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Abstract: Reference evapotranspiration (ET0) is one important agrometeorological parameter for
hydrological studies and climate risk zoning. ET0 calculation by the FAO Penman–Monteith method
requires several input data. However, the availability of climate data has been a problem in many
places around the world, so the study of scenarios with different combinations of climate data has
become essential. The aim of this study was to evaluate the performance of artificial neural network
(ANN), random forest (RF), support vector machine (SVM), and multiple linear regression (MLR)
approaches to estimate monthly mean ET0 with different input data combinations and scenarios.
Three scenarios were evaluated: at the state level, where all climatological stations were used
(Scenario I–SI), and at the regional level, where the Minas Gerais state was divided according to the
climatic classifications of Thornthwaite (Scenario II–SII) and Köppen (Scenario III–SIII). ANN and
RF performed better in ET0 estimation among the models evaluated in the SI, SII, and SIII scenarios
with the following data combinations: (i) latitude, longitude, altitude, month, mean, maximum and
minimum temperature, and relative humidity and (ii) latitude, longitude, altitude, month, mean
temperature, and relative humidity. SVM and MLR models are recommended for all scenarios in
situations with limited climatic data where only air temperature and relative humidity data are
available. The results and information presented in this study are important for the agricultural chain
and water resources in Minas Gerais state.

Keywords: artificial neural network; random forest; support vector machine; multiple linear regression;
crop water requirements; meteorological data

1. Introduction

Evapotranspiration is essential information in agriculture. The agriculture sector is
found to be a major water consumer in most countries. The proportion of water withdrawn
for agriculture in developing counties is estimated at nearly 81%, while it accounts for 71%
of water withdrawal globally. Information on evapotranspiration is important in order to
estimate crop water requirements and irrigation water requirements and control several
hydrological processes [1–3]. Evapotranspiration (ET) is an agrometeorological parameter
that can be measured using a lysimeter or water balance approach. These methods for
measuring ET are not always possible to use. The lysimeter and water balance approaches
are time-consuming methods and need precisely and carefully planned experiments [4].
Therefore, the use of evapotranspiration estimation methods is very important, and, for
that, an adequate meteorological database is necessary to achieve good estimates [5,6].
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The concept of evapotranspiration is related to the transfer rate of water from the
soil–plant system to the atmosphere. In this study, we focus on the use of reference evapo-
transpiration (ET0), which is related to the rate of water consumption from a reference crop
surface (grass or alfafa). ET0 can be used for a large area, e.g., for climatic classification of a
region [7,8], or for small areas, e.g., for obtaining crop water requirements or crop evapo-
transpiration (ETc) [9–11]. The standard model used today for reference evapotranspiration
estimation is the Penman–Monteith evapotranspiration model. This model is considered
more realistic physically, but it requires some additional meteorological variables when
compared with other methods [8]. This dependence on several meteorological variables
combined with the limitations of weather station networks and interruptions and errors
in weather databases makes it difficult to measure ET0. Thus, some models are used
to estimate ET0. These models seek less dependence on many weather inputs and high
predictive power.

Among the models used in the literature, this study focused on the following models:
artificial neural network (ANN), random forest (RF), support vector machine (SVM), and
multiple linear regression (MLR) models. These models show different levels of predictive
capacity for different meteorological variables and in other fields of science [11–14]. ANN,
RF, and SVM models can capture complex relationships between input and output data,
which makes them powerful models for modeling. These machine-learning models have
been successfully used to estimate ET0 with fewer input meteorological data [12,15,16].
Although the inability of MLR to handle non-linear relationships between dependent and
independent variables is evident in some studies, MLR has been successfully used to
estimate ET0 [13,17].

Considering the models, ANN is a promising and effective tool for non-linear model-
ing and complex time series. An ANN’s architecture is composed of three layers—input,
hidden, and output layers—and each layer includes an array of processing elements [6,12,16].
Several papers have shown the excellent predictive capacity of ANN models with different
architectures in studies with ET0 [14,15,18]. The RF model is a non-parametric statistical
data modeling method that is decision-tree-based. RF is a classification and regression
technique that has also been adopted to predict agrometeorological parameters such as
ET0 [15,19,20]. RF has been found to be a more efficient predicting tool compared with
other tools like ANN [11,21]. SVM is a supervised machine-learning algorithm developed
by [22]. SVM is used for regression, classification, pattern recognition, and forecasting.
This model has been used in meteorological variable estimation and shown high predictive
power [23,24]. MLR aims at explaining the collinearity between a dependent variable
and an independent variable by means of a linear combination of independent predictor
variables (more than one). This regression technique has been adopted in several fields of
science, including climatology, hydrology, and irrigation, with varying performance [17].

There is so much literature on evapotranspiration that in this context it is practically
impossible to propose even a partial review. Some remarkable recent contributions are
due to [25–32]. This paper focuses on ET0 estimation in the Minas Gerais state, Brazil,
using different models. Agriculture has an important role in this region and ET0 estimation
on a monthly scale is extremely important for the agricultural chain. Among its main
applications are the following: (i) climatic classification of a region—fundamental in the
zoning of climatic risk in agricultural regions; (ii) hydrological processes—knowledge
of evapotranspiration is fundamental in the hydrological cycle and, consequently, all
studies related to hydrology and water resources; (iii) crop water requirements or crop
evapotranspiration (ETc)—essential information in planning and implementing irrigation
projects (i.e., determining the water demand of a given crop during the months of the year);
and (iv) agrometeorological modeling—several models use ET data as an input variable
for estimating productivity and other important variables; among other applications. This
study also presents a relevant and innovative contribution through evaluation of the
evapotranspiration estimates considering different climatic scenarios for the same state;
that is, for regions which cover an extremely large area (such as the Minas Gerais state),
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there may be a trade-off between generalization capacity and the performance of developed
models. Therefore, data partition in the spatial sense aims to achieve the highest efficiency
for the evaluated models, thus becomes relevant for the study of different climatic scenarios.

Considering that the presence of gaps or discontinuities in the meteorological data
series can delay the state of development, this study proposes to analyze the use of different
combinations of input data and climate scenarios for the accurate estimation of ET0, and,
especially, with the minimum possible use of input data in these models, this can facilitate
the estimation of ET0. The hypothesis of this study is that models based on machine
learning are an efficient tool for estimating evapotranspiration, even under conditions of
limited climatic data.

ET0 calculated by the FAO Penman–Monteith method requires several input data.
This amount of input data makes it difficult to use this method. New technologies can
make it easier to obtain ET0 reliably. In this context, the aim of this study was to develop,
evaluate, and compare the performance of ANN, RF, SVM, and MLR models in estimating
ET0 with four different combinations of input data in three climate scenarios.

2. Materials and Methods
2.1. Study Area and Data Sources

The Minas Gerais state is the fourth-largest in Brazil, with a territorial extent of
586,513.993 km2 [33]. The study was performed with the database of Minas Gerais state,
Brazil, between the parallels of 14◦13′58′′ and 22◦54′00′′, a southern latitude, and the
meridians of 39◦51′32′′ and 51◦02′35′′ west of Greenwich. Monthly data from 56 clima-
tological stations of the Brazilian National Institute of Meteorology (INMET) were used.
Their respective geographical coordinates, altitudes, and climatic classifications have been
presented in Table 1.

Table 1. Principal climatological stations of the INMET used to estimate ET0.

ID Local Lat/Lon/Alt (◦/◦/m) K Tho

1 Aimorés −19.49/−41.07/79.93 Aw D
2 Araçuaí −16.84/−42.06/317.67 As D
3 Araxá −19.6/−46.94/1018.28 Cwb B2
4 Arinos −15.91/−46.1/523 Aw C1
5 Bambuí −20.03/−46/684.43 Cwa B2
6 Barbacena −21.23/−43.78/1128.8 Cwb B3
7 Belo Horizonte −19.93/−43.95/915.47 Cwb B2
8 Bocaiúva −17.1/−43.8/633 Cwa C1
9 Bom Despacho −19.72/−45.36/695 Cwa B1
10 Caparaó −20.52/−41.9/836.25 Cwb B2
11 Capinópolis −18.72/−49.56/608.98 Aw C2
12 Caratinga −19.73/−42.13/609.56 Cwa C2
13 Conceição do Mato Dentro −19.02/−43.43/663.02 Cwa B1
14 Coronel Pacheco −21.54/−43.26/411.03 Cwa B2
15 Curvelo −18.74/−44.45/668.26 Cwa C1
16 Diamantina −18.23/−43.61/1318.05 Cwb B2
17 Divinópolis −20.17/−44.87/787.42 Cwa B1
18 Espinosa −14.91/−42.8/565.52 Cwb D
19 Florestal −19.88/−44.41/753.51 Cwa B2
20 Formoso −14.94/−46.23/854.6 Aw C2
21 Frutal −20.03/−48.93/547.09 Aw C2
22 Governador Valadares −18.84/−41.9/156.54 Aw C1
24 Itamarandiba −17.85/−42.85/919.37 Cwb C2
25 Ituiutaba −18.95/−49.52/540.09 Aw C2
26 Jaíba −15.08/−44.01/453.62 As D
26 Jaíba −19.49/−42.54/298 As C2
27 Janaúba −15.8/−43.29/534.61 As D
28 Januária −15.44/−44.36/480 Aw C1
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Table 1. Cont.

ID Local Lat/Lon/Alt (◦/◦/m) K Tho

29 João Monlevade −19.82/−43.14/859.84 Cwb B2
30 João Pinheiro −17.74/−46.17/759.62 Aw C2
31 Juiz de Fora −21.77/−43.36/936.9 Cwb B3
32 Juramento −16.77/−43.66/655.59 Cwb C1
33 Lambari −21.94/−45.31/884.56 Cwb B3
34 Lavras −21.22/−44.97/916.19 Cwb B2
35 Machado −21.68/−45.94/892.44 Cfb B2
36 Maria da Fé −22.31/−45.37/1281.36 Cwb A
37 Monte azul −15.16/−42.86/623.22 As D
38 Montes Claros −16.68/−43.84/645.87 Cwa C1
39 Paracatu −17.24/−46.88/711.41 Aw C2
40 Patos de Minas −18.52/−46.44/947.68 Cwa B1
41 Pedra Azul −16/−41.28/647.97 As C1
42 Pirapora −17.34/−44.92/509.52 Aw C1
43 Poços de Caldas −21.91/−46.38/1077.08 Cwb B3
44 Pompéu −19.22/−45/692.21 Cwa C2
45 Salinas −16.15/−42.28/476.07 As D
46 São João Del Rei −21.3/−44.27/991 Cwb B3
47 São Lourenço −22.12/−45.04/930.65 Cwb B3
48 São Sebastião do Paraíso −20.9/−47.11/820 Cwb B3
49 Serra Azul de Minas −20.02/−44.35/765 Cwa B2
50 Serra dos Aimorés −17.79/−40.25/211.92 Aw C1
51 Sete Lagoas −19.48/−44.17/753.68 Cwa B1
52 Teófilo Otoni −17.86/−41.5/349.11 Aw C1
53 Uberaba −19.73/−47.95/753.41 Cwa B2
54 Uberlândia −18.91/−48.25/874.6 Cwa B2
55 Unaí −16.36/−46.88/595.59 Aw C1
56 Viçosa −20.76/−42.86/697.53 Cwa B1

K—Köppen climatic classification; Tho—Thornthwaite climatic classification; Cwb—Humid subtropical with
dry winter and temperate summer; Cwa—Humid subtropical with dry winter and hot summer; Cfb—Humid
subtropical with oceanic climate without dry season and with temperate summer; As—Tropical with dry summer;
and Aw—Tropical with dry winter; A—super-humid; B4—humid; B3—humid; B2—humid; B1—humid; C2—sub-
humid; C3—dry sub-humid; and D—semiarid. Source: the authors.

The input variables that were considered in this study were latitude; longitude; alti-
tude; month; and average monthly data mean, maximum, and minimum air temperatures
(Tmean, Tmax, Tmin); relative humidity (RH); atmospheric pressure (P); wind speed (U2);
and insolation (n). These data were obtained in climatological stations with at least 10 years
of flawless data (no missing or faulty data) from a period between 1989 and 2019 (30 years).
This selection criterion led to the inclusion of 56 stations. Due to the removal of inaccu-
rate and inconsistent data, a total of 13,577 data rows (each of these data rows contains
all the meteorological variables used in the models) were considered for analysis. Wind
speed, measured at a 10 m height, was converted to 2 m [34]. Days with missing or faulty
data were removed. Faulty data were identified when Tmin was higher than Tmax or
Tmean; Tmean was higher than Tmax; RH was out of the range 0–100%; P was higher than
101.4 kPa; or U2 or n were negative. The output variable was reference evapotranspiration
(ET0).

The reasons for using these variables were as follows. Latitude and longitude are the
variables related to position. Solar radiation intensity changes as position changes on the
terrestrial globe. The altitude variable is regarded as the surface component. It can be stated
that the higher the altitude, the lower the temperature. Temperature is the availability of
energy in the system, and relative humidity is the difference in gradient; the lower the
humidity, the greater the capacity of the environment to absorb humidity. All these factors
can influence evapotranspiration.

In general, a more homogeneous region can enhance the accuracy of climatic variable
prediction models. According to [12], building models specifically for regions with similar
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climatic conditions can increase performance. However, in large areas, there may be a
trade-off between generalization capacity and the performance of developed models. Data
partition in the spatial sense aims to achieve the highest efficiency for evaluated models;
thus, different scenarios were created.

The models were developed in three different scenarios (SI, SII and SIII) in order to
achieve the maximum predictive capacity for each model. SI—at state level, the models
were trained and tested with data from the 56 climatological stations. The resulting
model estimates evapotranspiration in any location within the Minas Gerais state. SII—at
regional level, the Minas Gerais state was divided into two regions according to the climatic
classification system proposed by Thornthwaite [27]: a region with climate classifications
of A, B4, B3, B2, and B1 (Tho1—27 climatological stations) and a region with climate
classifications of C2, C1, and D (Tho2—29 climatological stations). The models were trained
and tested with data from the climatological stations of each climatic region (Figure 1).
SIII—at regional level, the Minas Gerais state was divided into two regions: a region with
climate classifications of Cwb, Cwa, and Cfb (K1—35 climatological stations) and a region
with climate classifications of Aw and As (K2—21 climatological stations) using the climatic
classification system proposed by Köppen. The models were trained and tested with data
from the climatological stations of each climatic region (Figure 1).
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2.2. Penman–Monteith FAO Model

The FAO Penman–Monteith equation (FPM) was used to estimate average monthly
ET0. This method is described in [34]. It is common practice to use ET0 values estimated by
the FPM equation as reference data. The climatological stations used in this study do not
provide net solar radiation (Rn) data. The Rn data were obtained from insolation, latitude,
day of the year, and other variables. They are calculated using the equations detailed
in [26].

Although recommended as a reference method, the equation proposed for FAO has
several parameters based on a series of general assumptions about ground cover and
vegetation, which means that the FPM equation is a simplification. However, due to the
lack of reliable data from lysimeters and the difficulty of handling them, use of the FPM
equation is recommended. According to [37], this equation is recommended for estimating
ET0 and validating other equations in the absence of experimental measurements; studies
that consider FPM targets to train and test models often overlook the implications that arise
from this simplification.

2.3. Model Development and Statistical Tests

In this study, different input combinations of the average monthly data were used as in-
puts to estimate ET0. The input data were geographic coordinates, altitude, month, Tmean,
Tmax, Tmin, and RH. In the search for better performance, the four input combinations
(In: n is the amount of input data) evaluated in this paper were: (I8) latitude, longitude,
altitude, month, Tmean, Tmax, Tmin, and RH; (I6) latitude, longitude, altitude, month,
Tmean, and RH; (I3) month, Tmean, and RH; and (I2) Tmean and RH. Combinations were
employed to investigate the influence of each meteorological variable on estimation and the
resulting impact when a variable was removed. Moreover, average temperature (T) and av-
erage relative humidity (RH) data were kept consistent across all combinations, as they are
responsible for the energy available in the system and the gradient difference, respectively.

The ANN, RF, SVM, and MLR models were trained for each combination. The models
were developed using data from each climate scenario. These combinations were compared
with each other in each model.

The predictive quality of each model in terms of variation, precision, accuracy, and
performance was evaluated by four statistical criteria. The statistical criteria were mean
absolute error (MAE), root-mean-square error (RMSE), coefficient of determination (R2),
and Pearson’s correlation coefficient (r) (equations below). MAE and RMSE indicate how
close the predicted values were to the observed value. Thus, the accuracy of each model
could be predicted. R2 represents the percentage of the variation in the dependent variable
explained by the independent variable. r indicates the degree of dispersion of the data
obtained in terms of the mean.

MAE =
∑N

i=1|Pi−Oi|
N

(1)

RMSE =

√
∑N

i=1|Pi−Oi|2

N
(2)

R2 =

 ∑N
i=1
(
Pi− P

)(
Oi−O

)√(
∑N

i=1
(
Pi− P

)2
)
(∑N

i=1
(
Oi−O

)2
)


2

(3)

r =
∑N

i=1 (Pi − P)(Oi −O
)√(

∑N
i=1

(
Pi− P

)2
)
(∑N

i=1
(
Oi−O

)2
) (4)



Agronomy 2023, 13, 2366 7 of 21

where Pi is the predicted value (mm), Oi is the observed value (mm), P is the mean of the
predicted values (mm), O is the mean of the observed values (mm), and N is the number of
data pairs.

2.4. Artificial Neural Networks (ANN)

ANNs have performance characteristics resembling the biology of the human brain.
ANNs, in general, have architectures with connections between nodes (neural networks)
and methods to determine the connection weights. In this study, an ANN of the feed-
forward multilayer perceptron (MLP) type was used [38]. An MLP is a robust choice due to
its ability to handle a variety of problems and learn complex nonlinear functions effectively.
With multiple hidden layers, MLPs can capture intricate relationships within the data,
providing greater flexibility in modeling [12,16]. The training of this ANN involved two
phases. In the first phase, or forward pass, the input sign spreads forward layer by layer. In
the second phase, or reverse pass, the sign is backpropagated for correction of the error.

ANN was implemented using the Waikato Environment for Knowledge Analysis
(WEKA; version 3.8.2 © 1999–2017) developed by the University of Waikato, Hamilton,
New Zealand. The input data consisted of different combinations of the latitude, longitude,
altitude, month, Tmean, Tmax, Tmin, and RH for each evaluated location, using ET0 as the
output variable.

All adjustments were performed by cross-validation. According to [14], the cross-
validation approach enables successful results. The method employed in constructing
the models was k-fold cross-validation. This technique uses all available data, which is
partitioned into k disjoint subsets roughly equal in size. This partitioning is performed by
random sampling of the learning set without replacement. The model is then trained k
times, using k-1 subsets for training and the remaining subset for validation and to assess
its performance. This procedure is repeated until each of the k subsets has served as the
validation set. The average of the performance metrics from all of these interactions is
considered the cross-validation performance [39]. This methodology was used due to the
limited number of climatological stations within the Minas Gerais state. According to [39],
K-fold cross-validation is commonly utilized when the quantity of data is limited, as it
helps to maximize the utilization of the available data. In this way, this method makes it
possible to work with fewer data and obtain optimal results.

The different ANN configurations and number of folds used in cross-validation are
shown in Table 2. In this study, models with one or two hidden layers were utilized
(Table 2). Initial tests were performed to determine the best-performing model within each
input data combination. Various configurations, including different numbers of neurons in
the layers, were tested. The architecture with the highest performance for each data input
combination was selected (Figure 2).

Table 2. WEKA configuration in the ANN implementation.

ANN

I8 I6 I3 I2

Learning rate 0.3 0.3 0.3 0.3
Momentum 0.2 0.2 0.2 0.2
Number of training epochs 1000 1000 1000 1000
Number of input data 8 6 3 2
Number of hidden layers 2 2 1 1
Number of neurons into the hidden layer 7.7 7.7 7.7 7
Number of folds in cross-validation 18 18 8 8

In italics: WEKA default values.
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However, it is important to note that using multiple hidden layers allows the model
to learn more complex representations of the data. While it is possible for a single hidden
layer to approximate any function, it may be computationally inefficient or require a large
number of neurons in the hidden layer to learn an adequate representation of the data.
Additionally, neural networks with a single hidden layer often struggle with generalization,
which can lead to inaccurate prediction for unseen data. However, in some situations, it
was observed that a single layer performed better than two.

Regarding the initial random assignment of weights, also known as seed, WEKA
allows users to change the values as necessary or randomly generate them without the need
for an initial introduction. However, if no weight is assigned, the default setting will assign
a value of 1 to the seed. Therefore, in this study, the random seed for initialization was set
to 1. This allows for consistent comparison of results across different runs of the algorithm
and facilitates assessment of the reliability of the results. The other WEKA configuration
parameters were kept as standard.

2.5. Support Vector Machine (SVM)

In this study, SVM equations were applied based on Vapnik’s theory [22]. SVMs are
separated into two main categories: (i) the classifier model and (ii) the regression model
(SVR). SVR is used to take a hyperplane suitable for the data used. The distance to any
point in this hyperplane shows the error of that point [14]. SVR can be translated into the
following equation:

y = f(x) = ω ϕ(xi)+b (5)

where x is the input data;ϕ(x) represents a function that can transfer x into high-dimensional
feature spaces; andω (weight vector) and b are coefficients which are estimated by minimiz-
ing the regularized risk function. The error function in the SVM model is minimized based
on the mentioned constraints in the equation below. Further details on the application of
SVM can be found in [40].
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min
1
2
||w||2 + C

N

∑
i=1

(ξ1 + ξ
∗
1) (6)

Subject to


yi − b[ω ϕ(xi)] ≤ ε+ ξ1

[ω ϕ(Xi)] + b− yi ≤ ε+ ξ
∗
1

ξ1ξ
∗
1 ≥ 0

(7)

where C is the capacity or penalty parameter, yi is the estimated output by SVM, and ξi
and ξ*i are slack variables which must satisfy the function constraints. The SVM model
changes the scale of the problem by using kernel functions to solve non-linear problems.
SVM provides four different kernel functions: sigmoid, linear, polynomial, and radial basis
functions. In this study, during SVM modelling, all kernel functions were tested. The linear
kernel function proved to be more efficient for estimating ET0. The linear kernel function is
as follows:

K(xi, yi) = xiyi (8)

where xi and xj are vectors in the input space. The SVM was implemented by WEKA. The
input data consisted of different combinations (I8, I6, I4 and I2) and were evaluated in the
three different scenarios. The WEKA configuration parameters in the SVM implementation
were: SVM Type, ε-SVR; cost parameter C, 0.01. The random seed for initialization was
set to 1, and gamma was not utilized as the kernel function was linear. The other WEKA
configuration parameters were kept as standard for the libsvm library. The libsvm library
simplifies the use of SVM in various studies and has enabled its application in pattern
recognition and other machine-learning fields [39]. Eighteen folds of the sample set were
used in cross-assessment. The same WEKA configuration parameters were used for all
input data combinations and in all scenarios.

2.6. Random Forest (RF)

RF is an ensemble learning technique based on a collection of tree predictors [41]. It
is a combination of many predictor trees (forest), in which each tree is generated from a
random vector and sampled independently, with the same distribution for all trees in the
forest. According to [20], there are three simple steps to building an RF model: (i) build
n bootstrap samples from the original data; (ii) build an unpruned regression tree; and
(iii) predict new data by aggregating the predictions of the n. More details can be found
in [20,42] regarding the representation of the steps used in the RF model following the
resampling strategy.

RF was implemented by WEKA. The WEKA configuration that resulted in the greatest
predictive capacity was a bag size of 100 (the size of each bag, as a percentage of the training
set size); 500 iterations (the number of trees in the random forest); unlimited depth for
individual trees (as standard); and a random seed for initialization of 1. The other WEKA
configuration parameters were kept as standard. All adjustments were performed with
cross-validation, and twenty folds of the sample set were used; therefore, the number of
splits is not specified. The same WEKA configuration parameters were used in all input
data combinations and in all scenarios as they yielded the best results. Adjustments to the
hyperparameters aimed at minimizing the root-mean-square error (RMSE) of the validation
set. The methodology applied was similar to that employed by [43]; however, it did not
involve a separate test set due to the cross-validation approach.

2.7. Multiple Linear Regression (MLR)

MLR was developed to estimate ET0 based on different combinations of the indepen-
dent variables. The base regression equation can be expressed as:

Yi = β0 + β1lat+β2lon+β3alt+ β4month+ β5Tmax+β6Tmean+ β7Tmin+ β8RH (9)
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where Yi is the dependent variable (ET0); lat, lon, alt, month, Tmean, Tmax, Tmin, and
RH are independent variables; and β0, β1, β2, β3, β4, β5, β6, β7, and β8 are the regression
coefficients.

MLR was implemented using WEKA. The attribute selection method used in the
WEKA configuration was the M5 method. This method initially builds the MLR model with
all independent variables. Then, the independent variables with the smallest standardized
coefficients are removed stepwise until no improvement is observed in the estimate of the
error given by the Akaike information criterion (AIC). The AIC seeks the best model in
terms of complexity and performance. This technique evaluates different models relative
to each other; therefore, when adding more parameters, the AIC of the model may show
inadequate performance [44]. The other WEKA configuration parameters were kept as
standard. Eighteen folds of the sample set were used in cross-assessment. The same WEKA
configuration parameters were used for all input data combinations and in all scenarios.

3. Results and Discussion

The results presented in this study are essential for more adequate water management,
since accurate estimation of ET0 is fundamental for water demand quantification. Moreover,
the use of different estimation techniques and combinations of input data in the models
allowed us to obtain important results at different spatial scales. It must be noted that while
daily ET0 values are useful for conducting irrigation, monthly ET0 provides an overview of
how much water is required to maintain plant health over a longer period, such as a month
or growth cycle. Monthly ET0 is particularly valuable in irrigation planning, as it helps
water managers, designers, development planners, and farmers estimate the total water
requirements for a successful harvest and make accurate decisions.

According to the results, it was possible to observe linear correlations between the
input data and ET0, with the variables Tmean, Tmax, and Tmin showing the best correlation
(Figure 3). The other variables have a low (lat, alt and RH) or no (lon and month) correlation
with ET0. Behavior inversely proportional to ET0 was observed for the lat, alt, and RH
variables. Higher latitudes tend to be cooler regions, with less energy available for the ET0
process. An increase in altitude also results in a decrease in temperature according to the
vertical thermal gradient in the troposphere. An increase in RH increases the potential
gradient, increasing the water transfer rate from the soil–plant system to the atmosphere.
However, proportional behavior was observed between the Tmean, Tmax, and Tmin
variables and ET0. An increase in Tmean, Tmax, or Tmin results in more energy being
available for ET0. The authors of [14] observed the same behavior in the variables Tmean,
Tmax, Tmin, and RH when estimating ET0. The variables Tmean, Tmax, and Tmin were all
highly correlated with ET0, and the RH mean was the least correlated variable.

In this way, the capability of machine-learning approaches using the variables men-
tioned above was investigated in different conditions and scenarios. The ANN, RF, SVM,
and MLR statistical performance indicators for estimating ET0 in any location within the
Minas Gerais state (SI: data from the 56 climatological stations—100% of the input data
available) are presented in Table 3.

All the models developed with the I8 and I6 input combinations exhibited better
performance than versions developed with I3 and I2. The lowest predictive capacity
was observed when the RF model was used with the I8 input combination. The greatest
predictive capacity, in SI, was observed when the RF and ANN models were used with
the I6 and I8 input combinations, respectively. The SVM and MLR models exhibited
better performance than ANN and RF when only Tmean and RHmean (I2) were used as
input data.
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Table 3. Statistical performance indicators of the ANN, RF, SVM, and MLR models in SI.

SI

I8 I6 I3 I2

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

ANN 0.966 0.167 0.215 0.963 0.178 0.224 0.943 0.210 0.278 0.860 0.332 0.429
RF 0.955 0.191 0.250 0.966 0.166 0.220 0.934 0.220 0.296 0.859 0.335 0.426

SVM 0.933 0.23 0.290 0.927 0.242 0.310 0.878 0.311 0.399 0.877 0.312 0.399
MLR 0.933 0.231 0.298 0.928 0.241 0.308 0.877 0.313 0.399 0.877 0.312 0.398

Values in bold indicate the best results within each model; values in italics indicate the best results within each
input data combination. Data combinations: (I8) latitude, longitude, altitude, month, Tmean, Tmax, Tmin, and
UR; (I6) latitude, longitude, altitude, month, Tmean, and RH; (I3) month, Tmean, and UR; and (I2) Tmean and
RH. RMSE and MAE are in mm day−1.
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When comparing combination I8 with I6, the average r, MAE, and RMSE values for
all models do not show high variation. Removal of the geographic coordinates (I6 to I3)
resulted in greater performance reduction for the SVM and MLR models. The greatest
impact on performance was observed for ANN and RF when the month variable was
removed (I3 to I2). Average r decreased by 8%; MAE and RMSE increased by 52.2% and
43.9%, respectively. The removal of month did not impact the SVM and MLR models’
performance.

In the case of SII, a scenario in which the state of Minas Gerais was divided into two
areas (Tho1 and Tho2), the statistical performance indicators of the models used in ET0
estimation are shown in Table 4.

Table 4. Statistical performance indicators of the ANN, RF, SVM, and MLR models in SII.

SII

Tho.1 (A, B4, B3, B2, and B1)

I8 I6 I3 I2

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

ANN 0.976 0.135 0.168 0.965 0.156 0.196 0.959 0.169 0.212 0.904 0.266 0.322
RF 0.964 0.164 0.198 0.973 0.143 0.174 0.963 0.16 0.198 0.920 0.234 0.291

SVM 0.955 0.181 0.219 0.948 0.191 0.235 0.925 0.232 0.281 0.924 0.235 0.284
MLR 0.957 0.178 0.216 0.949 0.190 0.233 0.927 0.23 0.278 0.925 0.233 0.282

Tho.2 (C2, C1, and D)

I8 I6 I3 I2

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

ANN 0.940 0.211 0.269 0.944 0.210 0.260 0.895 0.269 0.353 0.818 0.377 0.462
RF 0.925 0.227 0.302 0.943 0.200 0.267 0.879 0.29 0.374 0.817 0.350 0.453

SVM 0.893 0.276 0.353 0.898 0.271 0.346 0.840 0.342 0.427 0.840 0.340 0.427
MLR 0.898 0.269 0.345 0.899 0.267 0.342 0.839 0.339 0.427 0.839 0.339 0.427

Values in bold indicate the best results within each model; values in italics indicate the best results within each
input data combination. Data combinations: (I8) latitude, longitude, altitude, month, Tmean, Tmax, Tmin, and
UR; (I6) latitude, longitude, altitude, month, Tmean, and RH; (I3) month, Tmean, and UR; and (I2) Tmean and
RH. RMSE and MAE are in mm day−1.

Tho1 and Tho2 had 48.2% and 51.8%, respectively, of the data available as input data.
The highest predictive capacities in the Tho1 and Tho2 areas were observed when the ANN
model was used with the I8 input combination and RF model was used with the I6 input
combination, respectively. The removal of Tmax and Tmin input data (I6) did not increase
the models’ predictive capacities in the Tho1 area, except for the RF model. This behavior
is similar to that observed in SI. However, all models performed better in the Tho2 area
when the I6 input combination was used (better results).

Removal of the month variable (I3 to I2) resulted in the greatest impact on the ANN
and RF models’ quality. When comparing combination I8 with I3, the average r values of
the ANN and RF models decreased by 7.2% and 5.7%, respectively. The MAE values of the
ANN and RF models increased by 36.4% and 31.6%, respectively. However, no expressive
variation was observed in the performance of the SVM and MLR models.

In the case of SIII, the statistical performance indicators of the models for this scenario
are presented in Table 5, where the Minas Gerais state was divided in areas K1 and K2,
which were characterized by 62.5% and 37.5% of the climatological stations, respectively.
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Table 5. Statistical performance indicators of the ANN, RF, SVM, and MLR models in SIII.

SIII

K1 (Cwa, Cwb, and Cfb)

I8 I6 I3 I2

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

ANN 0.966 0.170 0.209 0.968 0.163 0.204 0.961 0.180 0.225 0.912 0.270 0.334
RF 0.963 0.175 0.221 0.973 0.15 0.191 0.962 0.174 0.222 0.920 0.261 0.318

SVM 0.949 0.199 0.256 0.944 0.209 0.267 0.927 0.247 0.305 0.926 0.248 0.306
MLR 0.950 0.204 0.253 0.945 0.212 0.266 0.928 0.245 0.303 0.917 0.247 0.305

K2 (Am and Aw)

I8 I6 I3 I2

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

ANN 0.964 0.16 0.201 0.889 0.269 0.350 0.895 0.263 0.340 0.817 0.360 0.447
RF 0.924 0.23 0.294 0.943 0.203 0.258 0.885 0.285 0.352 0.826 0.347 0.429

SVM 0.889 0.270 0.347 0.890 0.274 0.347 0.846 0.329 0.405 0.847 0.326 0.403
MLR 0.892 0.269 0.343 0.894 0.269 0.340 0.846 0.325 0.404 0.848 0.323 0.403

Values in bold indicate the best results within each model; values in italics indicate the best results within each
input data combination. Data combinations: (I8) latitude, longitude, altitude, month, Tmean, Tmax, Tmin, and
UR; (I6) latitude, longitude, altitude, month, Tmean, and RH; (I3) month, Tmean, and UR; and (I2) Tmean and
RH. RMSE and MAE are in mm day−1.

In general, the ANN and RF models were better than the SVM and RLM models with
the input combinations I8, I6, and I3. When the I2 combination was used, the SVM and
RLM models were superior. The model with highest predictive capacity in the K1 area was
ANN with the I8 input combination. The RF model with the I6 input combination showed
the highest predictive capacity in the K2 area.

In the K1 area, removal of the month variable resulted in the greatest impact on the
ANN and RF models’ performance. Removal of the alt, lat, and lon variables resulted in the
highest impact on the SVM and MLR models’ performance. In the K2 area, the behavior of
RF, SVM, and MLR was similar to that observed in the K1 area. However, withdrawal of
the alt, lat, and lon variables resulted in the highest impact on ANN in the K2 area.

The ANN and RF models showed greater predictive capacity in all scenarios when
compared with the SVM and MLR models. This high capacity is achieved with the data
input combinations I8 and I6. Both models had similar performance, but, on average, RF
showed slight superiority. In [12,15], the authors evaluated the performance of different
machine-learning models in ET0 estimation in Brazil. In these studies, it was observed
that, in general, ANN performed slightly better than the other traditional machine-learning
models (i.e., RF and extreme gradient boosting—XGBoost). However, in some studies,
the RF model performed slightly better than other models (i.e., generalized regression
neural networks—GRNN) in estimating ET0 [20,45]. There are papers suggesting better
performance than other machine-learning models in different situations and regions [24,46].
Therefore, there is a need for studies that address more than one model.

The SVM and MLR models showed similar statistical indices and responses in all
scenarios. These results can be explained by the use of the linear kernel function in SVM,
which probably presented behavior similar to an MLR. Tests with the nonlinear kernel
function did not result in improvements in prediction. Possibly, the data used does not
present complexity that justifies the use of SVM.

The SVM and MLR models showed greater predictive capacity in all scenarios when
the input data were limited to only Tmean and RH (I2). This result may indicate a low
predictive capacity of the ANN and RF models in situations of low variability in the input
data. This low variability may hinder the search for patterns that justify variations in ET0.

In some scenarios, the removal of Tmax and Tmin improved the ET0 estimation results.
According to [14], the authors observed an increase in the accuracy of the support vector
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regression (SVR) and Gaussian process regression (GPR) models with the removal of some
input data, including Tmax and Tmin.

Although Tmax and Tmin showed a good correlation with ET0 (Figure 3), the weight
of Tmax and Tmin is diluted in the calculation of Tmean used in the calculation of ET0.
Thus, adding Tmax and Tmin can make ET0 estimation more complex or confusing. This
fact can decrease the accuracy of the models, and the removal of this input data can improve
the prediction. Determining the input data is critical to the success of the models. This
selection can facilitate the training and testing process, improving the understanding of the
system [47,48]. However, this result shows that linear regression alone is not sufficient to
decide which input data should be removed in order to increase predictive performance.

When the independent variables lat, lon, and alt were removed (I3), a reduction in the
statistical indexes of all models was observed. These variables are related to the spatial
location of the observed data. Although the correlation observed between these variables
and ET0 is low (Figure 4), the joint removal of these data negatively impacted the model’s
performance. The air temperature and solar radiation variables are among the main data
impacting ET0 [1,46]. Several studies have indicated the influence of lat, lon, and alt
variables on air temperature and solar radiation [49,50]. Therefore, variations in lat, lon,
and alt may indirectly impact ET0. This can explain these observed results.
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The division of the input data into two areas with climatic similarity aimed to increase
the performance of the models. The division presented in SII and SIII managed to slightly
increase the capacities of the models in relation to SI. However, this increase was only
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observed in the Tho1 and K1 areas. Thus, we can infer that, although the division into areas
with climatic similarity can reduce the amount of input data for training, in some situations
this division is valid, and the models can respond more accurately. Machine-learning
models developed for broader scenarios (e.g., SI) typically have reduced predictive capacity
due to the high nonlinearity and low similarity of their input data; however, these models
have greater ability to generalize [24]. According to [12], although the models developed
locally perform better, these models may have low predictive capacity when used in other
regions, since they may be highly specific to the location.

Regarding the importance of each input variable to the response variable of the
evaluated algorithms, WEKA was used to select the attributes (Figures 4–6). Attributes
were selected using the “ClassifierAttributeEval” tool associated with the “Ranker” method.
These tools rank attributes by their individual evaluations. Correlation coefficient was
the measure used to evaluate the performance of attribute combinations in the Ranker
configuration. The same ranking method in WEKA was used by [51] in order to verify the
importance of each input variable in solar radiation prediction.
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Different ANN settings were used for different input data (Table 2). These ANN
settings resulted in different weights for each input attribute (Figure 4). However, similar
behavior was observed in the different configurations. In all scenarios, Tmean, Tmax, and
Tmin had greater weight in producing the estimate. In SIII K2, the relative importance
of Tmax surpassed Tmed (Figure 4). This result may explain the decrease in ANN’s
performance in this scenario when Tmax and Tmin were removed (Table 4). The variables
lat and month had a similar weight in all scenarios. Although similar, the removal of the
month variable resulted in a greater reduction in ANN’s performance when compared with
the removal of the variables lat, lon, and alt.

The ranked values of each input variable in RF are shown in Figure 5. The Tmean
and month variables had a higher weight in the ET0 estimate. In SII Tho1 and SIII K2, the
month variable was more important than the Tmean variable. This result may explain
the drop in the RF model’s performance when it removed the month variable (I3 to I2).
The Tmax and Tmin variables also had a high weight in the ET0 estimate. However, the
removal of these variables increased the capacity of the RF model as observed (Tables 3–5)
and discussed previously.

The relative importance of each input variable in SVM is shown in Figure 6. It was
possible to observe that the Tmean, Tmax, and Tmin variables had a higher weight in
the ET0 estimate, followed by HR and lat. The month variable was of low importance in
the ET0 estimate. In SI, the month showed a negative weight. Therefore, this input data
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can negatively impact the ET0 estimate. In the performance results for the SVM model
(Tables 3–5), there was no significant variation in performance when the month variable
was removed. Both results make it possible to highlight that, for this region, the month
variable does not contribute to the performance of the SVM model.

Although each model has a different pattern in the ranking of the input variables
(Figures 4–6), air temperature was the most important attribute. The observed correlation
between air temperature and ET0 (Figure 4) may explain the importance of air temperature
in this estimate. This behavior was not observed in SIII K2 or SII Tho2. However, in
these scenarios, no significant difference was observed between the month and Tmean
variables. Studying the ranking of the importance of meteorological variables based on the
RF method, the three most important variables were insolation (n), Tmax, and RH [20]. The
high relative importance observed corroborates the results of the present study.

The other variables presented different weights according to each model applied.
These results indicate a peculiarity of the models. Hence, new research and applications
can be based on these results, choosing the best method to suit the conditions of the input
data. However, it is recommended that the models be previously experimented with using
different input data; as noted, some variables may have a relatively high weight in the
ET0 estimate, but their use can decrease the predictive performance of the model. This
behavior was observed when using the RF model. In this model, removal of the variables
Tmax and Tmin increased predictive capacity, although these variables have shown high
relative importance.

It is important to note that the month variable was highly important in estimation
with RF. However, low importance was observed when the SVM model was used, since
this variable was not correlated with ET0 (Figure 3). These results highlight the need for
more techniques to select the meteorological variables used in modeling. Linear regression
alone is not sufficient to identify the relevance of the input data. Furthermore, different
models may present different behaviors regarding classification of the importance of the
input variable and still present satisfactory results.

Differently from the evaluation of the importance of the ANN, RF, and SVM attributes,
for the MLR method, the attribute selection method was applied (the M5 method), which
indicates the importance of each input attribute in the generated model. The adjusted
coefficients are shown in Table 6. It was observed that, in some models, the method used
(the M5 method) excluded the month variable. This behavior indicates a low importance of
this variable in the MLR estimate. This result was similar to that observed in the analysis
of the importance of the input variables in SVM. The exclusion of lat and Tmax was also
observed in some cases.

The results presented in this study reveal that, for locations in Minas Gerais state,
these models can be used safely. The ANN and RF models are recommended to estimate
ET0 when considering a wider range of input data, as they have better predictive capacity
in this situation. The SVM and MLR models are recommended in situations where only
temperature and relative humidity data are available. However, between these two models,
MLR is recommended because it requires less computational effort. These models, although
they have a high predictive capacity, cannot be perfect. Other meteorological variables not
considered as input data (e.g., solar radiation, wind speed, and vapour-pressure deficit)
and other factors (e.g., data recorded in error) contributed to a decrease in the predictive
capacity of these models.

No statistical method or machine-learning method can produce results that are the
same as the observed and/or recorded data. There will always be some error, no matter
how small. Therefore, it is important that the meteorological stations function continuously.
As in all studies, some limitations were noted in this study. One of the main limitations is
related to difficulties in the availability of quality meteorological data. The malfunction and
limited collection of meteorological data has been a limitation in several countries. Another
limitation that can be observed is the difficulty and complexity of using some models. In
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this context, it is recommended to evaluate and use models with good results and that
present greater simplicity in their use.

Table 6. Coefficients of the multiple linear regression models in SI, SII, and SIII.

MLR Method Coefficients

lat lon alt month Tmax Tmean Tmin RH

β1 β2 β3 β4 β5 β6 β7 β8 β0

SI

I8 −0.0208 0.0579 0.0016 0.0091 0.0758 0.2966 −0.0396 −0.02 −1.8209
I6 −0.0222 0.0402 0.0013 0.0065 - 0.2972 - −0.0264 −0.4453
I3 - - - ø - 0.2262 - −0.0234 0.4921
I2 - - - - - 0.2262 - −0.0234 0.4921

Tho.1 (A, B4, B3, B2, and B1)

SII

I8 −0.0343 0.06 0.0012 0.0172 0.0633 0.3096 −0.0532 −0.0229 −1.2174
I6 −0.0523 0.0294 0.0008 0.0159 - 0.2807 - −0.0278 −0.7404
I3 - - - 0.0159 - 0.2521 - −0.0234 −0.0037
I2 - - - - - 0.2498 - −0.0251 0.2709

Tho.2 (C2, C1, and D)

I8 ø 0.0517 0.0017 ø ø 0.3857 −0.0447 −0.0215 −1.344
I6 ø 0.0511 0.0016 ø - 0.331 - −0.0247 −0.6378
I3 - - - ø - 0.2858 - −0.0297 −0.6149
I2 - - - - - 0.2858 - −0.0297 −0.6149

K1 (Cwa and Cwb)

SIII

I8 ø 0.0713 0.0013 0.0149 0.091 0.2515 −0.0203 −0.0231 −0.1477
I6 −0.0166 0.0461 0.0009 0.0122 - 0.2861 - −0.029 0.6759
I3 - - - 0.0128 - 0.256 - −0.0243 −0.0213
I2 - - - - - 0.254 - −0.0257 0.2013

K2 (Am and Aw)

I8 −0.0428 0.0595 0.002 ø 0.066 0.3543 −0.0588 −0.0139 −3.4505
I6 ø 0.0316 0.0014 ø - 0.3329 - −0.0208 −1.7699
I3 - - - ø - 0.3172 - −0.029 −1.5306
I2 - - - - - 0.3172 - −0.029 −1.5306

ø: input data excluded by the M5 method.

The models developed in this study are expected to help decision-making by different
professionals, mainly farmers. Agricultural companies are responsible for a considerable
part of the Brazilian gross domestic product [52], and the Minas Gerais state had the
third-largest gross domestic product in Brazil in 2018 [33]. The results of these models
can assist in irrigation management, climatic zoning, and the construction of productivity
models, among other applications. In addition, the approaches used in the present study
have the potential to benefit the development of other types of models and studies from
other regions.

4. Conclusions

The results and information presented in this study are important for planning and
determining the use of the best model to estimate ET0 for a region with limited climate
data. The use of input data combination I6 (alt, lat, lon, month, Tmean, and RH) in the
scenarios SI, SII, and SIII provided in general the best results in ET0 estimation between
the evaluated models, so this data combination is recommended to be used. The RF and
ANN models presented the highest predictive ability for the ET0 estimate. Both models,
in best-case scenarios, with the input data combination I6 or I8, explain more than 96% of
the variability of the variables estimated using the independent dataset. If experimental
data are available, machine-learning algorithms represent a powerful tool able to provide
accurate predictions. The SVM and MLR models are recommended for all scenarios in
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situations with limited climatic data where only air temperature and relative humidity data
are available. Although dividing into scenarios results in less input data for model training,
the SII and SIII scenarios showed slightly better results in the southern areas of the Minas
Gerais state.

Air temperature was the meteorological input variable that presented the greatest
relative importance, while the month variable presented the greatest variation in importance
in relation to the model used. Therefore, it is concluded that although temperature is
fundamental for the estimation of ET0, other variables can present different levels of
importance in the prediction of ET0.

The results presented in this study contribute relevant information, and, together with
other studies, can serve as a basis for the estimation of reference evapotranspiration. How-
ever, new studies are necessary in order to evaluate new models and their performance with
limited climate data, based on other machine-learning algorithms that contemplate different
climatic conditions and that subsequently take into account the effects of climate change.
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