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Abstract: Existing disease detection models for deep learning-based monitoring and prevention
of pepper diseases face challenges in accurately identifying and preventing diseases due to inter-
crop occlusion and various complex backgrounds. To address this issue, we propose a modified
YOLOv7-GCA model based on YOLOv7 for pepper disease detection, which can effectively overcome
these challenges. The model introduces three key enhancements: Firstly, lightweight GhostNetV2 is
used as the feature extraction network of the model to improve the detection speed. Secondly, the
Cascading fusion network (CFNet) replaces the original feature fusion network, which improves the
expression ability of the model in complex backgrounds and realizes multi-scale feature extraction
and fusion. Finally, the Convolutional Block Attention Module (CBAM) is introduced to focus on
the important features in the images and improve the accuracy and robustness of the model. This
study uses the collected dataset, which was processed to construct a dataset of 1259 images with
four types of pepper diseases: anthracnose, bacterial diseases, umbilical rot, and viral diseases. We
applied data augmentation to the collected dataset, and then experimental verification was carried
out on this dataset. The experimental results demonstrate that the YOLOv7-GCA model reduces
the parameter count by 34.3% compared to the YOLOv7 original model while improving 13.4% in
mAP and 124 frames/s in detection speed. Additionally, the model size was reduced from 74.8 MB to
46.9 MB, which facilitates the deployment of the model on mobile devices. When compared to the
other seven mainstream detection models, it was indicated that the YOLOv7-GCA model achieved a
balance between speed, model size, and accuracy. This model proves to be a high-performance and
lightweight pepper disease detection solution that can provide accurate and timely diagnosis results
for farmers and researchers.

Keywords: pepper diseases; YOLOv7-GCA; lightweight; attention mechanism; CFNet

1. Introduction

Pepper (Capsicum annuum L.) is one of the most economical and versatile agricultural
vegetables in the world [1]. It has wide applications in medicine, cosmetics, and other fields;
it is also an essential ingredient in our cuisine, and it also contributes to dietary nutrition [2].
However, pepper plants are susceptible to various diseases during their growth process due
to climate change, pest invasion, and natural disasters. These diseases can reduce the yield
and quality of pepper crops, causing serious economic losses to farmers [3,4]. Therefore,
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timely and accurate identification of pepper diseases is crucial for effective disease control
and the sustainable development of the pepper industry.

Currently, manual observation and empirical judgment are the main sources of the
identification of pepper diseases. This method is not only labor-intensive and time-wasting
but also prone to misjudgment and omission, which cannot meet the requirements of
large-scale, fast, and accurate identification [5]. Therefore, the use of intelligent terminal
equipment to identify pepper pests has become a promising solution [6]. To ensure the
efficiency and quality of device detection [7], accurate and real-time detection of pepper
diseases is crucial. Agricultural plant disease identification is a significant research topic,
and machine learning (ML) plays a vital role in it. Traditional machine learning methods
usually require manual feature extraction, such as color, texture, and shape, and then use
classifiers for identification. For example, Zhang et al. [8] used HSI, YUV, and grayscale
models to extract 38 features and used a support vector machine (SVM) classifier to identify
three diseases of apple leaves, with an accuracy of more than 90%. Soarov et al. [9] used
Otsu threshold segmentation and histogram equalization to process data images and then
used SVM for classification, achieving an accuracy of 96% for apple leaf disease identifi-
cation. Zhang et al. [10] used the K-means clustering algorithm to segment the images,
obtaining the shape and color features of pest information, and had a good recognition
effect on the 7 major diseases of cucumber, with a total accuracy of 85.7%. However, tra-
ditional machine learning methods also have some limitations, such as requiring a single
experimental background, and lacking effective interaction and feedback mechanisms,
resulting in insufficient accuracy and robustness of the algorithm. To overcome these prob-
lems, some researchers started to use deep learning-based methods, using convolutional
neural networks (CNN) and other models to directly learn features from images without
human intervention, improving the efficiency and accuracy of identification. For example,
Ashutosh Kumard et al. [11] used CNN, Bayesian-optimized SVM, and a random forest
classifier based on hybrid features to perform plant leaf disease detection, and the results
showed that CNN achieved the highest accuracy of 96.1% in detecting leaf disease in apple,
corn, potato, tomato, and rice plants. Nurul Nabilah et al. [12] compared the pepper pest
features extracted by the traditional ML method with the deep learning-based methods,
which outperformed the traditional feature-based methods.

Moreover, with the development of computer vision and artificial intelligence, deep
learning (DL) has become a research hotspot in the field of agricultural plant protection,
such as plant disease identification and pest range assessment [13]. The object detection
algorithm can achieve rapid, accurate, and non-destructive detection [14] of pepper diseases
and meet the requirements of real-time detection of pepper diseases.

Recently, deep learning-based object detection methods have made remarkable progress
in agriculture. Various deep learning models have been applied to the task of plant
disease identification, such as Faster R-CNN, SSD, and RetinaNet. These models have
achieved good results in detecting diseases on soybean leaves [15], apple leaves [16], and
tea leaves [17], respectively. Among them, the YOLO (You Only Look Once) series of
algorithms, as a classic of the one-stage algorithm, have attracted wide attention for their
efficient, real-time, and robust characteristics. YOLO transforms the object detection prob-
lem into a regression problem, outputs the object position and category information [18]
through a single forward propagation, avoiding the complex bounding box generation
and selection process in the traditional method. It significantly surpasses the inference
speed of the two-stage algorithm, which gives it certain advantages. So the YOLO series
plays an important role in agriculture. The YOLO series algorithms are a breakthrough in
the field of plant disease identification as they overcome the challenges that other object
detection algorithms face. These challenges include high model complexity, unsatisfactory
detection of small and dense objects, and a lack of generalization ability across crops in
iterative optimization.

Although the YOLO series models propose some effective solutions for the problems
above [19,20], it is necessary to optimize the balance of accuracy, speed, and lightweightness.
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A large number of experiments have been conducted around these three aspects to optimize
the existing YOLO model. Liu Jun et al. [21] optimized the feature layer of the image
pyramid to realize multi-scale feature detection in the YOLOv3 model, improving the
detection precision and speed of the YOLOv3 model and accurately and quickly detecting
the location and category of tomato diseases and insect pests. Xuewei Wang et al. [22]
proposed a novel YOLO-ense that solved the problem of detecting tomato anomalies by
adding densely connected modules, the K-means algorithm, and changing the training
strategy with improved precision and speed, achieving 96.41% and 20.28 ms, respectively.
YOLOv3 is a relatively mature object detection scheme, but its model computational
complexity is relatively high, limiting the improvement effect. Li Dawei et al. [23] proposed
the YOLO-JD model to identify jute diseases. Based on YOLOv4, they integrated three new
modules. Although the mAP was 96.63% good in terms of jute diseases and pests, the size
of the model and detection speed were not well explained. Helong Yu et al. [24] based on
the YOLOv5s model and adopted the sample conversion method, which reduced the false
positive rate and underreporting rate by eliminating redundant bounding boxes. They
achieved a good balance between the detection precision and model size of soybean insect
pests, reaching 95.24% mAP when the model file size was only 15.1 MB. Xue Zhenyang
et al. [25] used ACmix, CBM, RFB, GCNet, and other modules to improve the YOLOv5
model, which greatly improved the precision and lightweight of the original model in
the identification of tea pests. Weishi Xu et al. [26] proposed the problem of an accurate
and lightweight apple leaf disease detection model (ALAD-YOLO) based on YOLOv5s by
introducing MobileNetV3, CA, and Ghost modules to improve YOLOv5s, shrinking the
model volume while maintaining high detection precision. It can be seen that lightweight
and precision have become the focus of improvement in the process of improving the
YOLOv5 model. Due to the limited model structure, it cannot take into account the
requirements of real-time detection in special scenarios. Yang Shuai et al. [27] tackled the
issue of swift maize pests, adding the CSPResNeXt-50 module and VoVGSCSP module to
enhance YOLOv7, and offer precise and timely pest detection and identification for maize
plants. However, the results show that the improved model is only 10 frame/s higher than
the original YOLOv7 model in terms of detection speed, and there is still a lot of room for
improvement. Liangquan Jia et al. [28] developed a new rice disease and pest identification
model based on the improved YOLOv7 algorithm, which enhanced the advantages of high
performance, lightweight and lightweight by improving the modules of MobileNetV3,
CA, and SIOU. The response speed was up to 87.7 ms, but the model was the result of a
trade-off on the premise of a 0.9% decrease in the mAP index. To sum up, many excellent
modules and network structures have been proposed for the identification of various crop
diseases and insect pests, but most of them are still in the theoretical stage and lack practical
application. Therefore, further improvements are needed to complete the identification of
pepper diseases in different backgrounds in the field.

In this paper, we aim to address the problem of the insufficient performance of pepper
disease detection in the field and in various environments. We propose a high-performance
and lightweight pepper disease detection model based on the improved YOLOv7, which
can accurately and quickly identify pepper diseases and help to realize the intelligence of
pepper agriculture. The main contributions of this study are as follows:

(1) Incorporating GhostNetV2 [29] as the backbone network, which can reduce the num-
ber of parameters caused by unnecessary feature computation, enhance the detection
speed, and reduce the computing cost while ensuring high performance.

(2) To tackle the problem of complex backgrounds, Cascade Fusion Network (CFNet) [30]
is integrated as a feature fusion network, which enables more parameters to be used
for feature fusion and improves the performance of the model.

(3) The convolutional Block Attention Module (CBAM) [31] is introduced to improve the
model by emphasizing only key features. In this way, the model can better distinguish
the features of different channels and better capture key information in space, thus
improving its feature extraction ability.
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2. Materials and Methods
2.1. Materials
2.1.1. Data Acquisition

This study focused on the pepper plants from a plantation base in Conghua District
(113.48817◦ N, 23.43718◦ E), Guangzhou City, Guangdong Province. We collected RGB
images of four pepper diseases, as shown in Table 1, and constructed a dataset for pepper
diseases detection. The dataset contains 1259 images of 448 anthracnoses, 438 viral diseases,
163 bacterial diseases, and 210 umbilical rot diseases. The dataset covers different scenarios
as well as different shooting angles and distances. The images in the dataset have the
following characteristics:

(1) The image resolution is 3072 × 4093, and the shooting device is a Xiaomi13 smartphone
(Xiaomi Corporation, Beijing, China). The maximum pixel value of the camera is
50 million;

(2) The images contain pepper fruits and leaves with different diseases, but the umbilical
rot has only the disease fruit image, and the bacterial disease only the disease has
leaf image;

(3) There are some complex background factors in the image, such as occlusion, overlap,
blur, and small objects.

As shown in Table 2, there were 1259 pepper images in the dataset, of which 2588 dis-
eased pepper fruits or leaves were captured and divided into training, test, and valida-
tion sets at a ratio of 80/10/10. The training set consisted of 1007 images containing
2066 diseases pepper labels, and the test set contained 126 images with 267 diseases pepper
labels, and the remaining 126 images contained 255 diseases pepper labels to constitute
the validation set. In addition, 52% of the images in the dataset belong to the category [32]
of small objects, i.e., the characteristics of diseases in pepper are less than 32 × 32 pixels,
these images are mainly pepper with viral and bacterial diseases; the remaining 48% of the
images belong to the large object category, mainly pepper with anthracnose and umbilical
rot. All the datasets were stored in JPG format.

2.1.2. Data Augmentation

To enhance the model’s generalization and robustness, we performed data augmen-
tation on the dataset to accommodate different training requirements, which can better
extract image features, avoid overfitting, and cope with various complex phenomena ex-
isting in the real environment. We augmented the original dataset with 8 different data
augmentation methods, namely: random contrast adjustment [33], Cutout [34], random
rotation (–45◦ to +45◦), Gaussian blur [35], salt and pepper noise [36], scale [37], and
random cropping [38]. Random contrast adjustment can reduce the brightness deviation
caused by environmental illumination change and sensor difference; Cutout can randomly
select multiple fixed-size square areas to fill with zero pixel value to simulate the occlusion
phenomenon; random rotation can increase the directional diversity of the image; Gaussian
blur and noise can simulate the image degradation and improve the model’s ability to
optimize for background blur and photo quality difference; zoom and random cropping
can change the size and proportion of the image to enhance the model’s ability to detect
small and overlapping targets.

In addition, we adopted the mosaic data augmentation technique [39] from the YOLO
network, which randomly cropped and merged four images into one image to enlarge the
image dataset for model training, thereby enhancing the network’s learnable content. The
specific data processing steps are as follows: During the training phase, we adjusted the
HSV color space value to 0.015, 0.7, and 0.4 to improve the tone, saturation, and brightness
of the input image, and minimize the impact of occlusion, lighting, and shadow factors.
Subsequently, we scaled the images with a random factor of 0.8 and flipped each image
with a probability of 0.5. Then, we took the four processed images and performed the
mosaic operation. We extracted the fixed area of the four images in a matrix and combined
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them into a new image to finish the fusion of the image and the object box. This method
can diversify the background of the detected object so that the model can concentrate on
general scenes and boost the model’s generalization ability, make it suitable for scenarios
where pepper leaves or fruits may occur on branches, ground, or experimental tables.
Figure 1 illustrates an example of the image augmentation used in this experiment.

Table 1. Characteristics of the four pepper leaf and fruit diseases.

Name Number Label Characteristics Picture

Anthracnose_leaf 232 Anthr_leaf

At the beginning of the disease,
the leaves showed chlorotic water

stain spots, brown round spots
with the aggravation of the

disease, and small black spots on
the late spots.
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Table 2. The partitioning of the dataset.

Name Proportion Number of Pictures Number of Labels

Dataset
Training Set 80% 1007 2066

Validation Set 10% 126 267
Test Set 10% 126 255

Total 100% 1259 2588
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To simulate the complex environment and eliminate the blocking interference between
the leaves of pepper fruits, we performed the central normalization operation on the
images. Figure 1 shows the results of the data augmentation method. The final training
set consisted of 12,590 images for object detection, which included 11,331 augmented
images and 1259 original images with no overlap between the training and test sets. We
used LabelImg (Version 1.8.6) [40] as the label software, with rectangular label boxes and
English label names. There were 6 classes: Anthr_fruit, Anthr_leaf, Bacter_leaf, Umb_rot,
Viral_fruit, and Viral_leaf. We generated the corresponding XML tag files and completed
the overall construction of the dataset according to the COCO dataset [32].

2.2. YOLOv7-GCA Construction
2.2.1. YOLOv7: Expand Efficient Layer Aggregation Networks

YOLOv7 [41] is an advanced object detection model of the YOLO series. Since the
YOLO [42] network model was proposed in 2016, the single-stage detection algorithm
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has first appeared in the human field of view. It overcomes the drawback of low infer-
ence speed in the two-stage detection network and preserves on detection accuracy. In
2022, YOLOv7 was born. Compared with YOLOv4 [39], it was mainly improved in the
model structure, heavy parameter module [43], label allocation mode, and model scale [44].
Innovatively proposed the Extended Efficient Layer Aggregation Network (E-ELAN) ar-
chitecture that can improve the self-learning ability of the network without destroying the
original gradient path.

The YOLOv7 model is a representative single-level object detection algorithm, and its
network structure diagram is shown in Figure 2. The network consists of four parts: image
input, backbone network, feature fusion network, and output. Image input resizes all the
input images to a consistent size and passes them to the backbone network. The backbone
network [41] is composed of multiple CBS convolution layers, ELAN convolution layers,
and MPConv [45] to extract image features of different scales. The feature fusion network is
composed of the path aggregation feature pyramid network (PAFPN) [46], which integrates
features of different scales and introduces bottom-up paths to transfer the information from
the bottom. The output consists of three feature maps of different scales, each using 1 × 1
convolutional layers to predict confidence, classification, and bounding box. To meet the
demands of real-time and accuracy for field pepper diseases detection models and balance
well between detection speed and accuracy, we chose YOLOv7 as the benchmark model.
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2.2.2. Lightweight Feature Extraction Module GhostNetV2

The ELAN module implementation improves the learning ability of the network
without destroying the original gradient path, but it is only based on traditional convolution
operations, which can only capture local information and are susceptible to redundant
features. To meet the requirement of high efficiency in field pepper diseases detection,
we designed a lightweight feature extraction structure on the backbone network of the
original YOLOv7 model. We replaced the ELAN structure in the original network model
with GhostNetV2 as a more efficient backbone network for feature extraction.

GhostNetV2, as shown in Figure 3b, uses two Ghost modules and one DFC attention
module. The first Ghost module and the DFC attention module are processed and mul-
tiplied simultaneously, enhancing the extension feature and being input into the second
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Ghost module. The second Ghost module takes the boosted features and produces the out-
put features to achieve improved model feature extraction performance. The GhostNetV2
module reduces the number of parameters effectively and enhances the expression ability
of the model. This design successfully decreases the coupling between model expressivity
and capacity [47], solving the problem of model overfitting during training or inadequate
generalization during testing.
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DFC is a hardware-friendly attention mechanism that reduces FLOPs [29] by 75% com-
pared to the convolution module GhostNet [48] by reducing feature size in the horizontal
and vertical directions and sets the Sigmoid function in the downsampling layer to im-
prove inference speed. Figure 3a shows the schematic diagram of the structure of the DFC
attention module. This module can capture the dependence between long-distance pixels,
improve the expression and diversity of feature maps, and capture global information well
while taking into account speed, thus improving the model detection performance.

The Ghost module produces substantial feature mapping at a low operational cost.
It can typically substitute the standard convolution with these two steps: First, the in-
put features X ∈ RH×W×C and 1 × 1 dot states are convolved to generate part of the
output features:

Y′ = X ∗ F1×1 (1)

where, ∗ represents the convolution operation. F1×1 refers to the point-wise convolution
and Y′ ∈ RH×W×C ′

out is partial output features, and they generally have smaller sizes
compared to the original output.

The second step is a cheap operation, which is not achieved by conventional convolu-
tion, but by a simple linear transformation to generate more feature maps. The two parts of
these features are concatenated along the channel dimension, i.e.,

Y = Concat
([

Y′, Y′ ∗ Fdp

])
(2)

In Equation (2), Fdp refers to the depth-wise separable convolution and Y ∈ RH×W×Cout

is the final output feature.
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The Ghost module is a convolution module that reduces the computational cost by
splitting the standard convolution into two steps. The first step is to form a small feature
map using a smaller convolution kernel to obtain a smaller output feature map; the second
step is to transform the output feature map using a depth-wise separable convolution to
obtain a larger output feature map. In this way, the Ghost module can decrease the number
and size of convolution kernels and, thus, the number of parameters and computation while
maintaining the size of the output feature map unchanged. However, the Ghost module
also unavoidably weakens its representation ability. In the Ghost module, only half of the
features are entered into the depth-separable convolution of 3 × 3 to capture spatial features
and the other half into the convolution of 1 × 1 to perform linear transformations between
channels. The convolution of 1 × 1 does not consider the spatial features of the input tensor
but only performs the convolution operations on the channel. The relationship between
spatial pixels is crucial to achieving accurate detection, which leads to the weak ability of the
Ghost module to capture spatial information, hindering further performance improvement.

The DFC attention module to enhance the output feature Y of the Ghost module
enhances the ability of the model to capture remote information between pixels in different
spaces. The DFC merges pixels along the horizontal and vertical axes, respectively, to
eliminate tensor conversion and transposition operations by sharing some transformation
weights, thus accelerating the model inference proposed in Equations (3) and (4).

α ′
hω =

H

∑
h ′=1

FH
h, h ′ω

⊙
zh ′ω, h = 1, 2, · · · , H, ω = 1, 2, · · · , W (3)

αhω =
W

∑
ω ′=1

FW
ω, hω ′

⊙
α ′

hω ′ , h = 1, 2, · · · , H, ω = 1, 2, · · · , W (4)

As shown in Figure 4, in the GhostNetV2 process of information aggregation, the input
feature X ∈ RH×W×C is sent to two branches. The Ghost module and the DFC attention
module extract information from different angles under the same input to generate output
feature Y (Equations (1) and (2)), generate attention matrix A (Equations (3) and (4)),
multiply the output by elements to obtain the final output O ∈ RH×W×C, as shown in
Equation (5),

⊙
refers to element-wise multiplication, and Sigmoid is a scaling function to

normalize the attention map matrix A to the range (0, 1).

O = Sigmoid(A)
⊙

V(X) (5)
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The DFC attention module downsamples and calculates the attention of input feature
maps in horizontal and vertical directions. It can compute the attention weight of each pixel
in a large receptive field, enabling the output features to integrate information from different
spatial locations. This approach enables the model to capture the global information in
the input image and improve the model’s accuracy. At the same time, the Ghost module
design uses point-wise convolution and depth-wise separable convolution to reduce the
number of parameters and computation, improving the model efficiency and achieving
high detection accuracy while maintaining the computation efficiency.

2.2.3. Attention Mechanism: Selectively Paying Attention to Information

Due to the lightweight processing of the YOLOv7 model, it needs to capture key
information and improve its feature extraction ability to cope with the complex environ-
ment. For object detection, we inserted the spatial and channel attention mechanism CBAM
into the three effective feature layers of the backbone output of the improved YOLOv7
model, which enhances the expression ability of features in the channel and spatial dimen-
sions, respectively, enabling the network to selectively focus on important features. CBAM
can improve the feature extraction efficiency of the network without adding too much
computational overhead.

CBAM is a simple and efficient attention module for feed-forward convolutional
neural networks. It can adaptively adjust the feature maps in the convolutional neural
network. Given an intermediate feature map, the module computes the attention map
along the channel and space and then applies the attention map to the input feature map
for adaptive feature improvement. Channel attention can strengthen feature relationships
among different channels, while spatial attention can strengthen feature relationships
among different locations. Since CBAM is a lightweight universal module, it can be
smoothly integrated into any network architecture with minimal overhead and can be
trained end-to-end with the base network.

If the input feature map of the network is: F ∈ RC×H×W , where F is the input feature
map, R is the real number set, and the real number set represents the channel number C,
height H, and width W, the channel feature map: MC ∈ RC×1×1 is generated through the
first channel attention module M. The spatial feature map is generated through the second
spatial attention module: MS ∈ RC×H×W , and the formula can be expressed as:

F′ = MC(F)
⊗

F (6)

F ′′ = MS
(

F′)⊗ F′ (7)

The channel attention module adopts the spatial dimension approach of compressing
the input feature maps, applying both the AvgPool and MaxPool methods. The proposed al-
gorithm can efficiently compute the weighted attention assigned to the channel dimensions.
The formula is as follows:

MC(F) = σ(MLP(AvgPool(F))) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))
(8)

where σ represents the Sigmoid function, W0 ∈ R
C
r ×C, W1 ∈ RC× C

r , where W0 is activated
by the ReLu function (rectified linear unit). MLP is a multi-layer perceptron with a hidden
layer with operational rights determined by W0 and W1.

The spatial attention module, supported by the previous module, focuses on the image
information position. It applies AvgPool and MaxPool on the channel axis and concatenates
them into a feature descriptor. These pooling operations generate a 2D image from the
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channel information of a feature map. The convolution operation through the convolution
layer produces the spatial feature map. The calculation formula is as follows:

MS(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([(

Fs
avg; Fs

max

])) (9)

In the formula, σ represents the Sigmoid function, f 7×7 represents the 7 × 7 con-
volution kernel, Fs

avg, Fs
max ∈ R1×H×W . Based on the excellent performance of CBAM,

the backbone network structure YOLOv7 inserted into the CBAM attention module will
enhance the network’s detection accuracy, as shown in Figure 5.
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2.2.4. Multi-Scale Fusion Method: CFNet

We argue that only assigning a larger proportion of parameters for feature fusion can
achieve better performance when incorporating multi-scale features, so a new architecture
is introduced, the Cascade Fusion Network (CFNet), to generate richer multi-scale features
and improve the intensive prediction performance. The main idea of CFNet is to insert
feature integration operations into the backbone network so that more parameters can
be used for feature fusion, which greatly increases the richness of feature fusion. CFNet
consists of a backbone that extracts the initial high-resolution features and several cascades
of Stages. Each Stage includes a sub-backbone for feature extraction and a lightweight
transformation module for feature integration. Compared with existing state-of-the-art
(SOTA) methods, CFNet not only uses multi-scale features extracted by lightweight mod-
ules (such as FPN) from the backbone network but also performs further feature fusion
in each Stage to enhance information interaction between different scales. This approach
enables CFNet to capture the details and global information in the input image better, thus
improving the model’s accuracy in pepper diseases detection. This method can effectively
improve intensive task performance and can easily benefit from large-scale pre-training
weights due to the simplicity of the CFNet architecture.

The CFNet network architecture is shown in Figure 6. Enter an RGB image of size
H × W and process it through a Stem and N continuous blocks to extract high-resolution
features of H/4 × W/4. The Stem consists of two 3 × 3 convolutional layers with a
stride of 2, each followed by a LayerNorm layer and a GELU activation function. To
enhance the nonlinear fitting ability while maintaining a smaller number of parameters
and computations, we selected ResNet Bottleneck as the block in CFNet.

CFNet has a multistage structure, where the high-resolution features are downsampled
by a 2 × 2-convolution layer with a stride of 2 and sent to the M cascade stage. Each
stage has the same structure, but the number of blocks may vary. A focal block and a
transition block are applied in the last block group of each stage, to enhance the information
interaction between features and to integrate features at different scales, respectively. It is
worth noting that each stage outputs features P3, P4, and P5 with strides of 8, 16, and 32, but
only the P3 feature is sent into the subsequent stage. Finally, the fused features P3, P4, and
P5, output by the last stage, are used for intensive prediction tasks. In conclusion, CFNet
has a stronger multiscale fusion capability and is more suitable for handling intensive
prediction tasks such as detection and segmentation.
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2.2.5. Improved Loss Function

The loss function of YOLOv7-GCA consists of three components: object confidence
loss, classification loss, and coordinate loss. To improve the accuracy and stability of
pepper diseases detection, the loss function combines the binary cross-entropy (BCE) loss
and the complete CIoU loss [49]. The BCE loss is a common classification loss function
that measures the difference between predicted and true values. It is used for both object
confidence loss and classification loss. The complete CIoU loss is an enhanced bounding
box regression loss function that considers the overlap area, center distance, aspect ratio,
and other factors to optimize the position and shape of the bounding box. It is used for
coordinate loss. The relevant formulas are as follows:

Suppose that S(xn) represents the Sigmoid function:

S(xn) =
1

1 + e−x (10)

The formula for binary cross-entropy (BCE) loss is defined as where wn represents the
average of the mean result and yn represents the true sample label:

Ln = −wn[yn · logS(xn) + (1 − yn) · log(1 − S(xn))] (11)

The CIoU loss calculation formula is defined as follows, where IoU represents the
intersection area of the prediction box and the true box:

CIoU = IoU −
(

ρ2(b, bgt)
b2 + αυ

)
(12)

There are two significant parameters in the above equation, υ and α. The former
is used to measure the consistency of the detected frame aspect ratio, and the latter is a
trade-off parameter that gives the overlap area factor a higher regression priority.

υ =
42

π

(
arctan

(
ωgt

hgt

)
− arctan

(ω

h

))2

(13)

α =
υ

(1 − IoU) + υ
(14)

The loss map of bounding box regression is shown in Figure 7, where d = ρ2(b, bgt) is
the central point distance between two bounding boxes and c refers to the diagonal distance
of the bounding box that can surround at least two boxes.
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2.2.6. YOLOv7-GCA Model

This paper proposes YOLOv7-GCA, a lightweight and high-performance model for
pepper diseases detection that is based on the YOLOv7 model. It incorporates GhostNetV2
and CBAM attention modules in the backbone network and the CFNet feature fusion
module in the head. As Figure 8 illustrates, the YOLOv7-GCA model comprises five
components: the input layer, backbone network, neck, head, and loss function.
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The input layer employs three techniques: mosaic data augmentation, adaptive anchor
frame calculation, and adaptive image scaling. Mosaic data augmentation is an effective
input strategy for small object detection, as mentioned above. It increases the distribution
of small samples in the pepper diseases dataset, which has a non-uniform distribution of
small and large objects, by splicing and scaling them. This enhances the network robustness.
The network training calculates the deviation between the initial anchor frame and the
real frame and updates the anchor frame parameters by backpropagation. This adapts
the anchor frame to the dataset situation and improves the model recall. All input images
are adaptively scaled to achieve normalization. These techniques improve the quality and
diversity of the input images, facilitating subsequent feature extraction and object detection.

The backbone network is a key component of feature extraction. The original YOLOv7
backbone network consists of 50 layers, including CBS, ELAN, and MP-1 modules. As
Figure 8 shows, the improved backbone network has 58 layers but reduces the number
of parameters by 52% compared to the original algorithm. This paper proposes two
improvements for the backbone network. The first one is to replace the original ELAN
module with the GhostNetV2 module, which has fewer parameters. The original ELAN
module contains seven CBS modules and a Concat module. The large convolution of
ELAN modules consumes a lot of computational resources. Therefore, replacing the
original ELAN module with the GhostNetV2 module is the first step for lightweight
deployment. The second improvement is to add the CBAM attention module after the
GhostNetV2 module to form a new GhostNetV2-Attention feature extraction module. The
backbone network has four GhostNetV2-Attention modules. The GhostNetV2 module can
capture the long-distance pixel dependencies, enhance the extended features generated
by the cheap operation in the Ghost module, and reduce the model inference time and
parameters. The CBAM module aims to improve the network’s long-term self-attention by
considering both channel and spatial attention while keeping the number of parameters
unchanged. These improvements can effectively enhance the feature extraction capability of
the backbone network, enabling the improved network to better adapt to the characteristics
of pepper diseases.

This paper proposes a third improvement for the head and neck of YOLOv7, which is
to replace the ELAN-W module with CFNet for more efficient feature fusion. The original
model’s head structure uses the feature pyramid network (FPN) and the path aggregation
network (PAN) to form the PA-FPN structure, which can fuse the feature maps of different
levels efficiently. However, the ELAN-W module has more convolution operations and
parameters, leading to high computational and memory costs. To address this problem, this
paper introduces CFNet, a lightweight feature fusion structure that can leverage the multi-
scale features extracted by the backbone network to achieve more advanced and effective
feature fusion through adaptive weight allocation and channel attention mechanisms. By
replacing the ELAN-W module with CFNet and calculating the ResNet Bottleneck as a
block in its structure, this paper reduces the parameters and computation of the head
structure and enhances the quality and efficiency of feature fusion, which facilitates more
rapid and accurate pepper diseases detection.

2.3. Training Environment and Evaluation Indicators

The hardware part of the test platform is a deep learning server with an Intel (R) Core
(TM) i9-10920X CPU@3.50 GHz processor with, 64 GB of DDR4 running memory, and
an NVIDIA GeForce RTX 3090 graphics card. The software environment is built on the
Windows 10 Pycharm Professional Edition client, with CUDA version 11.0, PyTorch 1.11.0
as the deep learning framework, and Python 3.9.11 as the compiler.

In the experimental model of this paper, we set the following hyperparameters: The
model receives images with a resolution of 640 × 640 pixels as unified input the initial
learning rate is 0.01, the learning rate momentum is 0.937; the optimization function is
stochastic gradient descent (SGD); and the weight decay value is 0.0005. We take into
account the training speed and video memory size and set the batch size of each training to
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16. The model is trained for 150 epochs, and the pertinent information is recorded after each
epoch. After training, we store the weight file of the object detection model and assess the
model performance on the test set. The final output of the network is a prediction-bounding
box for the detection of pepper diseases.

In order to make the experiment more objective, we evaluated the performance of the
proposed method through a series of experiments, using the following indicators: detection
precision (P), recall (R), mean average precision (mAP), number of frames per second (FPS),
and count of model parameters (params/M). These indicators are used to compare and
evaluate the validity of the different models and their detection results. The definitions of
the evaluation indicators are as follows:

Precision =
TP

TP + FP
× 100% (15)

Recall =
TP

TP + FN
× 100% (16)

Specifically, TP, FP, and FN stand for true positive, false positive, and false negative,
respectively. TP refers to the number of pepper diseases that the model correctly identifies,
FP refers to the number of non-pepper diseases that the model wrongly identifies, and FN
refers to the number of pepper diseases that the model misses. The precision rate means
the ratio of TP to the total number of detections, and the recall rate means the ratio of TP to
the total number of annotations.

Equations (17) and (18) show that AP refers to the area under the PR curve, and mAP
is the mean of APs from different categories. N refers to the number of classes in the test
sample. Since the dataset has 6 classes of pepper diseases, N = 6.

AP =
∫ 1

0
P(R)dR (17)

mAP =
∑N

0
∫ 1

0 P(R)dR
N

× 100% (18)

In Equation (19), IoU refers to the intersection over union, A refers to the predicted
bounding box of the detection object, and B refers to the ground truth bounding box.

IoU =
|A ∩ B|
|A ∪ B| (19)

3. Results and Discussion
3.1. Model Training Results

The YOLOv7 model achieves the best accuracy within 150 epochs when using the
pre-trained weights. This study trains the proposed improved model for 150 epochs for
ablation experiments and compares it with the original YOLOv7 model. Figure 9 shows
the training results of the YOLOv7-GCA model.

Figure 9 displays the mean loss function change curves for the YOLOv7-GCA model
on the training and validation sets, as well as the PR curves and the mAP@0.5 and
mAP@0.5:0.95 scores. The graph shows that the mean CIOU loss, object detection loss, and
classification loss converge to values close to 0, indicating that the model performs well
and has good representation ability.

Figure 10 shows the performance of the original YOLOv7 model and the improved
YOLOv7-GCA model in the case of occlusion and small objects. The original YOLOv7
model fails to detect the objects in Figure 10b,e,h, while the improved YOLOv7-GCA model
can handle the problem of small objects and occlusion under various scenarios. Although
the anchor box confidence has some fluctuations, the improved model will not appear to
be missing or falsely detected. Figure 10c,f,i demonstrate the good representation ability of
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the YOLO-GCA model on the test set. Overall, the YOLOv7-GCA model can effectively
detect the pepper diseases dataset.
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3.2. Ablation Experiment

This section examines the effects of three improved methods on the network model.
Table 3 presents the data plotted. Eight sets of experiments were conducted, adding
different modules, and compared with the original YOLOv7 model in terms of mAP@0.5,
model size, inference speed, precision, recall, and number of parameters. The YOLOv7
model with the CFNet structure is denoted as YOLOv7 + CF, the YOLOv7 model with the
GhostNetV2 module as YOLOv7 + GN, and the network with the CBAM attention module
as YOLOv7 + CBAM, etc.

Table 3. Ablation experiments of modules.

Model mAP@0.5 (%) Model Size (MB) FPS (Frames/s) P (%) R (%) Params (M)

YOLOv7 83.4 71.3 178 85.6 77.9 35.49
YOLOv7 + GN 82.8 58.2 213 81.3 75.6 28.83
YOLOv7 + CF 83.53 60.3 200 87.3 71.1 29.98

YOLOv7 + CBAM 83.7 71.1 198 84.5 79.6 35.38
YOLOv7 + GN + CBAM 88.6 58.5 279 90.6 77.8 28.94

YOLOv7 + GN + CF 88.2 47.1 286 91.3 76.4 23.43
YOLOv7 + CF + CBAM 90.8 60.1 271 93.5 83.3 29.87

YOLOv7-GCA 96.8 46.9 303 95.7 93.8 23.32

As shown in the first four rows of Table 3, each module improves the detection speed
of the acceleration model to some extent. Replacing the CFNet structure and adding
the CBAM attention module to YOLOv7 slightly increase the detection accuracy of the
network, with mAP values 0.13% and 0.3% higher than the original YOLOv7 model,
respectively. However, the CFNet structure does not significantly improve the recall
index. Moreover, we find that the CBAM module can effectively increase the recall rate of
YOLOv7 to 79.6%, which is 1.7% higher than the original version, without increasing the
number of parameters. The introduction of the GhostNetV2 module or CFNet network can
maintain or improve the accuracy of the model while greatly reducing the complexity and
inference time, achieving results of 28.83 M and 213 frames/s and 29.98 M and 200 frames/s,
respectively. In addition, the pairwise combination of modules shows that the combination
of the CF + CBAM modules achieves the highest accuracy improvement, with a mAP score
of 90.8% and a detection speed of 271 frames/s, which is a good performance combination.
The combination of GN + CF modules can significantly accelerate the model inference
speed to 286 frames/s, and the minimum parameter of the model is 23.43 m. However,
introducing the CBAM module on this basis will increase the number of parameters,
resulting in a slower detection speed of 7 frames/s, and the final result is 279 frames/s.
Nevertheless, we believe that the combination of the three modules is a good match. Due
to the GhostNet module and the CFNet module, they provide the model with accelerated
inference and lightweight deployment. The attention mechanism of the CBAM module
on space and channel can improve the network’s sensitivity and responsiveness to objects,
thus qualitatively improving the model’s accuracy. Although our method sacrifices a very
small fraction of the inference time, it brings about a significant improvement in accuracy,
which is a valuable trade-off. In general, the improved model has been greatly enhanced in
accuracy, number of parameters, and detection speed, and it is of great significance for the
rapid and non-destructive detection of pepper diseases.

This paper evaluates the effectiveness and superiority of the YOLOv7-GCA method
for pepper diseases detection. It uses the mAP and loss functions as evaluation metrics
and plots the corresponding curves. The mAP is the mean accuracy (AP) of the pepper
diseases detector when the IoU threshold is 0.5. IoU is the intersection over the union
between two bounding boxes, which indicates the accuracy of the detector based on the
object position and shape. As the IoU threshold increases, the AP value decreases, so mAP
is a reliable measure of the detector’s performance at higher standards. The loss function
is the optimization objective in the observation model’s training process, which indicates
whether the model is overfitted or underfitted. Generally, the model is overfitting when
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the training loss is low and the validation loss is high; the model is underfitting when both
the training and validation losses are high.

The ablation experiments used mAP as the metric and plotted the line and loss function
graphs. Figure 11a shows eight curves of different colors, indicating that the GhostNetV2
module affects the model’s convergence. The mAP curves of YOLOv7 + GN, YOLOv7
+ GN + CF, and YOLOv7 + GN + CBAM start to converge at around 140 epochs, while
the other curves without the GhostNetV2 module converge at around 80 epochs. This
implies that the GhostNetV2 module increases the model’s training difficulty by reducing
the number of parameters and requiring more iterations to reach a steady state. However,
the mAP of the improved YOLOv7-GCA model converges at 80 epochs, and the mAP of
the YOLOv7 model converges at 82 epochs. Despite the large fluctuation in the YOLOv7
model during early training, the mAP convergence rates are similar. This suggests that the
YOLOv7-GCA model’s convergence rate is not affected by the mAP enhancement. The
CBAM attention mechanism and the CFNet structure jointly enhance the model’s learning
ability, enable the DFC long-distance attention mechanism in the GhostNetV2 module to
function, eliminate the interference of useless features, and accelerate convergence. This
indicates that the YOLOv7-GCA method fully utilizes the three modules to achieve high
accuracy and stability in pepper diseases detection without affecting the convergence rate.
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The loss function graph in Figure 11b shows eight curves that converge at around
150 epochs. The curves of the original YOLOv7 model and the YOLOv7-GCA model are
almost identical, stabilizing at 0.038 and 0.036, respectively. This indicates that the YOLOv7-
GCA method can improve the detection accuracy significantly without changing the loss
function level of the original method, demonstrating the superiority of this improved
method for pepper diseases detection.

Figure 12 shows the predictions of the original YOLOv7 model and the improved
YOLOv7-GCA model under six categories. It can be seen that the accuracy of detection for
Anthr_fruit, Anthr_leaf, Bacter_leaf, Umb_rot, Viral_fruit, and Viral_leaf has improved,
which verifies the feasibility and superiority of the improved model.

Overall, our method enables the YOLOv7 model to significantly improve accuracy while
greatly accelerating detection and reducing computational parameters, which meets the dis-
ease monitoring requirements for agricultural production, which is a valuable improvement.
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3.3. Comparison of Different Network Models

This study compares the effectiveness of the YOLOv7-GCA algorithm model with
the mainstream models Faster R-CNN, SSD, YOLOv3, YOLOv5s, YOLOv8n, and the
original YOLOv7 model using the same pepper diseases dataset. The specific mAP, model
size, precision, recall, FPS, and FLOPs are shown in Table 4. The YOLOv7-GCA model
outperforms the other models in the main performance metric. The mAP of YOLOv7-GCA
is 96.8%, which is much higher than the original YOLOv7 model (at 83.4%), YOLOv8n (at
86.7%), YOLOv5s (at 82.8%), YOLOv3 (at 77.8%), Faster R-CNN (at 80.5%), and SSD (at
71.2%). The precision and recall rates of the YOLOv7-GCA model were 95.7% and 93.8%,
respectively, which are also higher than the other models. The combination of

Table 4. Comparison of seven detection models.

Model Backbone Network mAP@0.5 (%) FPS (Frames/s) P (%) R (%) Params (MB) FLOPs (G)

Faster R-CNN ResNet-50 80.5 20 76.4 87.1 157.22 366.72
SSD VGG16 71.2 36 72.3 65.5 24.55 270.15

YOLOv3 CSPDarknet53 77.8 53 78.3 73.5 58.64 155.15
YOLOv5s CSPDarknet53 82.8 156 81.6 79.8 9.23 18.13
YOLOv8n SPPCSPResNet52 84.1 183 84.7 78.1 6.31 9.55
YOLOv7 SPPCSPCDarkNet50 83.4 178 85.6 77.9 35.49 103.12

YOLOv7-GCA SPPCSPCDarkNet58 96.8 303 95.7 93.8 23.32 65.63

GhostNetV2, CFNet, and CBAM modules optimize the original YOLOv7 model and
accelerate the speed while maintaining the high mAP. The model size and FLOPs of
the YOLOv7-GCA model are larger than the two lightweight models of YOLOv8n and
YOLOv5s but smaller than the other networks. The average detection speed of YOLOv7-
GCA in the test set is 303 frames/s, which is faster than YOLOv8n and YOLOv5. In
conclusion, compared with other models, the YOLOv7-GCA model can have better detec-
tion performance and differentiation ability and can better handle the occlusion between
peppers and the identification of different disease spots in each background. Therefore,
when identifying pepper diseases in a complex environment, it has a lightweight and rapid
detection speed, which meets the real-time needs of the agricultural field.

3.4. Android Deployment Testing

Deep learning models usually save their parameters in specific formats that are not
compatible with all hardware platforms. To deploy a model on an Android device, the
parameters need to be exported and converted to a suitable format. Figure 13 illustrates
the deployment process of the pepper disease identification model on Android devices.
The Ncnn Convolutional Neural Network (NCNN) is a high-performance neural network
inference framework for mobile devices that supports multiple deep learning frameworks.
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It provides software development kits for Android and iOS, which can easily run various
deep learning models on mobile devices. First, the PTH model files trained by PyTorch are
converted to Open Neural Network Exchange (ONNX) model files, and then the universal
properties of ONNX are used to generate the BIN and PARAM model files that the NCNN
library can load. Then, the model is verified and tested. Finally, according to the design
requirements of the application, an Android project is created to deploy the YOLOv7-
GCA model on the phone for accuracy testing. The main functions of the pepper diseases
identification app include image acquisition, automatic image saving, CPU-based pepper
disease detection, GPU-based pepper disease detection, and disease grade evaluation of
the detection results. Users can obtain the pepper images through the image acquisition
module or use their own images from the album.
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The pepper disease detection module analyzes the type, number, and severity of the
diseases affecting the target pepper and outputs the number of different pepper diseases in
the target image. GPU detection has the advantage of using the parallel computing power
and high memory bandwidth of the GPU to speed up the inference process of the model
and improve detection accuracy and efficiency. However, the model’s compatibility and
stability may be affected by the diversity and performance of the mobile phone GPUs on
the market. CPU detection has the advantage of being able to run on any phone without
considering the GPU hardware configuration, which improves the model’s versatility and
portability. Figure 14 shows the results of the pepper disease CPU-based detection on the
Xiaomi13 mobile phone.

3.5. Sensitivity Analysis

Our model, YOLOv7-GCA, is based on the improvement of the YOLOv7 model, which
introduces three key improvement points, namely GhostNetV2, CFNet, and CBAM. These
improvement points all bring some advantages to the model but also make the performance
of the model affected by some parameters. To evaluate the impact of these parameters,
we selected the following three key parameters as objects for sensitivity analysis: namely,
learning rate, batch size, and optimizer parameters. Learning rate is the parameter con-
trolling the learning speed of the model, which determines the amplitude of the model
updating the weights in each iteration, which affects the convergence rate and accuracy of
the model. Batch size is the parameter controlling the amount of data the model processes
each time, which determines the computation and memory footprint of the model in each
iteration, which affects the training speed and stability of the model. The optimizer param-
eter is the parameter that controls the model optimization algorithm, which determines the
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momentum, decay, adaptation, and other factors of the model in the optimization process,
which affect the convergence and robustness of the model.

Agronomy 2024, 14, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 13. Flowchart of deployment process on Android terminal. 

The pepper disease detection module analyzes the type, number, and severity of the 
diseases affecting the target pepper and outputs the number of different pepper diseases 
in the target image. GPU detection has the advantage of using the parallel computing 
power and high memory bandwidth of the GPU to speed up the inference process of the 
model and improve detection accuracy and efficiency. However, the model’s compatibil-
ity and stability may be affected by the diversity and performance of the mobile phone 
GPUs on the market. CPU detection has the advantage of being able to run on any phone 
without considering the GPU hardware configuration, which improves the model’s ver-
satility and portability. Figure 14 shows the results of the pepper disease CPU-based de-
tection on the Xiaomi13 mobile phone. 

   
(a) (b) (c) 

Figure 14. Effective picture for pepper disease detection: (a) anthracnose; (b) umbilical rot diseases; 
(c) viral diseases. 

  

Figure 14. Effective picture for pepper disease detection: (a) anthracnose; (b) umbilical rot diseases;
(c) viral diseases.

The performance of the YOLOv7-GCA model varies under different parameter values,
but the magnitude and direction of the change are different. We found that the learning
rate has the greatest influence on the model performance. In cases where the learning
rate is too large or too small, the loss function and accuracy will decrease, while when
the learning rate is moderate, the loss function and accuracy of the model will reach their
best, 0.03635 and 96.8%, respectively. Batch size has little influence on the performance
of the model. When the batch size increases, the loss function and accuracy of the model
will decrease slightly, while the speed of the model will increase slightly. The optimizer
parameters also have less influence on the performance of the model, and the different
optimizer parameters have no obvious differences in the loss function, accuracy, or speed
of the model.

Through the sensitivity analysis in Table 5, we obtained the following conclusions
and implications: First, our model, YOLOv7-GCA, was able to achieve better performance
under different parameter values, demonstrating the robustness and adaptability of the
model. Second, our model YOLOv7-GCA performs best at the learning rate of 0.01, the
batch size of 16, and the optimizer parameter of SGD, demonstrating that these parameters
are the optimal parameter settings for the model. Finally, the advantage of our model
YOLOv7-GCA over other models is that it achieves a balanced performance in speed,
model size, and accuracy, illustrating the effectiveness and superiority of the model.



Agronomy 2024, 14, 618 22 of 24

Table 5. Sensitivity analysis.

Index Number Loss Function mAP@0.5 (%) FPS (Frames/s)

Learning Rate 0.001 0.03705 95.5 301
Learning Rate 0.01 0.03635 96.8 303
Learning Rate 0.1 0.04175 93.4 305

Batch Size 16 0.03635 96.8 303
Batch Size 32 0.03685 96.4 313
Batch Size 64 0.03715 96.1 323

Optimization Function Adam 0.03675 96.2 303
Optimization Function SGD 0.03635 96.8 303
Optimization Function RMSprop 0.03655 96.3 303

4. Conclusions

In this paper, we propose a novel model, YOLOv7-GCA, for pepper disease detection
in complex environments. It introduces three main improvements to the model. The first is
using lightweight GhostNetV2 as a backbone network to eliminate redundant information
and enhance feature extraction efficiency. The second one is adding CFNet to achieve
deeper and more effective multi-scale feature fusion and improve the performance of
intensive tasks. The third one is reorganizing and optimizing the feature extraction and
detection components of the YOLOv7 backbone network, neck, and head using the CBAM
attention module that considers channels and space. The YOLOv7-GCA model compares
six object detectors on test datasets and performs well on multiple indicators. Its mAP is
96.8%, which is 12.7%, 13.4%, 14.0%, 19.0%, 25.6%, and 16.3% higher than the YOLOv8n,
YOLOv7, YOLOv5s, YOLOv3, SSD, and Faster R-CNN models, respectively. Regarding
detection speed and lightweight, the YOLOv7-GCA model’s average detection speed is
303 frames/s, which is faster than the original YOLOv7 model’s 178 frames/s. The number
of parameters is reduced by nearly 34%, and the model size is compressed to 46.9 MB.
This demonstrates that the YOLOv7-GCA model can achieve lightweight deployment
and high detection accuracy and can be applied to pepper disease detection in real-world
environments. For future work, we plan to further improve the other module structures
of the model, such as context learning, utilize the information related to the object in the
image, and increase the model’s adaptability to different scenes. We hope that our study
will provide some technical assistance for future pepper disease detection research and
help farmers identify and manage the pepper disease situation effectively.
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