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Abstract: Drought stress is an important challenge to global food security and agricultural output, and
dramatic and rapid climate change has made the problem worse, causing unexpected impacts on the
growth, development, and yield of different plants. Understanding the biochemical, ecological, and
physiological reactions to these pressures is essential for improved management. Carbon materials’
impacts on plants subjected to different stresses are still poorly studied. Thus, this study was carried
out investigate the feasibility of applying carbon nanotubes (CNTs) (0, 20, and 40 mg/L) as a foliar
treatment for mitigating the effect of water stress (100%, 75%, and 50% irrigation water, IW) on
peanut plants growing in sandy soil through assessments of growth and productivity and some
physiological and biochemical measurements. Exposure of peanuts to decreased irrigation water
led to significant decreases in growth, yield, photosynthetic pigments, indole acetic acid (IAA), and
some nutritional components in peanut seeds, but increased levels of osmolytes such as total soluble
carbohydrates (TSS) and proline, in addition to free amino acids and phenolics. However, foliar
spraying with CNTs could ameliorate the impacts of decreased irrigation water on growth and
production via enhancing the studied physiological parameters, such as photosynthetic pigments,
IAA, osmolytes, and phenolics. Furthermore, the application of carbon nanotubes improved the
nutrient contents, as expressed by the oil yield, protein yield, total carbohydrates, antioxidant
activities (DPPH), B-carotene, lycopene, and flavonoids in peanut seeds, either under normal or
water stress conditions. The higher level of CNTs (40 mg/L) was more effective than the lower
one (20 mg/L) at increasing the above-mentioned parameters. In conclusion, foliar treatment with
carbon nanotubes has the ability to enhance peanut drought tolerance and increase its growth and
productivity under sandy soil conditions.

Keywords: carbon nanotubes; drought; flavonoids; growth; peanut; osmolytes; yield; DPPH

1. Introduction

Peanut (Arachis hypogaea L.), also called groundnuts, are not only one of the most
important summer oil seed and protein crops, but also the king of oil seed crops and
legume edible seeds [1]. Peanuts are known as the 13th food crop, 4th oil seed crop, and the
3rd source of vegetable protein. In Egypt, the average area cultivated with peanuts over the
last five years was about 62,000 ha. Ref. [2] identified the development scale of peanuts; the
growth of peanut plants was divided into two phases (vegetative and reproductive), which

Agronomy 2024, 14, 611. https://doi.org/10.3390/agronomy14030611 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14030611
https://doi.org/10.3390/agronomy14030611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-7695-3401
https://orcid.org/0000-0001-9658-7886
https://orcid.org/0000-0002-0316-1948
https://doi.org/10.3390/agronomy14030611
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14030611?type=check_update&version=2


Agronomy 2024, 14, 611 2 of 19

were further subdivided into distinct stages. The main phases were the vegetative (V) and
reproductive (R) stages of plant development. Letters or numbers were added to denote
individual steps within these phases. Peanut’s economic benefits are mostly due to its
short soil lifespan, which allows for higher economic returns in newly reclaimed lands
when compared to other crops. Peanuts are as popular as they are nutritious, containing
40–50% oil, 25–30% protein, 20% carbs, and 5% ash, as well as various minerals such as
magnesium and calcium, depending on the variety and agricultural treatment [3]. Moreover,
peanut leaves are used as animal feed. Thus, because of its aptitude for growing in newly
reclaimed sandy soil, both the government and specialists have paid close attention to this
crop. In addition to oil production, peanuts are used to make peanut butter, confectionary,
roasted peanuts, snack meals, meat product extenders, soups, and desserts [4].

Drought is one of the world’s most serious problems, resulting in significant crop yield
losses. Plant growth, productivity, and resistance to environmental challenges are currently
the focus of agriculture and new plant-based technologies [5]. Among these stressors,
drought, salinity, and alkalinity are the most major global challenges, resulting in significant
crop yield losses [6]. Drought is a global issue that impacts a wide range of regions around
the world. Water is a critical constraint that affects major metabolic, physio-biochemical,
growth, proteomic, and transcriptomic processes that control plant growth, tolerance, and
yield [6]. Accordingly, plant researchers are investigating these critical physio-biochemical
concerns related to plant water stress tolerance. Plants confront a number of problems
as a result of water shortages brought on by a lack of water and hot temperatures. The
plant’s reaction to the decreased effect of water stress varies by organ; they achieve active
osmotic equilibrium by amassing osmolytes and inorganic ions [7]. Osmolytes build up
and translocate, interfering with important metabolic functions in order to promote growth
and development. Water stress builds up reactive oxygen species (ROS) [8]. Increased
levels of reactive oxygen species (ROS) disrupt cell processes by damaging proteins and
lipids, resulting in cell death [9].

Nanotechnology is a technique for designing and incorporating nanoparticles into
devices. Nanoparticles (NPs) with at least one dimension smaller than 100 nm can be
made using this technology. Nanomaterials have recently become widely employed in a
wide range of scientific sectors, including pharmaceuticals, biology, and agriculture [10,11].
Furthermore, nanoparticles hold a lot of promise for the external treatment of plants in
terms of nutrition and defense [12]. Organic and inorganic nanoparticles are the two types
of nanoparticles. Carbon nanotubes, for example, are organic molecules. Carbon nan-
otubes (CNTs) are a novel kind of carbon that resemble a two-dimensional graphene sheet
when folded up. Carbon nanotubes (CNTs) also have the shape of molecular-scale graphitic
carbon tubes. CNTs are widely used in a variety of products due to their unique nanostruc-
tures and outstanding properties such as a large specific surface area, an enhanced aspect
ratio, a high electrical conductivity, and significant thermal stability [13]. Single-walled
and multi-walled nanotubes are the two most common types of nanotubes. Exploiting
the properties of CNTs will surely open up new possibilities for the development of a
variety of nanodevices with specific conductivity, optical, and thermal properties for use in
agriculture. Plant scientists employ carbon nanotubes to improve plant production systems,
detoxify pollutants (pesticides and fertilizers), improve disease tolerance, and act as plant
bio-regulators [14]. CNT-based delivery systems can focus fertilizers or agrochemicals to
specific hosts, reducing the amount of chemicals discharged into the environment as well
as the damage to other plant tissues [14]. In comparison to non-crystalline, relatively bigger
carbon materials, the crystalline tubular structure of the outer layers may facilitate further
absorption and interaction with the biological system [15]. Furthermore, carbon nanotubes
have been demonstrated to absorb and eliminate organic and inorganic pollutants from
water [16]. Therefore, using CNTs in agriculture has shown very promising results [17].
According to Srivastava and Rao [18], using CNTs improved germination percentages and
growth of wheat, maize, peanut and garlic plants. Also, Rahimi et al. [19], stated that
multi-walled carbon nanotubes enhanced the growth, development and yield of Alnus sub-
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cordata plant under drought stress conditions. Furthermore, Ref. [20] found that MWCNT
treatment enhanced the growth, photosynthetic pigments and physiological processes of
barley plant under salinity stress.

Few research groups have looked at the impact of foliar spraying carbon nanotubes
onto stressed peanut plants as far as we know. As a result, the goal of this study is to see if
foliar spraying carbon nanotubes can reduce the impact of water stress on peanut plants
grown in sandy soil. The impact of carbon nanotubes on peanut plant development, yield,
and several physiological and biochemical properties, as well as seed nutritional values,
was investigated.

2. Materials and Methods

Carbon Nanotubes: The multi-walled carbon nanotubes used in this present investi-
gation were supplied from Sigma-Aldrich Co. (St. Louis, MO, USA). The characteristics of
MW CNTs were as follows: purity, 98 wt%; outside diameter, 5–15 nm; inside diameter,
3–5 nm; length, ~50 µm; ash < 1.5 wt%; surface area > 110 m2g−1; true density 2.1 g cm−3.
A uniform mixture of MWCNTs was prepared after suspending them in distilled water and
then sonicating at 40 KHz (100 W) for 30 min. Homogeneous suspensions of MWCNTs at
different concentrations of 20 and 40 mg/L were prepared according to Sadak et al. [21].

Experimental procedure: Two field experiments were conducted during two succes-
sive summer seasons in 2021 and 2022 at the experimental station of the National Research
Center (NRC) (latitude 30◦30′1.4′′ N, longitude 30◦19′10.9′′ E, and 21 m + MSL (mean
sea level)) at Al Nubaryia district, El-Behaira Governorate, Egypt (Figure 1). Prior to the
initiation of each experiment, soil samples at 30 cm depth were collected to identify some
physical and chemical properties of the site of experimentation. Soil samples were analyzed
according to the standard published procedures of [22]. The soil texture was sandy, and the
soil had the following characteristics: sand 94.7%; pH 8.6; organic matter 0.8%; CaCO3 2.4%;
EC 0.13 mmhos/cm3; available N 18.0 ppm; available P 18.0 ppm; available K 104 ppm;
and available Zn 0.05 ppm.
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The experimental design was a split plot design with three replications, where irri-
gation water (IW) levels of 100%, 75% and 50% were applied to the main plots. Carbon
nanotubes at foliar application at rates of 0, 20 and 40 mg/L were randomly applied via
foliar spraying until runoff. Before spraying, Tween-20 (0.1%, v/v) as a surfactant was
added to promote the optimal penetration of CNTs into leaf tissues. This was performed in
sub plots and carried out twice; the first application was 30 days after the sowing date and
the second application was 45 days after the sowing date at the vegetative stage of growth
and the early reproductive stage [2]. The plot area was 10.5 m2, consisting of five rows
(3.5 m length and 60 cm between rows).

Peanut (Arachis hypogaea L.) variety Gize-6 was procured from the Oil Crops Research
Section, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt, and
was inoculated just before sowing with specific rhizobium bacteria inoculants. Seeds of
peanut were sown in the first week of May in both seasons. A phosphorus fertilizer, calcium
superphosphate (15.5% P2O5), was added during seed bed preparation at a rate of 60 kg
P2O5/faddan. Potassium sulphate (48% K2O) at the rate of 50 kg/fad was applied at
sowing. Nitrogen fertilizer was added at a rate of 30 kg N/fad as ammonium sulfate
(20.6% N) in two equal portions; the first half was added at sowing and the second 30 days
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later. Three irrigation levels were applied, each representing a different percentage of crop
water irrigation requirements (IWRs) as the following: 100%, 75% and 50%.

2.1. Water Irrigation Requirements

The daily reference evapotranspiration (ETo, mm day−1) was determined using the
Class A pan (Epan, mm day−1) and the pan coefficient (Kp) according to Allen et al. [23]
as follows:

ETo = Epan × Kp

Crop evapotranspiration (ETc) was calculated using the crop coefficient (Kc) according
to the following equation:

ETc = ETo × Kc

The growing peanut plants were irrigated every two days.
The average amount of irrigation water applied with the sprinkler irrigation sys-

tem was 2500, 1875 and 1250 m3 Feddan−1 season−1 (for 100%, 75% and 50%) for the
two seasons [24]. (One Feddan = 4200 m2).

The following equation was used to determine irrigation water amounts:

IWR = (ETo × Kc × 4.2) × 1.2

where IWR: irrigation water requirement (m3/fed.), Kc: crop coefficient, ETo: reference
evapotranspiration (mlm/day), 4.2: for feddan, and 1.2: leaching requirement.

Growth parameters: A sample was taken 60 days after sowing to measure some mor-
phological parameters such as the shoot length (cm), number of branches and leaves/plant,
shoot fresh and dry weight (g), root length (cm), and root fresh weight (g).

At harvest: A sample of five plants was taken in each plot at harvest time (120 days
from the sowing date); the data of seed yield characteristics were recorded follows: plant
height (cm), number of branches/plants, number of pods/plants, plant fresh weight (g),
pod weight/plant (g), seed weight/plant (g). The whole plot was harvested and the pods
were air dried to calculate the pod yield (kg/feddan), seed yield (kg/feddan), oil yield
(kg/feddan), and protein yield (kg/feddan).

2.2. Chemical Analysis
2.2.1. In Peanut Shoots

Photosynthetic pigments such as chlorophyll a and b and carotenoids of peanut plants
were determined according to Li and Chen [25]. Indole acetic acid (IAA) was measured
according to Gusmiaty et al. [26]. The total phenol content was determined as described by
Siddiqui et al. [27]. Total soluble sugars (TSSs) were extracted and determined according
to Mecozzi [28]. Proline and free amino acid contents were determined according to the
method described by Vartanain et al. [29]. Proline was assayed according to the method
described by Versluses, [30]. The free amino acid content was determined using the method
described by Tamayo and Pedrol [31].

2.2.2. In Peanut Seeds

Estimation of total carbohydrates was performed via the method of Albalasmeh et al. [32].
The protein content was determined according to Pedrol and Tamayo, [33]. The oil of peanut
seeds was estimated according to the AOAC [34]. The free radical scavenging activity
of seed extracts was determined according to Gyamfi et al. [35]. The method used for
determination of lycopene and β-carotene was as described by Nagata and Yamashita [36].
The flavonoid content was determined by the method proposed by Chang et al. [37].

2.3. ANN Modeling

In the present work, a four-layer feed-forward multilayer perceptron neural network
was used to assess the importance of the inputs to the output (seed yield). The structure of
the network consisted of one input layer with fourteen neurons, two hidden layers with
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twenty-three neurons each, and one output layer with one neuron. A back propagation
learning algorithm was used to train the network, and the Rectifier activation function
(f(x) = max (x,0)) was adopted in hidden layers, while the linear activation function was
adopted in the output layer. The goodness of fit was evaluated based on the determination
of the coefficient (R2) and the root mean square of error (RMSE). A total of 80% of the
dataset was used to train the network, while 20% was used for testing its performance.
After finishing training and testing the network, the connection weights were used to
calculate the relative importance of the inputs. Uniform connection weights were used
to avoid gradient vanishing problems in the deep learning networks; the learning rate
was 0.01, the momentum was 0.9, the number of epochs was 15, and the L2 regularization
method was used to avoid the multicollinearity problem among traits.

2.4. Statistical Analysis

The data were statistically analyzed for variance according to the split plot design.
Since the trend was similar in both seasons, a homogeneity test, Bartlet’s equation, was
applied and the combined analysis of the two seasons was performed according to this
method. An HSD test was conducted to compare the means at p < 0.05 using SPSS software
version 24 (IBM, Armonk, NY, USA) [38,39].

3. Results

To achieve the goal of this study, thirty-three traits were measured to examine the
potential roles of carbon nanotubes at foliar application at rates of 0, 20 and 40 mg/L in
increasing the tolerance of peanut plants to drought stress.

3.1. Changes in Morphological Criteria

The effect of exogenous treatment with carbon nanotubes on the morphological criteria
of peanut plants under different irrigation water amounts is shown in Table 1. The data
show that water deficit led to significant decreases p ≤ 0.05 in the studied morphological
criteria (shoot length (cm), number of branches/plants, number of leaves/plants, shoot
fresh weight (g), and dry weight (g)) compared with those plants grown under 100% IW.
Meanwhile, moderate (75% IW) and severe (50% IW) water deficits gradually and signifi-
cantly increased the root length and root fresh weight compared with 100% WIRs. Foliar
application of carbon nanotubes at 20 and 40 mg/L induced significant enhancements in
all morphological criteria compared with the control plants for plants grown either under
water stress (75% and 50% IW) or normal conditions (100% IW). Application of a higher con-
centration of CNTs was more superior over lower concentrations regarding increases in all
the growth criteria of peanut plants under different water irrigation requirements (Table 1).

Table 1. Impact of carbon nanotubes (CNTs) (0, 20, and 40 mg/L) on morphological criteria of peanut
plants grown under irrigation water in sandy soil (results are the combination of two seasons).

WIR CNTs
(mg/L)

Shoot Length
(cm)

Branch
no./Plant

Leaf
no./Plant

Shoot Fresh
Weight (g)

Shoot Dry
Weight (g)

Root Length
(cm)

Root Fresh
Weight (g)

100%
0 22.7 d 9.56 d 34.44 cd 56.42 d 14.79 e 10.05 c 0.78 e

20 37.76 b 12.19 b 38.24 c 83.98 b 32.63 b 11.13 bc 1.25 de

40 42.2 a 20.35 a 76.36 a 131.33 a 51.53 a 11.09 bc 1.58 d

75%
0 22.15 de 7.04 e 21.49 f 32.51 e 13.43 e 12.08 ab 1.29 de

20 32.43 c 11.36 bc 36.53 c 78.93 b 30.26 b 13.33 a 3.32 c

40 35 bc 10.18 cd 64.7 b 64.72 c 32.72 b 12.73 a 3.63 c

50%
0 18.53 e 6.21 e 15.05 g 24.55 f 13.07 e 12.74 a 3.36 c

20 21.77 de 6.58 e 24.07 ef 51.22 d 19.26 d 13 a 6.34 b

40 21.37 de 9.92 d 28.83 de 56.33 d 22.36 c 13.38 a 7.15 a

Multiple comparisons were performed using Tukey’s HSD test to control type I errors. Different lowercase letters
indicate significant differences.
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3.2. Changes in Photosynthetic Pigments

Figure 2 illustrates the impact of carbon nanotubes at 20 and 40 mg/L on peanut
photosynthetic pigment contents grown at 100%, 75% and 50% IW. The data clearly show
that water deficits (75% and 50% IW) led to significant p ≤ 0.05 decreases in various
photosynthetic pigment components (Chlo a, Chlo b, and carotenoids as well as total
pigments), while the ratio of Chlo a and Chlo b increased significantly in contrast to those
plants grown under 100% IW. Foliar application of carbon nanotubes with 20 and 40 mg/L
induced significant p ≤ 0.05 increases in the various photosynthetic pigment constituents
in addition to the Chlo a/Chlo b ratio of the plants grown either under normal irrigation
(100%) or drought-stressed irrigation (75% and 50% IW) conditions in comparison to
untreated plants.
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3.3. Changes in Endogenous IAA and Total Phenols

Figure 3 shows the variations in indole acetic acid (IAA) and phenolics in peanuts
treated with carbon nanotubes and grown under normal and drought-stressed conditions
in sandy soil. The data clearly show that moderate (75% IW) and severe (50% IW) drought
stress caused significant p ≤ 0.05 and gradual decreases in the endogenous IAA content
compared with plants irrigated normally (control plants). Meanwhile, the phenolic con-
tents increased significantly and gradually compared with normal irrigated plants. Foliar
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treatments of peanut plants with carbon nanotubes (20 and 40 mg/L) improved the IAA
contents and caused a higher increase in total phenols compared with the controls. The data
clearly show the superiority of higher levels of CNTs (40 mg/L) over low levels (20 mg/L)
in increasing IAA and phenolic contents under different irrigation levels.
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3.4. Changes in Osmolytes

The effect of water stress and different levels of carbon nanotubes (CNTs, 20 and 40 mg/L)
on the contents of osmolytes such as TSS, proline and FAA in peanut plants is shown in
Table 2. Decreasing the IW from 100% to 75% and 50% caused a gradual accumulation of
these compatible solutes. Moreover, foliar treatments of different carbon nanotube concen-
trations caused a greater increase in the studied compatible osmolytes; these increases were
significant p ≤ 0.05 compared with the corresponding controls. Furthermore, higher levels
of CNTs caused higher increases than the lower levels in peanut plants under different
irrigation levels (Table 2).

Table 2. Impact of carbon nanotubes (CNTs) (0.0, 20 and 40 mg/L) on TSS, proline and free amino
acids (mg/100 g dry wt.) in peanut plants grown under irrigation water in sandy soil.

WIR CNTs (mg/L) TSS (mg/100 g Dry wt) Proline (mg/100 g Dry wt) FAA (mg/100 g Dry wt)

100%
0 1323.28 b 35.41 g 230.51 e

20 1464.76 ab 42.45 fg 241.05 de

40 1517.5 a 47.99 ef 251.53 de

75%
0 1554.11 a 54.12 de 268.48 cde

20 1492.3 a 59.26 cd 279.86 bcd

40 1576.56 a 64.4 bc 298.61 bc

50%
0 1453.75 ab 64.87 bc 302.06 bc

20 1466.15 ab 69.12 b 318.86 ab

40 1491.66 a 78.33 a 357.89 a

Multiple comparisons were performed using Tukey’s HSD test to control type I errors. Different lowercase letters
indicate significant differences.

3.5. Yield and Yield Components

Tables 3 and 4 show the impact of various levels of carbon nanotubes (20 and 40 mg/L)
on the yield and yield components of peanut plants grown under 100%, 75% and 50% IW.
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The data clearly show that decreasing the IW to 75% and 50% led to gradual significant
decreases (p ≤ 0.05) in the yield and yield components (plant height, branches and pods
number/plant, plant fresh weight, pod and seed weight/plant (g)) compared with control
plants (100% WIR). Meanwhile, foliar application of carbon nanotubes (20 and 40 mg/L)
led to a significant increase (p ≤ 0.05) in all the above-mentioned yield components for the
plants grown under normal conditions or a water deficit. Application of CNTs (40 mg/L) led
to the maximum increase in seed yields kg/Fadden under different water irrigation require-
ments, ay 90.23, 62.29 and 50.95 kg/plant compared with 61.98, 43.31 and 20.67 kg/Fadden
in plants treated with 20 mg/L CNTs under 100%, 75% and 50% IW, respectively.

Table 3. Impact of carbon nanotubes (CNTs) (0.0, 20 and 40 mg/L) on yield and its components for
peanut plants grown in irrigation water in sandy soil. (Data are the combination of two seasons.)

WIR CNTs
(mg/L)

Plant Height
(cm)

Branch
no./Plant

Pod
no./Plant Plant Fresh wt. (g) Pod wt./Plant (g) Seed wt./Plant (g)

100%
0 42.09 d 7.94 cd 15.14 e 105.91 e 51.45 f 22.26 e

20 70.33 a 11.41 b 34.29 d 310 c 123.75 c 61.88 b

40 70.02 a 16.16 a 42.13 a 511.54 a 179.6 a 91.58 a

75%
0 35.31 e 6.87 d 14.19 e 77.29 f 27.23 h 18.41 e

20 51.1 c 7.49 d 38.7 bc 170.32 d 84.01 e 42.14 d

40 73.61 a 12.68 b 41.19 ab 331.32 b 134.42 b 63.51 b

50%
0 36.31 e 6.7 d 13.17 e 62.26 f 25.58 h 13.75 f

20 46.25 cd 7.51 d 15.34 e 76.26 f 37.74 g 20.67 e

40 58.89 b 9.28 c 36.83 cd 303.47 c 97.53 d 49.72 c

Multiple comparisons were performed using Tukey’s HSD test to control type I errors. Different lowercase letters
indicate significant differences.

Table 4. Impact of carbon nanotubes (CNTs) (0.0, 20 and 40 mg/L) on pod yield, seed yield, oil yield
and protein yield (kg/fed) of peanut plants grown under different water irrigation requirements in
sandy soil. (Data are the combination of two seasons.)

WIR CNTs (mg/L) Pod Yield (kg/Fed) Seed Yield (kg/Fed) Oil Yield (kg/Fed) Protein Yield (kg/Fed)

100%
0 1064.52 d 477.15 d 209.09 ef 86.79 de

20 2088.54 a 1158.5 b 553.52 b 231.91 b

40 2211.67 a 2006.35 a 952.25 a 396.64 a

75%
0 881.7 d 397.52 d 173.41 fg 65.27 e

20 1441.68 c 940.08 bc 435.48 d 160.5 c

40 1782.64 b 1139.53 b 496.79 c 213.84 b

50%
0 496.41 e 368.62 d 152.71 g 60.61 e

20 979.24 d 566.22 d 256.49 e 97.43 d

40 1373.24 c 886.38 c 433.25 d 160.71 c

Multiple comparisons were performed using Tukey’s HSD test to control type I errors. Different lowercase letters
indicate significant differences.

Furthermore, the data in Table 4 indicate that the pod yield, seed yield, oil yield
and protein yield (kg/fed) of peanuts decreased significantly in plants subjected to mod-
erate and severs water stress compared with plants irrigated normally. Meanwhile, the
data clearly show that treatment of peanuts with various levels of carbon nanotubes
(20 and 40 mg/L) significantly increased the studied yield parameters. Foliar application
of 40 mg/L CNTs led to the maximum increases under different WIRs over the control,
untreated plants as well as the other 20 mg/L CNT-treated plants.

3.6. Changes in Carbohydrates, Protein and Oil Contents

The data presented in Figure 4 show the influence of different concentrations of carbon
nanotubes (20 and 40 mg/L) on the carbohydrates, protein and oil contents of peanut
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seeds subjected to different levels of WIRs. Exposure of peanut plants to moderate drought
(75% WIRs) and severe drought (50%) conditions led to non-significant differences in
carbohydrates and oil contents, while a gradual and significant decrease in protein content
was observed. On the other hand, treating peanut plants with different concentrations of
CNTs (20 and 40 mg/L) caused insignificant and gradual increases in the TCH and protein
levels compared with untreated plants under different water irrigation requirements (100%,
75% and 50% WIR).
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3.7. Changes in Antioxidant Activities (DPPH%) and Flavonoid Contents

The presented data in Figure 5 show that water deficits (expressed as 75% and 50% IR)
caused gradual and significant (p ≤ 0.05) increases in antioxidant activity, expressed as
DPPH%, as well as the flavonoid contents as compared with 100% IR irrigated peanut
plants. However, for DPPH% under 75% WIRs, the increase was non-significant. Moreover,
different concentrations of CNT foliar treatments caused not only significant increases
(p ≤ 0.05) at 100% WIRs, but also increases under 75% and 50% IR as compared with the
corresponding controls (CNTs 0). Furthermore, a concentration of 40 mg/L CNTs was
more effective at increasing the DPPH% and flavonoid contents compared with the other
concentration of CNTs (20 mg/L).
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3.8. Changes in Non-Photosynthetic Pigments

Subjecting peanuts to drought stress by irrigation with 75% and 50% of the WIRs
caused significant decreases in the B-carotene and lycopene contents in the yielded seeds
(Figure 6) as compared with those plants irrigated with 100% WIRs (control plants), except
for 75% WIRs, which decreased the carotene level non-significantly. Meanwhile, foliar treat-
ment of peanut plants with different concentrations of carbon nanotubes (CNTs) (20 and
40 mg/L) caused significant increases in the above-mentioned parameters (B-carotene and
lycopene contents) as compared with untreated controls under different WIRs (Figure 5).
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3.9. Artificial Neural Networks (ANNs)

ANNs are a mimic of a biological neural system. They consist of layers, which in
turn consist of neurons; each layer is connected to another layer through the neurons by
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connection weights, but neurons in the same layer are not connected to each other. The
strength of the final connection weights after training the network is used to estimate the
relative importance of inputs to the output [40]. The network used in the present work is
illustrated in Figure 7. It is a four-layer feed-forward multilayer perceptron neural network
(MLP) constructed to assess the effect of the studied traits on the seed yield of peanuts
expressed as relative importance on a scale (0–1). The regularization method was adopted
during training of the network to avoid a high correlation among traits and distinguish the
traits that have a direct effect on the seed yield.
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3.10. Relative Importance of Agronomic Traits to Peanut Seed Yield

The final connection weights after training the multilayer perceptron artificial neural
network were used to assess the relative importance of inputs to the output (seed yield)
after regularization due to the correlation among traits. Figure 8 reveals that the pod
number/plant was the most important trait that affected peanut seed yield, followed by
the shoot fresh weight, the number of branches/plants, the shoot length and the plant fresh
weight. The rest of the studied traits were less important to seed yield, even if they were
correlated with the seed yield, because the adopted regularization process was used to
overcome multicollinearity among inputs.

3.11. Yield Network Analysis

Every node (circle) in the network plot in Figure 9 represents one trait, and the edges
(lines) between nodes represent the correlation. The length of the edge expresses the degrees
of separation between each pair of nodes in the network. Positive and negative correlations
are expressed in blue and red, respectively. The size of each node reflects the strength of
the variable, where the strength is the sum of the weights of edges connected to that node.
Figure 9 reveals that all agronomic traits measured at the end of the season, and some that
were measured mid-season, were highly correlated and were gathered in one community
(nodes with a blue border). These traits had a high strength compared to the other traits. It
is also apparent that proline had a negative relationship with agronomic traits (red edges),
while TSS had a positive relationship (blue edges). The chemical traits of seeds and leaves
were correlated and gathered in another community (nodes with a green border).
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4. Discussion

Water stress has a significant impact on crop output, making productive land less prof-
itable. As a result, in the current circumstances, effective management measures are required
to improve plants’ tolerance to low irrigation water levels. In this context, we investigated the
effect of exogenous carbon nanotubes on enhancing peanut drought resistance.

4.1. Changes in Photosynthetic Pigments

Under water stress, chloroplast is the primary source of reactive oxygen species
buildup, which leads to the destruction of thylakoid membranes and photosynthetic pig-
ments. Drought stress reduces photosynthetic pigment constituents relative to unstressed
plants, as shown in Table 1. These findings are comparable to those of Elewa et al. [41] for
quinoa, and [42] for flax. Drought-induced reductions in photosynthetic pigment contents
could be due to the instability of the pigment–protein complex and pigment degradation.
Furthermore, the decrease in photosynthetic pigments could be linked to the mechanism of
defense against free radicals (ROS) by reducing the amount of photosynthetic pigment due
to a lack of water. Moreover, Nazarbeygi et al. [43] reported that exposing plants to drought
stress increased proline biosynthesis activity, resulting in less glutamate in biosynthesizing
chlorophyll molecules (glutamate is a subscriber precursor to chlorophyll and proline
biosynthesis). Because chlorophyll b degrades more quickly than chlorophyll a, leaves
exposed to moderate and severe water shortage stress had lower chlorophyll concentrations
and greater chlorophyll a/b ratios. This could be explained by the fact that chlorophyll
b degradation is the first step [44]. Changes in the pigment composition of the photosyn-
thetic apparatus, which contain lower quantities of light-collecting proteins, have been
linked to an increase in the chlorophyll a/b ratio. On the other hand, this same effect was
induced after treating peanut plants with CNTs under normal and drought-stressed condi-
tions [4,19,45] found that CNT treatments resulted in increased photosynthetic pigment
constituents in diverse plant species, as was found in this study. Drought-induced reduc-
tions in the chlorophyll content in peanut plants might be mitigated by CNT foliar sprays
by increasing the activities of peanut antioxidant enzymes. Furthermore, by increasing the
intake of water and nutrients, CNT treatment could boost the formation of chlorophyll.

4.2. Changes in Endogenous IAA and Total Phenols

Drought levels considerably lowered the IAA levels in peanut leaves (Figure 3); with
decreasing water irrigation requirements, these declines were more gradual. IAA, as a phy-
tohormone, regulates plants’ defensive responses to biotic and abiotic challenges through
signaling crosstalk with other hormones such as GA3, BA and ABA [45]. As previously
indicated by Elewa et al. [41], drought and stress reduced the IAA levels in various plant
species. An increased IAA oxidase activity could cause these reductions [46]. Drought
stress causes a decline in many phytohormones, including IAA, which can be attributed
to a decrease in the activity of enzymes that participate in phytohormone synthesis or
an increase in enzyme activity that contributes to its breakdown. Because CNTs operate
as elicitors in IAA biosynthesis, their relieving effect on increases in endogenous IAA
contents in peanut plants can be explained by their promotive action on different plant
growth regulators [47].

In terms of secondary metabolites, such as phenolic and flavonoid compounds, they in-
creased in peanut plants as a result of drought stress and CNT foliar application (Figure 3).
An increased buildup of phenols and flavonoids, as well as an up-regulation of pheny-
lalanine ammonia, has been described in Dracocephalum moldavica, which is similar to our
findings regarding lyase activity, which a crucial enzyme that controls the synthesis of sec-
ondary metabolites according to Naghizadeh et al. [48]. By increasing ROS scavenging, an
increased accumulation of important polyphenolic chemicals protects against the oxidative
consequences of stress. Earlier, Sowndhararajan and Kang [49] noted increased phenol
and flavonoid levels conferred radical scavenging capabilities, which was also observed
in the current investigation. To neutralize harmful radicals such as hydroxyl radicals,
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polyphenolic substances donate hydrogen atoms. As a result, cellular macromolecules
are protected. Drought stress has been linked to greater levels of phenols and flavonoids.
Carbon nanotubes were found to alter the antioxidant defense system of peanut plants
by boosting the phenolic content in this study. Gonzalez-Garcia et al. [50] confirmed that
CNTs induce phenolic content increases in tomato plants.

4.3. Changes in Osmolytes

Plants have mechanisms in place to combat the oxidative impacts of stress by removing
reactive oxygen species (ROS). CNT application up-regulated the osmo-protectant system
by increasing levels of compatible solutes such TSS, proline and free amino acids; these
substances protect plants from stress by inducing membrane stabilization and causing
enzyme tertiary structure maintenance [51] in peanut plants. Furthermore, these osmolytes
had a significant impact on cells’ adaptability to various unfavorable environments. They
also increased the cytoplasmic osmotic pressure, stabilized proteins and membranes and
maintained the relatively high-water content required for cell development and cell func-
tions [52]. Despite a decrease in the CO2 absorption rate, the plant had increased TSS levels
as a result of a reaction to water stress. Furthermore, the increased proline level could
be due to a decrease in proline oxidase activity during drought. It is also assumed to be
a source of nitrogen and carbon, as well as a regulator of membranes and some macro-
molecules, a free radical scavenger and an enzyme protector during stress [53]. The results
show that varied treatments of carbon nanotubes have a crucial role in regulating plant
tolerance by boosting the above-mentioned osmo-protectants. CNTs have the ability to
increase proline production, decrease proline degradation, and decrease proline dehydro-
genase activity [20]. In stressed Hyoscyamus niger, proline levels increased when CNTs
were applied [54].

4.4. Changes in Morphological Criteria and Yield

Exogenous application of nanoparticles such as carbon nanotubes (CNTs) ameliorates
the effect of drought stress on growth and yield components, as evidenced by increases in
several morphological and yield metrics of peanut plants at various CNT concentrations
(Table 2). Our findings on the lessened effect of drought stress are consistent with the
previous findings of Sadak et al. [55]. In this study, the losses in yield and its components in
peanut plants under drought stress were investigated. The lessened effects obtained are in
good agreement with Elewa et al.’s [41] finding in quinoa. Water stress is a powerful element
that disrupts plant growth, physiological processes, and yield components significantly.
It is possible that the reduced effect of water stress on peanut plant growth is related to
a decrease in cell enlargement and turgor pressure [56]. Furthermore, decreased water
absorption, a low water potential, increased contents of various ions in cells and stomata
conductance of leaves could all contribute to this reduced effect. Jabeen et al. [57] found
that drought caused oxidative stress, nutritional and hormonal disturbances, protein
suppression/deterioration, enzyme deactivation and secondary metabolic disturbances.
Furthermore, decreases in growth characteristics resulted in decreases in many yield
components of peanut plants. These decreases could be due to a decrease in the chlorophyll
content as well as the Calvin cycle enzyme activity [58,59]. According to researchers, lipids
in cell membranes, proteins, carbohydrates, and nucleic acids are key cell components that
can be harmed by an increase in ROS levels caused by drought stress. Plant growth and
tolerance to numerous environmental difficulties, such as drought stress, have recently
been improved and enhanced using nanoparticle treatment in agriculture, resulting in a
higher plant productivity. These findings are consistent with previous studies using CNTs
on tomato plants [60], on Satureja khuzestanica [61], and wheat [62]. CNT treatment of
peanut plants at various doses increased growth criteria (Table 2) and yield components
(Table 4). Previous research has shown that treating tomato plants with CNTs improves
their growth and output by increasing the water intake [63]. Carbon nanomaterials’ ability
to activate the gene/protein expression required for plant growth and development may
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be related to their ability to promote growth. As a result, carbon nanomaterials can be
employed as a plant growth regulator [15]. Furthermore, CNTs improve plant growth by
enhancing the production of endogenous indole acetic acid (Table 3) [64]. Furthermore,
enhanced water uptake and transport, seed germination, photosynthesis and IAA, which
activate water channel proteins and improve nutrient uptake, may contribute to CNTs’
beneficial effects.

4.5. Changes in Carbohydrates, Protein and Oil Contents

Regarding the chemical components of the peanut seed, [56] validated the chemical
composition of maize seeds produced under reduced water stress. Carbohydrate modifica-
tions are particularly important in terms of variations in carbohydrate contents since they
are linked to a number of biochemical functions such as photosynthesis, motility, and respi-
ration. Reduced oil levels in peanut seeds as a result of low irrigation levels could be due to
the oxidation of specific polyunsaturated fatty acids [65]. Different treatments with carbon
nanotubes resulted in an increase in peanut productivity. These results are in agreement
with earlier reports of applying CNTs to tomato plants [60], to Satureja khuzestanica [61],
and to wheat [62].

In terms of the nutritious components of the peanut plant seeds, the percentage of
carbs, protein and oil in the produced peanut seeds decreased as the water irrigation level
was reduced.

In accordance with our findings, Sadak et al. [55], they stated that water stress reduced
the glucose content in faba bean and soybean plants. The reductions in growth parameters
(Table 2) and photosynthetic pigments are the key reasons for the decreases (Figure 1).

Because of their direct association with physiological activities, including photosyn-
thesis, translocation, and respiration, carbohydrate alterations in the produced seeds are
particularly important [55]. Water stress reduced the amount of chlorophyll in leaves,
resulting in a drop in photosynthetic activity. As a result, there was less glucose buildup
in mature leaves and, as a result, carbohydrate transport from leaves to developing seeds
may be reduced [41]. The stimulating effect of CNT treatments on carbohydrate, protein
and oil content of produced seeds, on the other hand, could be attributed to increases in
growth parameters and photosynthetic pigments. Furthermore, these increases in carbohy-
drate content could be attributed to enhanced photosynthetic production, which increases
carbohydrate synthesis in leaves and consequently boosts carbohydrate translocation from
leaves to developing seeds.

Non-photosynthetic pigments like B-carotene and lycopene are the key phytochemicals
found in peanut seeds, and they are well known for their ability to act as a powerful antioxidant.

4.6. Changes in Antioxidant Activities (DPPH%), Flavonoid Contents and
Non Photosynthetic Pigments

Free radicals, which produce oxidative damage in the body, have been linked to the
development of a number of chronic diseases, including cancer, ageing and cardiovascular
problems [66]. Lycopene is a precursor of β-carotene which as a fat-soluble carotenoid
exhibits a two-fold higher antioxidant activity than β-carotene. Lycopene’s potential
antioxidant activity is mostly due to its long-chain conjugated double bonds (polyene
chains), which have the ability to quench free radicals [67]. Cell signaling and commu-
nications are two other significant designated roles of lycopene hormone and immune
response regulation, as well as functioning in metabolic pathways [68]. The nutritional
values and antioxidant potentials of the peanut seed contents, such as lycopene, β-carotene
and flavonoids, and the antioxidant activity, as DPPH percent, in response to CNT foliar
application were determined. Lycopene and β-carotene are well known natural antiox-
idants that, in vitro, are the most effective singlet oxygen quenchers among the typical
carotenoids [69]. In accordance with our obtained results, Dorais et al. [70] showed that
β-carotene in tomato fruit was significantly decreased under salt stress. As well, Ali and
Ismail [71] found that water stress had a detrimental impact on the accumulation of ly-
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copene and β-carotene during tomato ripening. As part of the light-harvesting system,
carotenoids are intricately related to photosynthesis, and it is widely understood that stress
inhibits photosynthesis [72]. Thus, the decrease in lycopene and β-carotene levels under the
current experimental conditions might be linked to a decrease in photosynthetic activities
under stress. Stress may block or upregulate the biosynthesis pathway of carotenoids by
inhibiting genes encoding enzymes associated with lycopene and β-carotene according
to one theory [73]. Recently, Babu et al. [74] found that stress inhibited the expression of
the gene encoding lycopene-cyclase, the enzyme that transforms lycopene to beta carotene.
Flavonoids, which include flavones and condensed tannins, are secondary metabolites
of plants whose antioxidant action is dependent on the availability of free OH groups,
particularly 3-OH. In vitro, plant flavonoids exhibit antioxidant activity, and in vivo, they
serve as antioxidants. Because this is the first set of data on the antioxidant activity of
peanut seeds, detailed phytochemical investigations to determine the active phenolic and
flavonoid components should be performed.

Since water stress was accompanied by increased formation of reactive oxygen species,
the increased flavonoid content may indicate some type of defense against stress circum-
stances (i.e., oxidative load) [25,74–78].

Finally, using carbon nanotubes as a cheap economic application could be used as
a beneficial method for increasing peanut plant tolerance towards drought stress; thus,
peanut plants can be grown in areas which suffer from drought stress.

5. Conclusions

It can be concluded that exogenous application of carbon nanotubes via foliar treat-
ment might be an effective method for improving drought stress tolerance in peanut plants
grown in sandy soil. These significant effects mainly arise from the improvement in growth
and the seed yield quantity and quality of peanut plants, with the maximum increases if
CNTs are applied at a level of 40 ppm. Meanwhile, under conditions of 75% and 50% IW,
different yield components are expected to exhibit the maximum increases at 40 ppm. The
role of CNTs in enhancing the tolerance of peanut plants under drought stress could be
attributed mostly to (1) improvements in photosynthesis, growth and development and
(2) improvements in endogenous IAA, phenolic and osmolyte levels [namely TSS, proline
and FAA].
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