by the ANN-VIs hybrid models with the in situ measured FPAR, there
was an underestimation trend at the flowering stage. Yellow flowers emitted red light
radiation (yellow = green + red) for canopy horizontal signals, and this increased radiation
caused an increase in the reflectance of the red band canopy [95,96]. The proportion of green
and blue bands was positively correlated with the number of flowers per unit area [97].
This led to the estimated FPAR value being less than the measurement, inducing the lowest
estimation for the canola flowering period. Furthermore, the stem gradually changed from
green to withered yellow, while the pod gradually changed from green to yellow and gray,
leading to errors in the estimation of the FPAR by the VIs at the maturity stage.

Traditional FPAR inversion studies mainly established correlations between the VIs
and FPAR, such as SR and NDVI [98,99]. However, the relationships between the VIs and
FPAR could be sensitive to change and unstable. Knyazikhin et al. [100] mentioned that the
simple proportional assumption between the NDVI and FPAR was valid only when the
canopy background was ideally black. There are also machine learning algorithms that can
estimate the FPAR. Shi et al. [101] demonstrated the feasibility of estimating the maize FPAR
using an ANN and stepwise multiple linear regression (SMLR) method (R2 > 0.6). Although
there were some errors in the FPAR estimation at the flowering and maturity stages, the
hybrid model still exhibited acceptable performance during the seedling stage. This could
provide a possibility for the accurate estimation of canola FPAR in the growth stages.
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5. Conclusions and Recommendations

In this study, to identify a robust hybrid inversion model to improve the canola FPAR
retrieving accuracy, the PROSAIL model was recompiled to simulate FPAR variations, and
a total of 29 VIs and two machine learning algorithms were devoted to retrieving the FPAR.
Three VIs of OSAVI, mSR and WDRVI had better capability in revealing the variations in
the FPAR than the other VIs across both datasets. OSAVI, in particular, exhibited greater
resistance to changes in the leaf and canopy parameters. The hybrid inversion model
revealed that ANN-OSAVI exhibited the best performance for the canola FPAR retrieval,
with whole R2 and RMSE values of 0.65 and 0.051, respectively. In specific growth stages,
the model achieved R2 and RMSE values of 0.78 and 0.043 in the seedling stage, 0.63 and
0.047 in the flowering stage, and 0.61 and 0.050 in the mature stage, respectively.

This study highlights the potential of hybrid model methods in retrieving the canola
FPAR during each growth stage. An accurately estimated FPAR could provide more
veritable crop growth information for biomass prediction and vegetation productivity
model (e.g., gross primary production (GPP)). For example, Clevers [102] estimated the
time series of the FPAR of sugar beet and used it to calibrate the SUCROS model to achieve
crop dry matter and yield predictions. Although these are encouraging results, further
improvements are warranted. For instance, considering the internal structure of leaves,
in addition to the woody part, there are other components that do not participate in
photosynthesis but still absorb PAR, such as pigments, leaf veins and cell walls. The energy
absorbed by these components accounts for 20% to 30% of the total leaf absorption [103].
Solar radiation absorbed by the non-photosynthetic part holds no practical significance
for crop growth and development. Cheng et al. [2] investigated the impact of the LUE
and FPAR changes on GPP estimation and proposed that the chlorophyll FPAR exhibited
seasonal dynamics more similar to the flux tower than the canopy FPAR. Zhang et al. [104]
studied the solar radiation absorption characteristics of trembling aspen forests to estimate
the chlorophyll FPAR and canopy FPAR and suggested that the vegetation productivity
had a strong correlation with the chlorophyll FPAR, but a weak correlation with the
canopy FPAR. Therefore, future efforts should be devoted to developing and refining the
FPAR from the canopy scale to the leaf scale to achieve higher accuracy in vegetation
productivity estimations.
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