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Abstract: Strawberry maturity detection plays an essential role in modern strawberry yield estimation
and robot-assisted picking and sorting. Due to the small size and complex growth environment
of strawberries, there are still problems with existing recognition systems’ accuracy and maturity
classifications. This article proposes a strawberry maturity recognition algorithm based on an
improved YOLOv5s model named YOLOv5s-BiCE. This algorithm model is a replacement of the
upsampling algorithm with a CARAFE module structure. It is an improvement on the previous
model in terms of its content-aware processing; it also widens the field of vision and maintains a high
level of efficiency, resulting in improved object detection capabilities. This article also introduces
a double attention mechanism named Biformed for small-target detection, optimizing computing
allocation, and enhancing content perception flexibility. Via multi-scale feature fusion, we utilized
double attention mechanisms to reduce the number of redundant computations. Additionally,
the Focal_EIOU optimization method was introduced to improve its accuracy and address issues
related to uneven sample classification in the loss function. The YOLOv5s-BiCE algorithm was
better at recognizing strawberry maturity compared to the original YOLOv5s model. It achieved
a 2.8% increase in the mean average precision and a 7.4% increase in accuracy for the strawberry
maturity dataset. The improved algorithm outperformed other networks, like YOLOv4-tiny, YOLOv4-
lite-e, YOLOv4-lite-s, YOLOv7, and Fast RCNN, with recognition accuracy improvements of 3.3%,
4.7%, 4.2%, 1.5%, and 2.2%, respectively. In addition, we developed a corresponding detection app
and combined the algorithm with DeepSort to apply it to patrol robots. It was found that the detection
algorithm exhibits a fast real-time detection speed, can support intelligent estimations of strawberry
yield, and can assist picking robots.

Keywords: strawberry; maturity detection; Biformed; DeepSort; YOLOv5

1. Introduction

Strawberry, a perennial herb belonging to the Rosaceae berry family, is the second-
most cultivated and produced berry fruit worldwide. With a high nutritional value,
strawberries are popular in daily life. However, mature strawberries are thin-skinned
and easily damaged, making storage and sales difficult. Therefore, it is necessary to classify
strawberries according to maturity for the purposes of selling or storing them in different
ways [1,2]. Fully mature strawberries cannot be preserved and must be eaten immediately
after picking. Strawberries in the medium well can be transported over short distances,
and strawberries in the medium can be transported over long distances. [3]. With modern
agriculture’s large-scale production, machinery can replace manpower to save time and
costs while improving efficiency. Artificial sensory recognition is still the main method
used for picking and sorting, but it has many requirements and high costs. The maturity
recognition of strawberries is an essential step towards integrating intelligent picking and
sorting methods for modern strawberry production [4]. This recognition process plays a
crucial role in achieving the intelligent production of strawberries via efficient sorting and
picking methods at reduced costs.
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With the sustained advancement of deep learning and its integration across various
domains, the agricultural industry is also gradually embracing the use of deep learning
technology to address common challenges [5–7]. One noteworthy research area within
this domain is object detection. Target detection algorithms can be broadly divided into
two categories—the first being the two-step algorithm, which initially identifies a set
of candidate regions, followed by their subsequent classification. Common algorithms
in this category include Faster R-CNN [8] and various algorithms that use a CNN as
the backbone network [9,10]. In [11], the leaves of sweet potato plants were identified
based on an improved Faster R–CNN model. Additionally, [12] identified and judged
apple blossoms and flowers based on the Mask R–CNN detection model. The second
type of object detection is end-to-end, utilizing a single network to process input images
step-by-step, outputting the presence of objects and their respective locations. Common
algorithms employed in this methodology include YOLO [13] and SSD [14]. In [15,16],
an improved YOLOv5 model was used to identify the maturity of four types of tomatoes
in a greenhouse; [17] combined the dark channel algorithm and YOLOv5 to achieve the
maturity recognition of strawberries with an accuracy rate of 85%; [18] combined YOLOv5
with an attention mechanism to detect targets (apples); and [19] implemented an improved
SSD algorithm for the detection of jujube maturity.

From the above literature, it can be seen that, compared with one-step object detec-
tion algorithms, two-step object detection methods have disadvantages such as their poor
real-time performance and difficulty in small-object detection. In addition, there are still
issues in the recognition and detection of strawberry maturity, such as limited classification
systems of strawberry maturity, the failure to distinguish between mature strawberries
and rotten fruits, and the low level of maturity detection. In order to improve the recog-
nition speed of strawberries, ensure the accuracy of strawberry maturity classification
and recognition systems, and meet requirements for strawberry maturity detection, after
taking into account various factors such as training time, accuracy, ease of use, community
support, and deployment requirements, we selected YOLOv5s from the various one-step
detection algorithms as a base model and made improvements to it. The algorithm effec-
tively addresses issues of low accuracy, imperfect maturity classifications, and the lack
of universality. It incorporates a CARAFE module structure to enhance content-aware
processing, expand the field of view, and maintain model efficiency. Additionally, it im-
proves small-object detection through a dual-attention mechanism and enhances the level
of accuracy with Focal_EIOU optimization. Additionally, in multi-scale feature fusion,
BiFPN is introduced to reduce the number of redundant computations. The experimental
results demonstrate the algorithm’s superiority over existing solutions.

2. Materials and Methods
2.1. Data Acquisition

The dataset for this study was taken from the Smart Agriculture Valley Strawberry
Demonstration Park in Changfeng County, Hefei City, Anhui Province, where over 300 types
of strawberries were planted. Multiple categories of strawberries were selected from
the dataset, such as “hongyan”, “tianxianzui”, “yuexiu”, etc., and photographed in the
demonstration park to eliminate data bias caused by different varieties in the detection
results. Images were taken under different environmental conditions, including sunny
weather and cloudy weather, and the images captured were of single fruits. In total,
1446 high-resolution RGB images were acquired, which were then saved as 640 × 480 pixel
images. After that, each image data point was enhanced once by brightening it, increasing
contrast, rotating it, flipping it, adding noise, and other methods; finally, 2892 images
were obtained. After segmentation according to the ratio of 7:2:1, 2024 training sets,
578 verification sets, and 290 test sets are obtained. In this article, the maturity levels
of strawberries were divided into five categories based on their surface color, namely:
immature, medium, medium well, mature. Strawberries with irregular shapes and sizes
were classified as malformed fruits, which correspond to 1–5 in Figure 1 below. The
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labeling tool used in this paper was Labellmg, which manually labeled different types
of strawberries and finally saved the labeled data in TXT format. The final strawberry
maturity dataset contains approximately 16,000 annotated bounding boxes, with an average
of 4–7 bounding boxes per image, and the image with the most bounding boxes has
15 annotations.
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2.2. YOLOv5s Network Structure

When selecting our model, we considered various factors such as training time, ac-
curacy, ease of use, community support, and deployment requirements. Based on the
experimental environment in this paper, YOLOv5 had lower computational resource con-
sumption and faster processing speed compared to those of other models. It performed well
in real-time detection and lightweight deployment scenarios. This was particularly advan-
tageous when running on devices with limited resources. Therefore, we chose YOLOv5s as
our base model for the experiments.

In addition to YOLOv5s, the YOLOv5 series boasts three other versions: YOLOv5m,
YOLOv5l, and YOLOv5x. Among these versions, YOLOv5m and YOLOv5l have greater
network depth and breadth and achieve higher accuracy than YOLOv5s; however, they
also require longer training times and larger model scales. Meanwhile, YOLOv5x is the
deepest and widest version, with the best performance in terms of accuracy; however, it
necessitates even longer training times and larger memory requirements. Therefore, when
selecting an appropriate model for a project, one’s specific circumstances must be carefully
considered.

For the strawberry maturity recognition task in this article, we chose YOLOv5s as
the recognition network, which has the shallowest network depth and width, because the
strawberry maturity recognition network needed to meet the requirements for real-time
recognition. If the network depth and width were too high, it would lead to a long detection
time. Figure 2 displays the structure of this network, which includes four segments: the
input module, backbone module, neck module, and prediction module. The input module
processes input data before sending them to the backbone module. The backbone module
represents the core part of the entire network, as it extracts image features. Among them,
the FOCUS block represents the convolutional neural network used for feature extraction,
while the CBS block is used to reduce network parameters and improve the efficiency of
feature extraction. The neck module connects it with the prediction module while also
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playing a role in feature fusion, and Nearest represents the nearest-neighbor interpolation
method for upsampling. Finally, the prediction module outputs target detection results
with specific compositions, as illustrated in Figure 3.
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Parameter Optimization of Anchor Frame

In YOLOv5, the initial anchor box consists of nine boxes obtained from a K-means
clustering algorithm based on the COCO dataset. However, since a new dataset was used
in this study, customizing the size of the anchor boxes can result in better target detection.
To achieve this, the Kmeans++ clustering algorithm was utilized to redesign the anchor
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box sizes. Unlike the traditional K-means clustering algorithm, Kmeans++ optimizes the
selection of initial clustering centers, which significantly enhances target detection and
classification results. This approach results in an improved clustering effect and suitable
anchor boxes for small-target datasets that enhance small-target detection accuracy.

To customize the anchor box sizes for strawberries, this study selected three anchor
boxes for the large, medium, and small scales, resulting in a total of nine sets of data. The
number of clusters K was set to 9, and after 1000 iterations, a new prior anchor box scale
was obtained, as shown in Table 1, and normalized.

Table 1. New anchor box scale.

Feature Scale Anchor Box1/px Anchor Box2/px Anchor Box3/px

Small scale 40 × 40 60 × 51 53 × 71

Medium scale 66 × 88 92 × 71 80 × 108

Large scale 95 × 127 134 × 108 115 × 155

Based on the table presented above, it becomes apparent that recalculating the corre-
sponding anchor frame size according to actual data is vital in order to better fulfill the
demands of target detection tasks. Through analyzing the size and proportion of straw-
berry targets in the training set, it was found that they were primarily distributed between
40 × 44 and 115 × 155 pixels, due to a certain size variation. Thus, during the training
process, this study employed the newly calculated anchor frame to replace the original
settings and further trained the model to reduce redundant information and improve the
accuracy of target detection.

2.3. Improved YOLOv5s Network
2.3.1. Biformed Attention Mechanism

The growth environment surrounding the strawberries plays a crucial role in deter-
mining the performance of the strawberry maturity detection model. To address this issue,
researchers worldwide have been focusing on using attention mechanisms to improve
models’ performance.

The SE (Squeeze-and-Excitation) attention mechanism includes a compression oper-
ation that aggregates feature maps into channel descriptors and an incentive operation
that learns a set of weight vectors to selectively emphasize meaningful channels [20]. This
enhances mapping channels that are useful for the current task and suppresses those that
are not. The CBAM (Convolutional Block Attention Module) attention mechanism im-
proves upon the SE model by integrating channel and spatial attention [21]. It comprises
two modules, CAM (Channel Attention Module) and SAM (Spatial Attention Module).
The former selectively emphasizes critical channels by learning the weightage of each
channel, whereas the latter improves the visibility of local features by determining the
spatial significance of the feature map. The CA (Coordinate Attention) attention mechanism
selectively emphasizes meaningful channels by weighting their importance. It employs
two fully connected layers to calculate the importance weight for each channel and applies
it to the feature map, thereby enhancing the model’s recognition of crucial features [22].

Overall, these attention mechanisms have shown great potential in improving straw-
berry maturity detection models under varying growth environments.

However, the use of attention mechanisms commonly employed in neural networks
suffers from certain drawbacks, such as poor interpretability and inability to capture long-
term dependencies. Additionally, stacking layers continuously is necessary to obtain a
larger receptive field, but this approach fails to capture global information effectively. To
address these issues and enhance our model’s target detection capabilities, this article
introduces the BiFormer attention mechanism [23].

While traditional transformers can easily capture global information, they suffer from
computational explosion and slow training. In contrast, BiFormer is a dynamic, sparse-
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attention, double-layer routing method that focuses on a small number of related tags in an
adaptive manner without distracting attention from other unrelated tags. This results in
improved performance and high computational efficiency. Figure 4 illustrates the complete
structure of BiFormer, while Figure 5 shows the details of the BiFormer block.
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2.3.2. Improvement of Upsampling Algorithm

Feature upsampling algorithms play a pivotal role in determining the quality of object
detection results. Various upsampling techniques can have differing impacts on object
detection outcomes. In YOLOv5, nearest-neighbor interpolation is utilized for upsampling,
which requires negligible amount of computational resources. This method compares
the target point with known data points and assigns a value to the closest data point to
the target point. While this approach is fast and efficient due to its lack of calculation
requirements, it only considers the closest data point without utilizing feature semantic
information, resulting in a small perception domain of only 1 pixel × 1 pixel.

To improve feature upsampling for detecting targets, this paper introduces a lightweight
module, CARAFE, to address these issues [24]. CARAFE is capable of effectively utiliz-
ing surrounding information and has a larger perception domain than nearest-neighbor
interpolation. It processes perception based on input content and dynamically generates
an adaptive kernel while remaining lightweight, with low computational overhead and
quick computing speed. CARAFE comprises two modules—one for predicting upsampling
kernels and another for reorganizing features—as depicted in Figure 6.
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The upsampling kernel prediction module comprises multiple sub-modules,
such as feature mapping, channel compression, content coding, upsampling kernel pre-
diction, and upsampling kernel normalization. The content encoder is responsible for
encoding the feature map, which first undergoes channel compression to generate a new
recombined kernel. Subsequently, the kernel normalizer utilizes the softmax function to nor-
malize each of the recombined kernels. The feature recombination module is accountable
for mapping each position’s information in the output feature map to the corresponding
input feature map. It extracts an upsampling kernel size region centered on that position
and calculates the dot product between the region and point prediction upsampling kernel
to produce an output value. Since it concentrates more on local related points’ information,
the reconstructed feature map has stronger semantic significance than the original one.

In summary, CARAFE’s architecture comprises two modules that work together
synergistically—one for predicting upsampling kernels and another for reorganizing fea-
tures. This approach enables the more effective utilization of surrounding information,
with a larger perception domain than nearest-neighbor interpolation while remaining
lightweight, with low computational overhead and quick computing speed.

2.3.3. BIFPN Feature Fusion Network

The FPN structure in the YOLOv5 algorithm is a top-down, one-way information flow
that retains more features. YOLOv5s implements the PANet network, which includes a
bottom-up pathway for transferring essential image details to the feature layer used for
prediction. Due to the dual pathways, PANet can simultaneously incorporate semantic
information from the top and feature information from the bottom [25]. However, this de-
sign also results in a high degree of complexity, which reduces the efficiency of information
transmission in the PANet model.

To address this issue and improve feature integration, this paper proposes using an
optimized BIFPN based on the FPN mechanism, as shown in Figure 7, that reconstructs
the top-down and bottom-up routes using bidirectional fusion [26]. This approach fuses
feature information of different scales while unifying the feature resolution scale through
upsampling and downsampling. The BIFPN establishes bidirectional connections between
feature maps of the same scale while deleting nodes without feature fusion and with small
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contributions, adding new channels between original input and output nodes to integrate
more feature information while lowering resource consumption. Among them, P3. . .P7
represent the original node, and the arrow represents the output direction.
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The BIFPN structure performs fast normalized fusion by calculating weight ratios
then normalizing them to [0, 1] to enhance target perception ability in different situations.
At the end of the prediction, it can fuse the information of feature maps between different
levels, effectively addressing interference caused by factors such as image noise.

2.3.4. Improvement of Loss Function

The loss function is a critical component of the training model, as it assesses the
precision of the prediction results and gauges the disparity between the actual data and
the model. Selecting an appropriate loss function can accelerate convergence and enhance
the quality of the training model. YOLOv5 adopts the CIOU function as its network loss
function, given by the following:

LCIOU = 1 − IOU +
ρ2(b, bgt)

c2 + αv (1)

The IOU ratio measures the degree of overlap between the predicted detection frame
and the actual detection frame. Here, α represents the trade-off factor, and v is used
to evaluate the uniformity of the aspect ratio. b and bgt denote the center points of the
predicted frame and actual frame, respectively. Additionally, ρ denotes the Euclidean
distance between these two center points, while c signifies the diagonal distance of the
smallest closed area that can contain both frames. Nevertheless, CIOU solely takes into
account the aspect ratio of the predicted frame, neglecting the actual differences in width
and height, their confidence, and sample balance. As a result, it may occasionally impede
the effective optimization of the model’s similarity. This study utilized the Focal_EIOU loss
function, which is based on CIOU. Focal_EIOU optimization is an innovative combination
of the focal loss and the EIOU (enhanced intersection over union) loss. The significance of
Focal_EIOU lies in its ability to balance the learning focus between easy and hard examples,
with a particular emphasis on misclassified objects. By dynamically adjusting the loss
contribution of each example, researchers can drive the model to correct its mistakes more
effectively, thereby enhancing its accuracy, especially in complex scenes with numerous
overlapping objects or varying scales [27]. This novel approach is utilized to address the
issue of unbalanced sample distribution by introducing focal loss. By introducing this
technique, researchers are able to better focus on high-quality anchor frames and achieve
more accurate results. The formula for this loss function is as follows:

LEIOU = LIOU + Ldis + Lasp = 1 − IOU +
ρ
(
b, bgt)
c2 +

ρ
(
w, wgt)
C2

w
+

ρ
(
h, hgt)
C2

h
(2)

LFocal−EIOU = IOUγLEIOU (3)
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Within this formula, LIOU , Ldis, and Lasp, respectively, correspond to the overlap loss,
center distance loss, and aspect ratio loss. Specifically, the IOU loss evaluates the overlap
between the predicted and actual frames, while the center distance loss assesses the distance
between their centers. Additionally, the aspect ratio loss quantifies the variation in aspect
ratio between the predicted and actual frames. The parameters b, w, and h correspond to the
center point, width, and height of the predicted frame. Similarly, bgt, wgt, and hgt denote
the center point, width, and height of the true bounding box. Furthermore, c represents the
diagonal length of the smallest bounding rectangle that encompasses both the predicted
frame and the real frame. Additionally, Cw and Ch signify its width and height. These
parameters are used to compute a single bounding box’s relationship with respect to its
true counterpart. Finally, γ is a hyperparameter controlling the curves’ curvature to adjust
contributions of different parts towards the total loss value.

2.3.5. Target Tracking Algorithm

To obtain real-time information on strawberry maturity recognition counts from the
inspection robot, it is necessary to track and locate the strawberries. This study utilizes the
DeepSort detection-based, multi-target tracking algorithm to achieve this goal. DeepSort
is an advanced version of the Sort tracking algorithm designed for multi-target tracking.
The algorithm employs a Kalman filter to forecast the positions of the targets in subsequent
frames, followed by cascade matching. Finally, the Hungarian algorithm is used for data
association to improve tracking accuracy. The overall process is illustrated in Figure 8.
The video was first processed by a detection network to obtain the strawberries’ positions,
which were then fed into the tracking network for data association and matching between
frames to produce accurate tracking results.
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The DeepSort algorithm utilizes motion and appearance information of the targets
to compute the degree of similarity. To evaluate the correlation between predicted and
detected targets in terms of motion information, Mahalanobis distance was employed. The
calculation for Mahalanobis distance is provided below:

d(1)(i, j) =
(
dj − yi

)TS−1
i

(
dj − yi

)
(4)

This formula proposes a methodology by which we can evaluate the level of agreement
between trajectory and prediction frames using the notation d(1). In order to evaluate the
motion similarity, a Kalman filter was used to predict the state and detection value of
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the target from the detection and tracking frames. Moreover, the Mahalanobis distance
was computed to estimate the matching degree. To represent the j-th detection frame’s
position, dj was used. While yi represents the position of the i-th target prediction frame, Si
is also considered to represent covariance between the detection and prediction positions
of ith target, which check the measurement stability by determining the standard deviation
between both positions. In scenarios in which a target remains hidden for an extended
period of time or there are viewing angle inconsistencies, appearance information should
be incorporated and cosine distance should be used to address identity conversion issues
caused by occlusion. The formula for cosine distance is as follows:

d(2)(i, j) = min
{

1 − rT
j r(i)k

∣∣∣r(i)k ∈ Ri

}
(5)

In the formula, d(2) represents the cosine distance between two targets and rj repre-
sents the feature vector extracted by each target dj, ||rj|| = 1. In addition, the vector library
Rk = {rk

(i)}Lk
k=1 retains the eigenvector of each track k in the nearest Lk frame. The eigen-

vectors exceeding Lk are not considered, and their contribution to the results decreases
with the increase in Lk. When the value of d(2) is lower than the specified threshold, the
association can be considered successful.

The ultimate comprehensive matching degree ci,j is weighted by two kinds of
information:

ci,j = λd(1)(i, j) + (1 − λ)d(2)(i, j) (6)

In the formula, λ is a superparameter used to adjust the influence of two measurement
methods on the correlation, and the target correlation is considered if and only if the
measurement values ci,j are between d(1) and d(2).

3. Results
3.1. Training of Models

The network training for this study was conducted using the PyTorch framework on
an Ubuntu system. The server configuration included an i5-9500 CPU and GeForce RTX
2080ti GPU, with Cuda11.6, cuDNN8.0.5, and Python 3.9 installed.

In this study, all algorithms were trained under the same environmental conditions
and hyper-parameter settings. The model underwent training with a batch size of eight,
completed 300 iterations, and was fed image inputs that were 640 × 640 pixels. Furthermore,
an initial learning rate of 0.01 was set, and a confidence threshold of 0.5 was employed to
differentiate between positive and negative samples.

3.2. Model Evaluation

This study employed standard evaluation metrics to evaluate the performance of the
target detection model. The evaluation indices include accuracy P, recall R, mAP_0.5, and
mAP_0.5:0.95. The accuracy is the percentage of correct predictions made by the model,
while the recall rate represents the ratio of correct predictions to all actual targets. mAP
provides an average accuracy measurement for each class. To calculate mAP, we first
computed the AP of each category, which indicates how well the model detects different
categories of interest.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

AP =
∫ 1

0
P(R)dR (9)

mAP =
1
C

C

∑
i=1

APi (10)
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In this study, we employed a formula that included the following variables: TP, FN,
FP, and TN. These represent the number of positive classifications that were predicted
accurately, the number of positive classifications that were mistakenly identified as negative,
the number of negative classifications that were falsely identified as positive, and the
number of negative classifications that were predicted correctly. In addition to this, we
utilized P–R to represent how accurately a model performed with respect to recall R.
This is commonly referred to as the P–R curve. Lastly, we considered C as the total
number of classes taken into account for this study. Figure 9 illustrates the changes in the
mean average precision during training with threshold values of 0.5 and 0.5:0.95, which
were relatively high when using a threshold value of 0.5. Figure 10 shows an optimal
training model based on the P–R curve for immature strawberries, strawberries at medium
of maturity, strawberries at medium well of maturity, fully mature strawberries, and
malformed strawberries with respective AP values of 0.969, 0.961, 0.948, 0.963, and 0.965. A
further analysis revealed the average AP value for all five categories, represented by the
blue curve in Figure 10, to be 0.961.
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4. Discussion
4.1. Evaluation of the Model’s Performance Pre- and Post-Improvement

We evaluated the performance of the trained model using a test set, which consisted
of 475 immature strawberries, 140 strawberries in medium of maturity, 209 strawberries
in medium well of maturity, 173 mature strawberries, and 84 malformed strawberries.
The improved algorithm employed in this paper effectively discerned the quantity of
strawberries in each classification, as demonstrated below: 453 immature strawberries,
129 strawberries in medium of maturity, 193 strawberries in medium well of maturity,
164 fully mature strawberries, and 83 malformed strawberries. The recognition effect
before and after implementing the improved algorithm is depicted in Figure 11. The figure
demonstrates that the YOLOv5s-BiCE model can effectively eliminate targets that were
incorrectly identified by the YOLOv5s model. Furthermore, it is capable of detecting small,
occluded, and overlapping targets with a higher level of accuracy.
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4.2. Comparison of Performance between This Algorithm and Several Target Detection Algorithms
4.2.1. Comparison between the Improved Algorithm and Other Algorithms

In this study, YOLOv5s-BiCE was compared to other models using a strawberry
maturity data set. The evaluation models included a lightweight model and a common
target detection model. Table 2 summarizes the results.

Table 2. Comparison of our model’s performance to that of other models.

Algorithm P/% R/% mAP_0.5/% mAP_0.5:0.95/% Size/MB

YOLOv4-tiny 91.2 88.2 91.5 79.5 6.7
YOLOv5-lite-e 89.8 81.4 87.5 71.4 1.6
YOLOv5-lite-s 90.3 85.7 90.3 77.5 3.2

YOLOv7 93 90.7 93.9 88.7 74.5
Faster RCNN 92.3 89.6 91.8 83.3 107.57

YOLOv5s-BiCE 94.5 93.4 96.1 92.9 15.3

Table 2 illustrates the impressive performance of the YOLO-BiCE model, achieving an
mAP_0.5 of 96.4% and an mAP_0.5:0.95 ratio of 92.9%, all while maintaining a model size of
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just 15.3 MB. Compared to other lightweight models, such as YOLOv4-tiny, YOLOv5-lite-e,
and YOLOv5-lite-s, the YOLO-BiCE model boasts a significant increase in mAP_0.5 by
4.5%, 8.6%, and 5.8%, respectively, as well as an increase in mAP_0.5:0.95 by 13.4%, 21.5%,
and 15.4%, correspondingly.

Moreover, compared to commonly used models such as the YOLOv7 and Faster RCNN
models, the YOLOv5s-BiCE model still outperformed them, with increases in mAP_0.5 of
2.2% and 4.3%, respectively, while also achieving increases in mAP_0.5:0.95 of 4.2% and
9.6%, respectively.

Overall, these outcomes demonstrate that the YOLOv5s-BiCE model is highly effec-
tive compared to other models across various performance metrics, while maintaining
a relatively smaller model size for easier deployment on resource-limited devices and
platforms.

4.2.2. Comparison of Actual Recognition Effects of Test Sets

In this study, we evaluated the target detection performance of each algorithm by
calculating the number of strawberries in each category identified by the algorithm and
measuring the proportion of correctly identified strawberries to the total number of straw-
berries. To detect the test set, different algorithms were used with a threshold of 0.5, and
the detection results for each algorithm are presented in Table 3.

Table 3. Comparison of actual effects with those of other models.

Algorithm Number of
Immature

Number of
Medium

Number of
Medium Well

Number of
Mature

Number of
Malformed

Recognition
Accuracy Rate/%

Detection
Time/s

YOLOv5s 426 164 262 158 74 89.7 2.6
YOLOv5s-B 435 153 189 178 79 92.4 2.7
YOLOv5s-Bi 440 151 187 176 92 92.7 2.6
YOLOv5s-C 445 123 185 169 78 92.5 2.6
YOLOv5s-E 430 125 178 188 90 90.6 2.6

YOLOv5s-BiCE 453 129 193 164 83 94.5 2.6
YOLOv4-tiny 434 127 183 183 86 91.5 1.17
YOLOv5-lite-e 428 124 184 160 88 90.3 3.01
YOLOv5-lite-s 431 125 184 179 74 90.8 3.27

YOLOv7 443 126 187 181 80 93.4 3.92
Faster RCNN 441 125 224 163 88 92.8 57.7

Table 3 demonstrates that the proposed algorithm exhibited a significant improvement
in recognition accuracy, with an increase of 6.3% compared to its pre-improvement perfor-
mance. It also outperformed the YOLOv5s-B, YOLOv5s-Bi, YOLOv5s-C, and YOLOv5s-E
algorithms by 2.1%, 1.8%, 2%, and 3.9%, respectively. Additionally, compared to lightweight
networks, the proposed algorithm displayed increases in recognition accuracy of 3%, 4.2%,
and 3.7%, respectively. Furthermore, when compared with the commonly used algorithm
models, the model’s accuracy of recognition was 1.1% and 1.7% higher, respectively.

4.2.3. Ablation Experiment

To evaluate the efficacy of the improved model, we conducted an ablation experiment
using a dataset of strawberry maturity. The enhanced YOLOv5s-BiCE model was compared
with existing models, and Table 4 summarizes the corresponding algorithm combinations
represented by YOLOv5s-B, YOLOv5-C, and other models proposed in this article. The
mAP_0.5 curve and mAP_0.5:0.95 were used to assess performance, and the average
precision (mAP) values for various models using the improved method are displayed in
Figures 12 and 13, respectively.
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Table 4. The composition of the algorithm.

Algorithm 1 Algorithm 2 Algorithm 3

YOLOv5s BiFormer YOLOv5s-B

YOLOv5s BiFPN YOLOv5s-Bi

YOLOv5s CARAFE YOLOv5s-C

YOLOv5s Focal_EIOU YOLOv5s-E
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Table 5 presents the training outcomes of various models. The results demonstrate
that the enhanced algorithm outperformed the other models.
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Table 5. Results of ablation experiment.

Algorithm P/% R/% mAP_0.5/% mAP_0.5:0.95/% Size/MB

YOLOv5s 88.2 90.9 93.3 85.5 14.4
YOLOv5s-B 92.8 90.1 95 87.7 14.9
YOLOv5s-Bi 92.3 91 94.6 87.1 14.5
YOLOv5s-C 92.1 90.6 94.7 87.3 14.7
YOLOv5s-E 89.9 89.8 94.8 86.5 14.4

YOLOv5s-BiCE 94.5 93.4 96.1 92.9 15.3

Table 5 illustrates that the improved YOLOv5s-BiCE model achieved an mAP_0.5 of
96.1% and an mAP_0.5:0.95 ratio of 92.9%, with a model size of only 15.3 MB. Comparing
these results with those of the original model, we observed a 2.8% improvement in mAP_0.5,
a 7.4% increase in mAP_0.5:0.95, and only a slight increase in model size by 0.9 MB.

4.3. Android Deployment Testing

In-depth learning parameters trained using a PC are often stored in a specified model
and cannot be applied to all hardware platforms. A model transplanted to a mobile
phone needs to perform parameter extraction and format conversion first. Figure 14
depicts a schematic diagram illustrating the deployment process of the strawberry maturity
recognition model to an Android terminal. Torchscript is a high-performance reasoning
framework suitable for deep learning on mobiles, with a low level of precision loss and fast
calculation speed, which is suitable for model transplantation to mobiles. The strawberry
maturity recognition model was successfully transferred to an Android phone. First, the
PTH model file trained by PyTorch needed to be transformed into the Torchscript.ptl model,
and we checked whether the model was wrong. Finally, according to the app design
requirements, an Android project was built to deploy the Torchscript model to the handset
for accuracy testing.
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Figure 14. Flowchart of strawberry maturity model’s deployment to an Android.

The main functions of the strawberry maturity recognition APP include the following:
image acquisition, image storage, strawberry maturity detection, detection result category
count display, and real-time detection. Users can capture strawberry images with their
mobile phones through the image acquisition module or use their own images. The
strawberry maturity detection module analyzes the maturity of the target strawberry and
outputs the maturity information, location, and number of different strawberry maturity
levels in the target image. Real-time detection can allow mobile cameras to detect the
real-time maturity of strawberries within the scope of the camera used and output the
maturity information. The effect diagram is shown in Figure 15. The save module can save
the required detected image to a phone album after the detection is performed.
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The deployment of the strawberry ripeness model on the Android platform allowed
for real-time detection and provided advantages in terms of mobility, user-friendliness, data
transmission, and system integration. This can be convenient for and benefit agricultural
management and the quality control of agricultural products. It also laid the foundation
for strawberry yield estimation and the development of strawberry harvesting and sorting
robots.

4.4. Combination Experiment with Detection Robots

To evaluate the efficacy of this proposed algorithm in strawberry maturity recognition
and tracking, it was tested on a self-built strawberry detection and tracking dataset. The
parameter settings of the original YOLOv5s-DeepSort algorithm were utilized to compare
the model’s performance before and after the improvement. The comparative results of the
model’s performance are presented in Table 6.

Table 6. Model performance comparison.

Algorithm MOTA/% MOTP/% FPS

YOLOv5s-DeepSort 84.4 82.6 25
YOLOv5s-BiCE-DeepSort 91.3 90.1 51

Table 6 demonstrates that the algorithm proposed in this paper effectively enhanced
the detection accuracy and speed of strawberry maturity in target tracking. The model
achieved an accuracy rate of 91.3% and a speed of 51 fps, satisfying demands for the
real-time detection and tracking of strawberry maturity.

The tracking accuracy evaluation indices used in this study were MOTA and MOTP.
The calculation method for these evaluation indices is as follows:

MOTA = 1 − ∑t FN + FP + IDS
∑t GTt

(11)

MOTP =
∑t,i dt,i

∑t ct
(12)

In the MOTA formula for multi-target tracking accuracy, FN represents the number
of positive classifications that were mistakenly identified as negative, FP represents the
number of negative classifications that were falsely identified as positive, IDS represents
the number of switch events, and GT refers to the number of actual targets present in the
video. In the formula for multi-target tracking accuracy MOTP, dt,i represents the average
distance between predicted and true bounding boxes, and ct represents the number of
successfully matched targets at frame t.

In order to provide a clearer demonstration of the practical application of the proposed
algorithm in this study, we used an inspection robot for verification, as shown in Figure 16.
The inspection robot was able to perform the stable detection and tracking of strawberries
while also accurately assessing their levels of maturity. This demonstrated that deploying
the strawberry ripeness model on the inspection robot enabled the real-time detection
and monitoring of the strawberries’ ripeness, improving the efficiency and accuracy of
the detection. Additionally, it also enabled automation and data collection, providing
strong support for strawberry cultivation management. This proved the effectiveness and
potential usefulness of YOLOv5s-BiCE in real-world scenarios, laying the foundation for
the future development of strawberry picking and sorting robots.
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5. Conclusions

This paper introduces an advanced YOLOv5s-BiCE algorithm for strawberry maturity
recognition based on the improved YOLOv5s model. The algorithm effectively addresses
issues of low accuracy, imperfect maturity classifications, and the lack of universality. It
incorporates a CARAFE module structure to enhance content-aware processing, expand
the field of view, and maintain model efficiency. Additionally, it improves small-object
detection through a dual-attention mechanism and enhances accuracy with Focal_EIOU
optimization. Additionally, in multi-scale feature fusion, BiFPN is introduced to reduce the
number of redundant computations.

We proposed the YOLOv5s-BiCE model for strawberry maturity detection, which
achieved an mAP of 96.1%. In the experimental environment, a single strawberry im-
age was detected within 9 ms, and the entire test set was detected within 2.6 s, almost
instantaneously detecting maturity information and counting the number of strawberries
within each category. Furthermore, our ablation experiments and comparisons with other
target recognition models demonstrated that our proposed algorithm model has a higher
accuracy, faster detection speed, and better robustness than other models, such as YOLOv7.
We also transferred this algorithm to the Android platform and used it within inspection
robots, achieving real-time detection, both of which are very suitable for applications such
as strawberry yield estimations and auxiliary picking robots.

Although the proposed improvement algorithm in this paper has achieved excellent
results to some extent, there are still certain limitations, such as data dependency and more
complex environmental detection. In future works, we will study its potential expansion
in specific domains, expand it to a more diverse dataset, and integrate the model with
other hardware and emerging technologies. In conclusion, the research results of this paper
demonstrate substantial progress in applying the strawberry ripeness model to real-world
problems. However, we also indicate a need to further improve the algorithm’s robustness,
speed, and transferability to keep up with the rapid development in precision agriculture
and autonomous robotics.
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