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Abstract: The urgent need to mitigate greenhouse gas (GHG) emissions has prompted the exploration
of various strategies, including the adaptation of carbon farming practices, to achieve sustainability in
agricultural systems. In this research, we assess the viability of carbon farming practices for organic
vegetable growing in Europe. The study explores the potential benefits of these practices, including
GHG emissions’ mitigation and improved soil health, biodiversity, and ecosystem services, while
also acknowledging the need for further research to optimize implementation strategies and foster
widespread adoption. However, the suitability and effectiveness of carbon farming practices in
organic vegetable production systems remain uncertain. The analysis considers the measurement and
estimation methods employed to assess changes in soil carbon stocks and the potential environmental
and economic implications for farmers. Despite a substantial body of data demonstrating the
sustainable attributes of carbon farming and its multifaceted advantages, a degree of hesitancy
persists. Considering this, we propose undertaking a concise strengths, weaknesses, opportunities,
and threats (SWOT) analysis to evaluate multiple aspects of carbon farming. The findings reveal that
carbon farming practices can be viable and advantageous in organic vegetable production. Carbon
farming practices, such as cover cropping, reduced tillage, compost application, and agroforestry, can
significantly enhance the sustainability of organic farming systems. Implementing these practices
can mitigate greenhouse gas emissions, improve soil health and fertility, and promote biodiversity
conservation. Farmer education and support, policy measures, and continued research are crucial for
maximizing the potential of these practices for a sustainable future. These practices also contribute to
developing climate-friendly agricultural systems, promoting environmental resilience, and reducing
the ecological footprint of organic vegetable production. However, further research is needed to
optimize implementation strategies, address site-specific challenges, and foster widespread adoption
of carbon farming practices in organic vegetable production.

Keywords: soil carbon storage; soil fertility; ecological vegetable system; GHG mitigation;
regenerative practices

1. Introduction

Currently, humanity can only effectively address environmental and climate change
issues if it fully embraces ecological principles for genuine sustainability. However, history
has repeatedly shown that we tend to take substantial action only during crises and that
we often fall short of complete commitment. In this framework, the widely endorsed
DNSH (Do No Significant Harm) principles, which have recently gained popularity among
political factors, signify nothing more than a return to fundamental ecological values by
striving to “not significantly harm” the environment.

Agronomy 2023, 13, 2406. https://doi.org/10.3390/agronomy13092406 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy13092406
https://doi.org/10.3390/agronomy13092406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-3316-168X
https://orcid.org/0000-0002-2663-1594
https://orcid.org/0000-0002-3352-3081
https://doi.org/10.3390/agronomy13092406
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy13092406?type=check_update&version=2


Agronomy 2023, 13, 2406 2 of 24

Carbon, as an essential element, plays a fundamental role in life on Earth. It forms the
building blocks of human DNA and is pervasive in our food [1]. However, using carbon-
based fossil fuels over the past century for energy generation and industrial processes has
led to the accumulation of greenhouse gas (GHG) emissions, primarily carbon dioxide
(CO2), in the atmosphere. This accumulation has caused various detrimental effects,
including global climate warming, biodiversity loss, increased ocean acidity, and severe
meteorological phenomena (droughts, heatwaves, floods, wildfires, severe thunderstorms,
mudslides, and landslides) [2].

Therefore, the situation has become critical, and it has led to the imposition of extreme
measures. At the European level, this means the achievement of zero greenhouse gas
emissions by 2050, with an intermediate stage aiming at a 55% decrease by 2030 compared
to the currently recorded value, according to the EU Climate Law [3]. It is said that farming
represents the “single biggest cause” of the worst air pollution not only in Europe but also
in China, the US, and Russia. Hence, restrictive measures regarding a series of agricultural
practices need to be applied, and a new approach in farming techniques and technologies
has thus become imperative. Paustian et al. and Mattila et al. [4,5] stressed the crucial role
of carbon sequestration in agricultural soils to mitigate climate change.

Carbon farming encompasses a range of agricultural techniques (cover cropping, no-
till farming, agroforestry, crop rotation, organic farming, use of perennial crops, managed
grazing, wetland restoration, use of biochar, compost and mulching, reforestation and
afforestation) designed to capture atmospheric carbon and store it within the soil and in
crop roots, wood, and leaves. Additionally, Tariq et al. [6] define carbon farming as a
comprehensive approach to maximize the uptake of carbon dioxide from the atmosphere
and enhance its storage in plant matter and soil organic matter across working landscapes.
This holistic approach involves implementing practices that are proven to accelerate the
removal of CO2 from the atmosphere and facilitate its sequestration in vegetation and soil.

A study conducted by Fageria [7] illustrates that the intake of soil organic matter
and composition, which is inextricably linked with the amount of carbon stored at the
soil level and water retention capacity, is impacted by management practices. A direct
correlation between soil organic matter and its ability to retain water while enhancing
structure and productivity has been outlined by several studies [8–10], with an inverse
relationship between drought and disease occurrence [9,11,12]. Certain studies [13,14]
have emphasized the significance of promoting agricultural practices that facilitate organic
matter sequestration in the soil, thus reducing environmental CO2 levels. Carbon farming
is pivotal in aligning with new ecological standards concerning climate change resilience
and impact [4,5,15,16].

Considering these factors, our study aimed to investigate and establish a symbiotic
connection between ecological vegetable cultivation methods and carbon farming practices.
This objective stems from the inherent similarities in the operational principles of both
approaches, which emerged naturally and highlighted the potential for synergies between
these two critical fields.

2. Materials and Methods
Systematic Literature Review

In this review article, we performed a comprehensive systematic literature review
(SLR) following the guidelines outlined in the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) methodology (Table 1). Our main objective was to
systematically review and synthesize the existing literature on carbon farming strategies
in organic vegetable cultivation, assess their impact on carbon sequestration, soil health,
and crop productivity, and identify gaps in the research. Mainly, the present study was
developed by means of no fewer than nine questions of paramount importance for the
subject, as follows: (1) How have carbon farming strategies been defined and conceptual-
ized in the context of organic vegetable cultivation? (2) What are the primary objectives
and goals of implementing carbon farming strategies in organic vegetable cultivation? (3)
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What are the key carbon sequestration practices employed in organic vegetable cultiva-
tion? (4) How do carbon farming strategies impact soil health parameters? (5) How do
carbon farming practices influence crop productivity (yield) and quality (nutrient content,
pest resistance) in organic vegetable cultivation? (6) What economic benefits or costs are
associated with the adoption of carbon farming strategies in organic vegetable cultivation?
(7) What are the key barriers and challenges faced by farmers when implementing these
strategies? (8) What areas require further investigation to enhance our understanding of
these strategies? (9) How do government policies and regulations impact the adoption and
effectiveness of carbon farming strategies in organic vegetable cultivation?

Table 1. Data source and selection activities according to PRISMA methodology.

Phase Number Activity Description

Phase 1 Research database identification using Web of Science, Scopus,
Google Scholars, ScienceDirect, MDPI, and Springer.com

Phase 2 Assessment of the research papers with relevance for the subject
published in prominent journals

Phase 3 Removal of papers that were found irrelevant to the subject or
could cause scientific incoherence

Phase 4 Draft the actual paper, including the relevant literature

Some of the keywords used to find the relevant scientific papers were: carbon farm-
ing, carbon sequestration, carbon in vegetable organic farming, and soil management in
organic farming. In a subsequent stage, a qualitative data analysis was performed using
Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia.
Available online www.covidence.orgmanagement accessed on 20 August 2023)–studies
were identified, analyzed, and ranked, focusing on their content and thematics to ensure
their significance and relevance to the selected topic. With this in mind, we conducted a
systematic literature review, examining 273 scientific papers related to the subject (Table 2).

Table 2. Keywords used and the number of scientific papers generated.

1st Keyword Used 2nd Keyword Used
Number of Research Papers

Initial Search After Filtering

Carbon farming

Vegetable cultivation

855 46

Carbon sequestration 1054 73

Organic biochar 723 21

Organic conservation tillage 162 7

Agroforestry 136 6

Organic cover crops 398 19

Organic nutrient management 103 11

Organic soil management 908 34

Permaculture 50 11

Organic carbon footprint 206 6

Urban farming system 218 12

Conservation farming 309 14

Regenerative practices 188 11

Zero budget farming 7 2

Total number of research papers 5317 273

www.covidence.orgmanagement
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The studies selected for this synthesis met the following criteria: to be relevant so
that the data provided has practical applicability—given the novelty degree of the subject
studied, this condition is implied; all the data presented have a solid scientific back-
ground; and the opinions of the authors are well argued and find approval within the
scientific community.

Furthermore, to highlight the potential feasibility of carbon farming measures practical
to organic vegetable cultivation, we conducted a SWOT analysis, highlighting the four
essential aspects: strengths, weaknesses, opportunities, and potential threats.

Similarly, to highlight the trend of specific aspects such as emissions generated by
human activities, particularly in agriculture, or the areas occupied by organic farming at
the European level, relevant databases for these fields were consulted, such as Statista,
European Environment Agency, or IFOAM Organics Europe.

3. Results and Discussion
3.1. Overview

Our goal is to evaluate the potential of carbon farming to reduce agricultural green-
house gas emissions, including carbon dioxide, methane, and nitrous oxide, which are
significant contributors to climate change. By implementing sustainable land management
practices, maximizing carbon sequestration, and minimizing carbon emissions, we consider
carbon farming as an opportunity to mainly transform the organic vegetable cultivation
system into effective carbon sinks and contribute to a more sustainable future.

Efforts to combat GHG emissions should prioritize a combination of mitigation and
adaptation strategies [17,18]. This involves shifting towards low-carbon energy sources,
enhancing energy efficiency, advocating for sustainable transportation and production
methods, improving waste management approaches, and implementing nature-based
solutions into action in order to manage pollution in key industrial sectors, as shown in
Figure 1. International cooperation and collaboration are vital to accelerate the deployment
of clean technologies and knowledge sharing to achieve significant emission reductions [19].
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Equity and fairness are crucial factors to be considered in the scientific examination
of global greenhouse gas (GHG) emissions [20]. Developed countries bear a historical
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responsibility due to their substantial contributions to cumulative emissions, necessitating
supporting developing nations as they transition towards low-carbon economies [21].

The sources of agricultural emissions are diverse and significant, contributing to the
global challenge of climate change (Figure 2). Livestock production, particularly enteric
fermentation and manure left on pasture, is a significant source of agricultural greenhouse
gas emissions. Addressing this issue requires promoting efficient feed conversion, adopting
improved manure management systems, and exploring alternative protein sources [22].
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Furthermore, at the European level, the emissions from agriculture represent a sig-
nificant concern in terms of environmental impact and climate change (Figure 3). Policy
frameworks at the regional and national levels and financial incentives could play a crucial
role in driving the adoption of sustainable agricultural practices [23]. Riccaboni et al. [24]
emphasize the preeminence of supporting research and innovation in agriculture, facilitat-
ing knowledge exchange among farmers, and raising awareness among consumers about
the environmental impact of their food choices.

Thus, Verschuuren [25] highlights the significant progress that can be made in reducing
greenhouse gas emissions and contributing to building a more resilient and sustainable
agricultural sector by addressing emissions from agriculture at the European level. Fytili
and Zabaniotou [26] discuss the need for a holistic and collaborative approach involving
farmers, policymakers, researchers, and consumers to successfully transition towards a
low-carbon and environmentally responsible agriculture industry.

GHG net emissions/removals by land use, land use change, and forestry (LULUCF)
encompass alterations in atmospheric concentrations of all greenhouse gases linked to
changes in forests and land use practices, comprising, yet not restricted to, (1) the discharge
and sequestration of CO2 resulting from variations in biomass stocks due to forest admin-
istration, logging, fuelwood collection, etc.; (2) the transformation of existing forests and
natural grasslands into alternative land uses; (3) the sequestration of CO2 resulting from
the abandonment of previously managed lands (e.g., croplands and pastures); and (4) CO2
emissions and removals [27].

Organic agriculture has experienced significant expansion at the European level,
driven by consumer demand for healthier and more sustainably produced food (Table 3).
The sector’s core principles, including prohibiting synthetic pesticides and fertilizers,
promote biodiversity conservation, soil health, and reduced environmental impact. These
practices can potentially mitigate greenhouse gas emissions, protect water resources, and
preserve natural habitats [28].

https://www.wri.org/insights/5-questions-about-agricultural-emissions-answered
https://www.wri.org/insights/5-questions-about-agricultural-emissions-answered
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Table 3. Organic agriculture in 2021 at the European level (adaptation based on IFOAM Organics Europe).

COUNTRY Percentage of Organic
Agricultural Land (%)

Organic Land Area
(1000 Hectares)

Liechtenstein 40.20 1
Austria 26.50 679
Estonia 23.00 227
Sweden 20.20 607

Switzerland 17.40 181
Italy 16.70 2186

Czech Republic 15.80 558
Latvia 14.80 291

Finland 14.40 328
Slovakia 11.70 223
Denmark 11.40 300
Germany 10.80 1802

Spain 10.80 2635
Slovenia 10.80 52
Greece 10.10 535
EU-27 9.60 15,600
France 9.60 2777

Lithuania 8.90 262
Croatia 8.10 122

Portugal 7.80 308
Belgium 7.40 102
Hungary 5.90 294
Cyprus 5.70 8

Luxembourg 5.20 7
Norway 4.60 45
Romania 4.30 579

Netherlands 4.20 76

https://www.eea.europa.eu/data-and-maps/data/data-viewers/eea-greenhouse-gas-projections-data-viewer
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Table 3. Cont.

COUNTRY Percentage of Organic
Agricultural Land (%)

Organic Land Area
(1000 Hectares)

Poland 3.50 509
United Kingdom 2.80 489

Ireland 1.90 87
Montenegro 1.70 4

Bulgaria 1.70 86
Turkey 0.90 328
Serbia 0.70 24

Republic of North Macedonia 0.60 8
Malta 0.60 0.1

Kosovo 0.50 2
Iceland 0.40 6

Bosnia and Herzegovina 0.10 2
Albania 0.10 1

The vegetable cultivation sector has a two-fold impact on the environment. Firstly,
it contributes to climate change (CC) through various activities (soil tillage, fertilization,
irrigation, fossil fuel consumption). Secondly, the resulting environmental changes, in turn,
affect vegetable production. Thus, a reciprocal relationship exists between horticultural ac-
tivities and their ecological consequences, impacting the climate and fresh food production
sector [17,18].

Organic farming (OF) embraces a comprehensive strategy for agricultural operations
and food cultivation, emphasizing eco-friendly and climate-conscious methodologies, pre-
serving natural resources, the fostering of biodiversity, and adhering to stringent standards
of animal welfare and production [29,30]. Regarding the eco-friendly practices, OF pri-
oritizes environmentally friendly methods by avoiding the use of synthetic pesticides,
herbicides, and chemical fertilizers. Instead, it relies on natural alternatives and sustain-
able practices to manage pests, weeds, and soil fertility. In terms of the climate-conscious
methods, OF aims to mitigate climate change by reducing greenhouse gas emissions and
promotes practices such as crop rotation, cover cropping, and reduced tillage, which help
sequester carbon in the soil and enhance soil health. For the preservation of natural re-
sources, OF places a strong emphasis on protecting natural resources such as soil and
water, promoting practices that prevent soil erosion, improve soil structure, and conserve
water resources. Furthermore, OF encourages biodiversity in agricultural landscapes. This
includes planting diverse crop varieties, creating habitats for beneficial insects and wildlife,
and avoiding monoculture farming, which can be detrimental to biodiversity. In organic
livestock farming, animals are typically raised under higher welfare standards compared
to conventional methods. This includes providing access to the outdoors, pasture graz-
ing, and adhering to strict regulations regarding animal health and well-being. Not least,
OF adheres to strict production standards and certification processes. These standards
encompass everything from soil management and pest control to animal husbandry and
food processing. Third-party organizations certify farms and products as organic to ensure
compliance [29,30].

Lal [31] defines carbon sequestration and carbon farming extensively. Carbon seques-
tration involves transferring carbon dioxide (CO2) from the atmosphere and long-lasting,
secure storage at the soil level by improving the accumulation of organic and inorganic
carbon stocks. This is achieved through the adoption of appropriate land use practices and
a set of recommended management techniques, such as mulch farming [32,33], conserva-
tion tillage [34], agroforestry [35], diverse cropping systems [36–39], cover crops [40,41],
and integrated nutrient management, including the use of manure, biosolids, compost,
sustainable forest management, and improved grazing [42]. The sequestration of soil
organic carbon (SOC) is influenced by agricultural systems that promote the incorporation
of significant amounts of biomass into the soil, minimize soil disturbance, protect soil and
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water resources, enhance soil structure, increase the activity and diversity of soil organisms,
and strengthen elemental cycling processes.

Thus, carbon farming is presently a prominent aspect of sustainable agricultural
practices due to its climate-related advantages, primarily through carbon sequestration in
agricultural soils [43,44]. Soil carbon levels are closely linked to soil organic matter [45],
which significantly influences the soil’s structure, health, and nutrient content. Alterations
in soil organic matter resulting from climate change and modifications in management
approaches can impact water retention capabilities.

A series of very well-documented studies highlighted the preeminence of the organic
farming system in terms of carbon sequestration at the soil level. Thus, Gattinger et al. [46]
revealed that over 14 years, the soil organic carbon stocks in the upper 20 cm were
3.50 ± 1.08 Mg C ha−1 higher in organic than in nonorganic systems. In the same way,
Leifeld and Fuhrer [47] determined in their review an average annual increase in the SOC
concentration in organic systems of 2.2% compared to conventional methods, where it
did not vary significantly. Furthermore, using calculations based on the combination of
single practices, such as extensification, improved rotations, residue incorporation, and
manure use, Freibauer et al. [48] assessed the C sequestration potential of organic farming
in Europe to be 0–500 kg ha−1 y−1.

Recently, Palayukan et al. [49] emphasized that the implementation of ecological farm-
ing methods resulted in notable enhancements in the physical and chemical characteristics
of the soil. Additionally, these practices increased the accessibility of the organic carbon
fraction. Likewise, Sardiana [50] demonstrated the preeminence of an ecological farming
system in terms of carbon sequestration, highlighting an annual increase of 1.13 tons per
hectare compared to conventional farming practices. Thus, most findings emphasize the
organic farming potential for increasing C stocks in agricultural soils [31,51,52].

Moreover, Tuomisto et al. [53] reported a distinct correlation between organic veg-
etable growing and external carbon inputs, which were higher than the conventional
system. Blair et al. [54] and Tejada et al. [55] certified an improved soil structure among the
apparent benefits.

However, adopting a holistic approach when considering organic materials in agri-
culture is essential. Although organic materials can influence soil’s physical and chemical
properties, it becomes crucial to address the specific type and origin of these materials. For
instance, peat is commonly used as an organic horticultural substrate, but its production in-
volves the destruction of peatlands, which has profound environmental and climate change
implications [56,57]. Therefore, it is imperative to carefully evaluate the sustainability and
ecological consequences of using organic materials in horticultural practices.

Furthermore, considering a comprehensive approach that addresses the interplay
between soil, plants, and the environment is of utmost importance. Recently biostimulants
and biofertilizers, such as plant-growth-promoting rhizobacteria (PGPR) and arbuscular
mycorrhizal fungi (AMF), have gained popularity in horticulture due to their positive ef-
fects on plant nutrition [58–60]. Utilizing the natural activity of soil microbes, biostimulants
hold immense potential for breaking down toxins in the soil and harnessing the in situ soil
microbial activity [61]. Similarly, biofertilizers can promote plant growth by aiding nitrogen
fixation and phosphorus solubilization. Additionally, they synthesize plant hormones such
as indole acetic acid and cytokinins and promote gibberellin synthesis within plants [62,63].
Moreover, they contribute organic acids and enzymes, enhancing water and nutrient uptake
and bolstering systemic resistance against diseases [64,65]. Optimizing the synergistic inter-
actions between soil and environmental factors, along with implementing good agricultural
practices, including the strategic utilization of effective plant-beneficial microorganisms
in the root zone, epitomizes the concept of smart agriculture. This integrated framework
effectively harnesses the potential of these combined approaches [66–68].
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3.2. Environmental Impact of Organic Vegetable Cultivation on Carbon Emissions

Regarding the carbon footprint (CF) in organic vegetable production, Adewale et al. [69]
conducted a study on a small organic vegetable farm. They highlighted soil emissions,
irrigation, fuel use, and organic fertilizer as the main hotspots. A viable option in this
matter is replacing gasoline and diesel with biodiesel and the alternative of solar-powered
irrigation systems instead of grid-powered irrigation systems that could determine a
reduction in the farm’s CF of 34%. Regarding vegetable crops, cauliflower, potato, and
pepper displayed the highest CF ha−1.

The organic farming system emits significantly less CO2 per unit of land than the
conventional method. On the other hand, when reported on per unit of production, both
the organic and the conventional systems demonstrate similar emissions, primarily due to
the lower yield levels associated with organic farming [70].

According to Küstermann and Hülsbergen [71], the energy consumption per hectare
in the organic farming system is significantly lower, approximately 2.75 times less, com-
pared to the conventional method. Furthermore, the organic system exhibited substantially
reduced nitrous oxide (852 CO2 eq kg−1 compared with 1307 CO2 eq kg−1 recorded
in conventional farming) and carbon dioxide emissions (349 CO2 eq kg−1 as opposed
to 707 CO2 eq kg−1), along with significantly higher carbon sequestration rates
(+110 kg C ha−1 a−1 = reduction in the greenhouse potential by 415 kg CO2 eq ha−1 a−1) [71].

Over the past two decades, numerous studies have examined the environmental
impact of agricultural practices on the production of organic vegetables and their carbon
footprint. Thus, Smith et al. [72] revealed that organic vegetable production had an energy
input of 50% compared to conventional carrots, 65% for onions, and 27% for broccoli.
Fritsche and Eberle [73] found that GHG emissions (CO2 eq kg−1) were between 15% and
31% lower for organic tomatoes than conventional ones. De Backer et al. [74] stated that
an organic leek crop releases only 33% of conventional system emissions. The same trend
was recorded for organic potato crops [75–77]. Antithetically, Ziesemer [78] highlighted
that organic carrot and potato production had 43% higher energy inputs per unit of output
due to mechanical weeding. Overall, Wood et al. [79] showed that organic vegetable
production has about 50% of the energy intensity of conventional systems. It was observed
that various organic crop rotations generated lower N2O emissions per hectare compared to
conventional rotations. Regarding energy usage for fertilization, a critical aspect of organic
vegetable cultivation, the scientific community agrees that applying compost and manure
entails relatively low fuel and energy costs [80,81].

Organic farming has a higher potential for carbon sequestration than conventional
farming systems [82]. Additionally, organic fertilization, the incorporation of crop residues
into the soil, and the cultivation of cover crops have the potential to increase N2O emissions.
However, cultivating deep-rooted crops can help mitigate NO3 leaching [83].

3.3. Exploring the Connection between Organic Vegetable Farming and Carbon Sequestration

The exclusion of agrochemicals’ utilization with a substantial carbon footprint in
organic agriculture (OA) production can yield notable advantages for the climate and
natural resources. Synthetic nitrogen (N), phosphorus (P), and potassium (K) fertilizers,
pesticides, and other agrochemicals contribute to the deterioration in soil organic matter,
leading to its depletion, as well as the pollution of water sources [29], and having a direct
contribution to climate change [17,18].

Numerous strategies for increasing carbon sequestration in organic vegetable cultiva-
tion have been evidenced by the scientific literature. For example, adopting a perennial
vegetable system can have a beneficial impact on mitigating climate change, promoting bio-
diversity, and improving nutritional value. Regarding carbon sequestration, it is estimated
that the large-scale cultivation of perennial vegetables would induce an intake between
22.7 and 280.5 MMT CO2 eq/year by 2050 [84].

Soil management strategies in organic farming have a significant role in global en-
vironmental conservation, particularly in increasing soil carbon levels, e.g., by recycling
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organic matter. According to Sánchez-Marañón et al. [85], assessing soil organic carbon in
organic farming systems is crucial for understanding their impact on carbon sequestration.
Other studies have highlighted that organically managed soils tend to have higher soil
carbon than conventional farming systems [46,86]. Organic farms have the potential to
mitigate greenhouse gas (GHG) emissions due to practices such as legume cultivation for
nitrogen supply and reduced reliance on external inputs such as fertilizers and agrochemi-
cals. Hence, organic vegetable cultivation could potentially reduce global GHG emissions
by approximately 20% by avoiding industrial nitrogen fertilizers [87]. Furthermore, the po-
tential carbon sequestration capacity of organic farming could offset 40–72% of the world’s
annual agricultural GHG emissions. These findings have been confirmed by other studies,
indicating that organic fertilizers can increase soil carbon content more than chemical
fertilizers [88–90].

The utilization of cover crops represents another crucial technological link for enhanc-
ing carbon sequestration at the soil level. For instance, Adewale et al. [69] found that about
498 kg C ha−1 yr−1 were lost from the soil’s top 30 cm without cover crops as opposed
to 57 kg with cover crops, which means 1826 and 209 kg CO2 eq ha−1 yr−1, respectively.
Additionally, incorporating cover crops significantly reduced estimated soil greenhouse
gas (GHG) emissions by 41%.

Using legumes in crop rotation and multiple cropping systems offers the following
advantages: it preserves and potentially enhances soil quality, boosts the yields of vegetable
crops, and exerts a positive influence on the functioning of the ecosystem [91,92]. Further-
more, Jensen et al. [93] indicated other benefits of cutting N fertilizers, such as mitigating
the farmer’s costs and environmental risks related to greenhouse gas emission release.

Biochar research is experiencing rapid growth, primarily due to its potential for carbon
sequestration [94]. Additionally, biochar holds promise as a technology for immobilizing
pollutants [95], waste management, enhancing soil fertility [96], and use as a sustainable
growing media and peat replacement [56,97]. Previous studies have linked the impact of
biochar on crop yield to various factors, including increased cation exchange capacity and
nutrient retention [56,98], raised pH and base saturation [97,99], elevated availability of
phosphorus [98], and improved plant-accessible water content [100].

Multiple strategies are available for carbon sequestration in organic vegetable culti-
vation soils, referred to as “adaptive restorative practices”, as outlined in Table 4. These
practices include no-tillage or reduced tillage intensity [101], the increased input of crop
residues [102], the application of organic manure [103], the utilization of cover crops [104,105],
the implementation of organic mulching [32,33], nutrient management [106,107], a reduc-
tion in or the elimination of fallow periods [108,109], and the restoration of permanent
forests and grasslands [31,110–114]. These strategies are primarily characterized by min-
imizing soil disturbance and increasing the application of organic matter. Furthermore,
Nishimura et al. [115] underlined the effectiveness of the legume intercropping system and
crop rotations [116] for soil fertility enhancement, with nitrogen and phosphorous having a
pivotal role in the process.

Regarding soil tillage practices in organic vegetable cultivation, some studies
suggest the potential of maintaining soil organic carbon by implementing no-tillage
techniques [101,117].

An alternative and feasible approach is the adoption of natural farming (NF) [118], a
low-input, no-tillage system incorporating weed residue mulching. This system, initially
developed by Fukuoka [119], involves cutting weeds using a brush cutter and utilizing the
resulting residues as a natural cover for the area.
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Table 4. Carbon farming measures suitable for ecological vegetable growing.

Measures Expected Results References

Rethink tillage management

Shifting conventional tillage to no-till farming cuts emissions by
30 to 35 kg C/ha per season [31]

Higher SOC after 5 years of organic vegetable production by
adopting no tillage [101]

Formation of macroaggregates under long-term
conservation tillage [120]

Use of cover crops

Provides nutrients to the soil [40]

Decreases soil NO3 by 30% [41,104,121]

C sequestration outweighs N2O emissions [105]

Crop rotation and no tillage

Higher SOC compared to conventional tillage system [117,122]

Higher mineralized soil N compared with tilled systems [123,124]

An overall decline of up to 7.6% in GWP (net global
warming potential) [125]

Use of grain crop residues as fertilizers 1000 kg of cereal residue generates 12 to 20 kg N, 1 to 4 kg P,
7 to 30 kg K, 4 to 8 kg Ca, and 2 to 4 kg Mg [102]

Adapting a natural farming system low-input NT with weed residue mulching
increases soil carbon sequestration by 0–7.5 cm for 8 years [126]

Use of biochar—
the carbonaceous product obtained from

the organic material pyrolysis

Adjusts soil N cycle and reduces N losses [127]

An average 63% increase in symbiotic biological dinitrogen (N2)
fixation in crops and an 11% enhancement of plant N uptake [127]

Supplies nutrients to soils that stimulate biological N2 fixation [128,129]

Enhances crop yields [130]

Reduces N2O emissions [131,132]

Soil erosion control Measurement of emissions compared with burial of C
under erosional processes [72,133]

Management of farming practices:
- Long-term organic matter application

Mitigate organic matter degradation that impacts the
atmosphere similar to fossil fuel combustion [42]

Enhances soil organic carbon level and fertility [106,107]

Reduces N2O emissions [105,134]

Magnifies free-living N fixation rates in the soil and/or
nodulation in N-fixing crops [135]

- Use of silicate rock amendments

Speeds up the rate of chemical weathering and consumes
atmospheric CO2

[136]

Decreases both methane and N2O emissions [137,138]

Water resources conservation Water-efficient farming systems = water conservation
= water harvesting [31,139]

Carbon trading market scope Short-term (3–5 years) measure of proficiency of
SOC level changes [140,141]

3.4. Advantages and Disadvantages of Carbon Farming: Exploring the Upsides and Downsides

Many research studies [142–146] have highlighted several co-benefits of carbon farm-
ing, including but not limited to the promotion of food and nutritional security, the purifi-
cation and renewal of water resources, the enhancement of biodiversity, and the restoration
of degraded soils and ecosystems.
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Several meta-analyses comparing organic and conventional farming systems have
consistently concluded that organic farming systems exhibit superiority in soil organic
matter content [46,53,147].

Organic vegetable systems are foremost in terms of carbon sequestration due to the
utilization of organic amendments and cover crops [148,149], as well as the implementation
of more diverse crop rotations [150,151]. It is essential to underline that these technological
aspects are not limited solely to certified organic systems.

From a financial standpoint, carbon markets offer farmers the opportunity to generate
additional income by implementing recommended management practices (RMP) that focus
on sequestering soil organic carbon (SOC) and reducing emissions [152,153].

All of the recommended practices for carbon farming offer clear environmental advan-
tages. For instance, adopting no-till practices promotes the formation of soil aggregates,
facilitating long-term storage of carbon while reducing CO2 emissions associated with
disturbance [154]. Cover cropping enhances both above- and below-ground plant biomass,
thereby increasing carbon inputs to the soil [154]. Although it can contribute to carbon stor-
age in both above- and below-ground biomass, agroforestry may compete with crops for
land unless intercropped [155]. Various soil amendments, such as biochar, silicate rock, and
organic amendments, are gaining momentum as carbon sequestration practices. While they
may have similar practical uses, their pathways for carbon sequestration differ significantly.
Biochar, for example, adds and stabilizes carbon in the soil, silicate rock amendments
accelerate weathering processes, and organic amendments enhance crop productivity and
subsequent carbon formation in the soil [127,136].

Organic vegetable cultivation practices are distinguished by reduced reliance on syn-
thetic inputs, resulting in lower usage of chemically synthesized products and a decreased
demand for primary energy compared to conventional systems [66].

The vegetable farmers were willing to adapt practices such as retaining crop residue,
using no-till techniques, and applying organic mulch [142]. Gruda [33] reported that organic
mulch can improve water retention, balance soil temperature, increase vegetable growth,
and reduce weed growth by withdrawing light [32]. Field and greenhouse trials confirmed
these results, showing up to 63% fewer weeds and significant growth improvements in
crops such as head lettuce and sugar melons, even when it was impossible to suppress
all kinds of weeds [32]. In terms of potential drawbacks, it is crucial to highlight the
findings from the studies of Leifeld and Fuhrer [47] and Powlson et al. [156] that suggest
the beneficial impact of organic vegetable cultivation on soil organic carbon content may be
attributed to the higher application of organic fertilizers compared to conventional systems.
Consequently, increasing soil organic carbon content may not necessarily represent actual
carbon sequestration.

An additional concern is represented by lower average yields recorded in organic
vegetable cultivation systems. This implies that a larger land area would be required to
ensure a comparable availability of energy and protein for human consumption in the
scenario of a global shift to 100% organic agriculture by 2050 [157]. A similar viewpoint
was discussed by Smith et al. [158], who highlighted the necessity for increased land use
to compensate for the predicted 40% lower yields in organic production. However, this is
only sometimes realizable. Converting more natural habitats for agriculture could lead to
deforestation and the loss of biodiversity, thereby compromising delicate ecosystems [159].
Moreover, such an approach may exacerbate land degradation and soil erosion issues [160].
In regions with limited arable land, expanding cultivation areas might prove impractical
and could trigger conflicts over land ownership [161]. In addition, expanding organic
farming through increased land use might have socioeconomic implications [162]. Small-
scale farmers, who predominantly practice organic agriculture, could face challenges
acquiring more land due to escalating costs and limited availability [160]. Large-scale land
conversion might lead to the displacement of local communities, altering their traditional
ways of life and threatening their livelihoods [163].
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A distinct correlation exists between the sequestration of organic soil carbon and the
corresponding nitrogen intake. According to Hungate et al. [164], approximately 10 g of
organic carbon requires around 1 g of additional nitrogen. Thus, the potential consequences
of increased N2O emissions and NO3

− leaching from agricultural soils in organic systems
due to the heightened demand for additional nitrogen fertilizers should be considered and
further evaluated [108].

Another constraint is that, on a production unit basis, the energy use and carbon
footprint do not frequently favor organic systems [165,166]. A summary of the main
potential advantages and disadvantages carried out as a SWOT analysis is presented in
Table 5, as evidenced by numerous reviewed studies.

Table 5. SWOT analysis of carbon farming practices for ecological vegetable cultivation.

STRENGTHS References WEAKNESS References

The organic vegetable system uses less energy
and stores higher values of C per hectare [53,166,167]

On a production unit bases, both
energy use and carbon footprint

are higher in organic
vegetable growing

[165,166]

Reduced soil erosion improves soil structure and
water quality, and reduces sedimentation [168,169] Carbon lasting/persistence

and stabilization [170]

Reducing tillage minimizes the use of irrigation
water by increasing soil water-holding capacity [168,169] Political, economic, and

social factors [171]

Improves water quality and ecology [168,169,172,173]

C sequestration may lead to a cut
in food and fiber production

causing higher food prices and
reducing exports.

[168,169]

Soil health upgrade [174,175]

Heightened N2O emission [105,176]

Food safety [177]

Public health welfare [178]

Carbon sequestration at the soil level is a process
characterized by three features: naturalness,

environment friendly, and cost-effective
[31,141,179]

Enhances soil CH4 oxidization capacity [180–182]

OPPORTUNITIES References THREATS References

Integration of SOC monitoring and Carbon
footprint into the organic farming

certification process
[183] Policymakers and farmers’

divergent targets and interests [184]

Use of stacking environmental credits so that
payments overcome costs [185] Unattractive carbon contracts [186,187]

Facilitation of carbon farming contracts for
leased farmland [188–190]

Land ownership and the
challenge of farm leasing [185]

Farmers could receive payments from the
government grounded in the area of land

enrolled in a GHG mitigation program
[191–193]

Biodiversity preservation [194]

Poverty mitigation [195]

Infrastructure upgrading [196]

As a future perspective, Adewale et al. [183] suggest that including carbon footprint
and soil organic carbon monitoring in the organic farming certification process would
increase compliance with the final rule and upgrade the available information about carbon
sequestration and the carbon footprint of organic agricultural systems and practices.
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3.5. The Synergy between Organic Vegetable Cultivation and Some Emerging Systems within the
Context of Carbon Farming

Recently, there has been an increasing interest in developing innovative agricultural
systems prioritizing sustainability, productivity, and environmental stewardship. Several
low-input agricultural systems, including permaculture, urban gardening, agroforestry,
conservation agriculture, and Zero Budget Natural Farming (ZBNF), exhibit genuine poten-
tial for transforming our approach to food production, emphasizing efficiency, ecological
balance, and resilience. These innovative approaches offer promising solutions for reducing
greenhouse gas emissions, sequestering carbon, and enhancing overall environmental
sustainability.

Urban gardening can significantly reduce the carbon footprint of food production
and distribution by enabling local cultivation. This approach minimizes transportation
emissions and lowers energy consumption, which is commonly associated with long-
distance food supply chains [197].

Urban gardening, combined with organic farming, represents a sustainable and envi-
ronmentally friendly approach that encompasses various benefits. This practice promotes
local food production, improves food security, and contributes to climate change mitigation.
Moreover, it addresses public health issues and provides a means of adapting to geopolitical
challenges in urban areas. Overall, urban gardening and organic farming are integrated
solutions supporting multiple sustainability aspects in urban environments [29].

The agroforestry system increases organic matter accumulation in soil surface residues.
It promotes more effective conservation of biodiversity. Sequestering carbon in trees and
soil contributes to mitigating CO2 emissions and addresses the challenges posed by climate
change [35].

Recent studies on perennialization highlight that the intentional integration of peren-
nial species can have positive effects on various ecosystem services, including provisioning
(agricultural yields), regulating (pest control, hydrological cycles, water quality, carbon
sequestration, and storage), and supporting (soil quality, pollination) services [198]. Fur-
thermore, permaculture’s focus on enhancing yield through beneficial interactions has
anticipated the emergence of the functional diversity field, where ecologists now refer to
this phenomenon as overyielding driven by complementarity or facilitation [199].

A brief description of the main characteristics of low-input systems is presented in
Table 6.

Table 6. New types of low-input vegetable growing systems and the carbon farming approach.

A New Type of Vegetable
Cultivation System

Synergy with Organic
Vegetable Cultivation Expected Outcomes References

Urban farming

Make use of recycled materials
sourced from the local area, such as
compost produced from bio-waste

Alleviates environmental footprint
and actively contributes to the

development of a
sustainable bioeconomy

[39]

Supply green areas within
urban environments

Adjusts temperatures, mitigates air
pollution, and enhances air quality,

thereby fostering healthier and
sustainable urban environments in

response to climate change

[37]

Conservation farming

Precision farming and minimum
tillage, crop rotation, and

residue retention

Enhances crop yield in sandy,
acidic soils [200]

Preservation and restoration of
crucial soil characteristics, including
organic carbon content, structure, and

biological diversity and activity

Initiates a soil quality restoration
process that addresses

microbiological activity and soil
fauna diversity

[34]
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Table 6. Cont.

A New Type of Vegetable
Cultivation System

Synergy with Organic
Vegetable Cultivation Expected Outcomes References

Agroforestry system

Integration of trees into annual food
crop systems (both perennial and

annual species): trees and
vegetable crops

Tree leaves offer sufficient nutrients
for building and sustaining soil
fertility and supplying nutrients

to plants [35,201]
Enhance carbon storage in both

above-ground and
below-ground components

Zero Budget Natural
Farming (ZBNF)

Natural resources and
implementation of diverse cropping

systems, and utilizing products
derived from cow dung and urine to

enhance soil biology

Significant positive contribution to
preserving the ecosystem and

mitigating the detrimental effects
caused by agrochemicals

[38]

Permaculture

The pursuit of enhancing beneficial
connections between elements to
attain optimal design and harness

their synergistic potential

Minimizes waste, human labor,
energy, and resource inputs while

establishing systems that maximize
benefits and achieve high holistic

integrity and resilience

[36,202]

The emergence of new low-input agricultural systems reflects society’s growing recog-
nition of the urgent need for sustainable and resilient food production. Permaculture,
urban gardening, agroforestry, conservation agriculture, and Zero Budget Natural Farming
are just a few innovative approaches that promise to transform the agricultural landscape.
Integrating ecological principles, minimizing external inputs, and prioritizing long-term
sustainability contribute to a more food-secure, environmentally friendly, and socially
inclusive future. Embracing and further developing these approaches will pave the way
for a more resilient, ecologically conscious, and carbon neutral agricultural sector.

The presented study should be perceived as consistent with conventional vegetable pro-
duction. The era of pitting these approaches against each other has passed. Smith et al. [158]
conducted a life-cycle assessment to evaluate the impact of a complete shift to organic
food production in England and Wales on net greenhouse gas (GHG) emissions. Findings
suggest significant deficiencies in the production of most agricultural products compared
to a conventional baseline. While organic farming reduces direct GHG emissions, compen-
sating for domestic supply shortfalls through increased overseas land use results in higher
net emissions. To effectively address climate change, combining both approaches with a
prioritization of sustainable practices would be beneficial. These two approaches have the
potential to complement each other greatly. While this has been true in the past, we believe
it will continue to be the case.

To summarize, Figure 4 presents an antithetical exposition of the main recommended
management practices (RMPs) for carbon farming in contrast to the principal polluting
elements from agriculture.
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4. Conclusions

Carbon farming practices demonstrate significant potential for enhancing the sustain-
ability of organic farming systems. Implementing these practices can contribute to carbon
sequestration, mitigate greenhouse gas emissions, and improve overall soil health and fertil-
ity. Incorporating cover cropping, reduced tillage, compost application, and agroforestry in
organic farming can effectively increase carbon sequestration rates. These practices enhance
soil organic matter content, promote nutrient cycling, and support organic agricultural
systems’ long-term productivity and resilience.

Carbon farming practices in organic farming systems mitigate climate change im-
pacts and offer co-benefits such as improved water infiltration, reduced soil erosion, and
increased biodiversity. These practices enhance ecosystem services through biodiversity
conservation and contribute to the sustainability of organic farming, promoting habitat
diversity, supporting beneficial organisms, and strengthening the overall ecological balance
of agricultural landscapes.

Further improving soil structure and moisture retention, these practices help mitigate
the effects of extreme weather events, such as droughts and floods, on crop productivity.

The sustainability benefits of carbon farming practices extend beyond the farm level.
By sequestering carbon in soils, organic farming systems contribute to reducing atmospheric
carbon dioxide levels and addressing global climate change challenges.

Adopting carbon farming practices requires careful consideration of site-specific fac-
tors such as soil type, climate, and available resources. Tailoring these practices to local
conditions and organic farming systems is crucial for maximizing their effectiveness and
sustainability. The successful implementation of carbon farming practices in organic farm-
ing relies on farmer education and support, as well as access to technical expertise and
financial incentives. Policy measures and collaborative efforts among stakeholders are
essential for promoting the widespread adoption of these practices.

Long-term monitoring and research are necessary to assess the persistence and stability
of carbon sequestration achieved through carbon farming practices in organic farming.
Continued scientific investigation will provide insights into these practices’ scalability,
economic viability, and environmental benefits. Integrating carbon farming practices into
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organic farming represents a promising pathway towards sustainable agriculture. These
practices align with organic farming principles, enhance soil carbon stocks, and contribute
to climate change mitigation and adaptation goals.

In conclusion, scientific evidence underscores the potential of carbon farming practices
to enhance the sustainability of organic farming systems. These practices offer a valuable
approach to achieving a more sustainable and resilient agricultural future by sequestering
carbon, improving soil health, and providing additional ecological benefits. Efforts should
focus on knowledge dissemination, policy support, and further research to optimize the
implementation and maximize the potential of carbon farming practices in organic farming
for a sustainable future.
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