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Abstract: The tea industry, as one of the most globally important agricultural products, is character-
ized by pests and diseases that pose a serious threat to yield and quality. These diseases and pests
often present different scales and morphologies, and some pest and disease target sizes can be tiny
and difficult to detect. To solve these problems, we propose TeaViTNet, a multi-scale attention-based
tea pest and disease detection model that combines CNNs and Transformers. First, MobileViT is
used as the feature extraction backbone network. MobileViT captures and analyzes the tiny pest and
disease features in the image via a self-attention mechanism and global feature extraction. Second,
the EMA-PANet network is introduced to optimize the model’s learning and attention to the Apoly-
gus lucorum and leaf blight regions via an efficient multi-scale attention module with cross-space
learning, which improves the model’s ability to understand multi-scale information. In addition,
RFBNet is embedded in the module to further expand the perceptual range and effectively capture
the information of tiny features in tea leaf images. Finally, the ODCSPLayer convolutional block is
introduced, aiming to focus on acquiring richer gradient flow information. The experimental results
show that the TeaViTNet model proposed in this paper has an average accuracy of 89.1%, which is a
significant improvement over the baseline network MobileViT and is capable of accurately detecting
Apolygus lucorum and leaf blight of different scales and complexities.

Keywords: tea diseases; MobileViT; EMA; RFB; deep learning

1. Introduction

Tea, a beverage steeped in rich cultural heritage and history, assumes a pivotal global
role. Its significance within agriculture and the economy is unequivocal. However, the
planting and growing process of tea is frequently threatened by various diseases and pests,
which seriously affect the quality and yield of tea and pose a serious challenge to the
sustainable development of the tea industry. According to statistics, China’s tea gardens
have recorded over 100 types of tea diseases, including tea anthracnose, tea white star
disease, tea cake disease, and leaf blight, which may trigger the premature shedding of
tea tree leaves and drying up of branches, directly weakening the growth momentum
of tea trees, thus leading to a significant reduction in tea production. Meanwhile, more
than 400 species of tea tree pests have been recognized, such as tea geometrid, little green
leafhopper, tea aphid, and Apolygus lucorum. These pests can seriously damage the leaves
and shoots of tea trees, leading to a drastic decline in tea quality and even problems such as
mottling and deformation, which seriously affect the appearance and taste characteristics
of tea. In the case of severe pests and diseases, the tea plantation may have a large area of
dieback, and even young tea trees are not immune to suffering from the condition of total
plant dieback. Therefore, research on how to accurately detect and recognize tea pests and
diseases is essential to reduce tea production losses and increase the income of tea farmers.
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Currently, the identification of pests and diseases in tea cultivation primarily relies
on manual detection [1]. This traditional method typically requires agricultural experts
or staff to inspect tea gardens in the field and visually observe the growth of tea trees or
collect samples to detect and identify tea diseases and pests. However, this approach is
time-consuming and labor-intensive. It is highly influenced by the level of experience
and expertise of the detector, which may introduce subjectivity and uncertainty. Manual
testing has been effective in identifying diseases and pests in tea gardens. However, it has
limitations in efficiently covering a wide range of tea gardens, especially those planted on a
large scale. Additionally, manual testing cannot meet the demand for timely and accurate
detection. Therefore, the development of the current tea industry urgently requires more
efficient and accurate automated or semi-automated identification methods.

With the continuous development of computer technology, image processing and
machine learning techniques play an increasingly important role in agriculture, especially
in identifying and detecting crop pests and diseases. These techniques are particularly
useful in identifying and detecting crop pests and diseases, providing new tools and
methods to respond to these problems more quickly and accurately. Selim Hossain et al. [2]
proposed a system based on image processing and support vector machine classifiers
to identify and classify brown wilt and phytophthora, which improves the efficiency
of early identification and treatment of diseases. Zhao et al. [3] proposed a multistep
approach based on hyperspectral imaging and continuous wavelet analysis (CWA), which
successfully distinguished tea leaves under the influence of different stresses and provided
a feasible way to analyze the characteristics of plant pests and diseases after infection. Sun
et al. [4] proposed a new algorithm that combines Simple Linear Iterative Cluster (SLIC)
with Support Vector Machine (SVM) to achieve the high-quality extraction of leaf disease
maps of tea trees in a complex background. Billah et al. [5] were able to accurately identify
images of tea leaves affected by pests and diseases by extracting colored wavelet features
of the images and combining them with the type of disease. Somnath Mukhopadhyay
et al. [6] proposed a new method for automatic detection of tea diseases based on image
processing techniques, which employs a non-dominated sequential genetic algorithm
(NSGA-II) based on image clustering to locate the diseased regions in the tea leaves and
uses Principal Component Analysis (PCA) and multi-class SVM for feature approximation
and disease identification. However, the recognition of tea pests and diseases based on
image processing and machine learning requires the manual extraction of many pest and
disease features, and the manually extracted features may not be able to capture the full
picture of the pests and diseases.

With the continuous development of deep learning technology, it has shown great
application potential in several fields. Its applications have been extended to IoT security
detection, management of traffic congestion problems at urban intersections [7], supply
chain management procurement, inventory control, Wi-Fi channel state information to
recognize human activities [8], tomato identification and localization [9], real-time detection
of crop pests and diseases [10–12], forest fire smoke detection to optimize the efficiency of
agricultural operations, classification of sonar images [13], and effects of electromagnetic
hydrodynamics on nano-viscous fluid flow [14]. These studies not only highlight the
promise of deep learning techniques in various fields but also demonstrate the value of
their wide range of applications in the agricultural industry. Therefore, research based on
deep learning techniques is increasingly focusing on the detection of tea pests and diseases.

Deep learning, with its powerful ability to process complex image data with con-
volutional neural networks (CNNs), offers researchers the opportunity to explore more
accurate and efficient pest detection methods, opening new possibilities for crop protection
and sustainable agricultural production. Lin et al. [15] proposed an improved tea disease
detection model of TSBA-YOLO, which utilizes techniques such as self-attention, feature
fusion networks, and transfer learning to improve the model’s ability to acquire global
information, multi-scale feature fusion, and small target recognition for tea diseases, signif-
icantly improving the detection accuracy and reaching real-time detection. Xue et al. [16]
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proposed an improved model named YOLO-Tea, based on the YOLOv5 architecture, which
incorporates self-attention, convolutional block-attention module, sensory wild blocks, and
global contextual networks to improve the performance of recognizing tea leaf pests and
diseases. Wang et al. [17] processed the results based on the weakly supervised model of
YOLOv5, the Global Attention Mechanism (GAM), and Convolutional Block Attention
Module (CBAM) attention mechanisms and combined them with the weighted box fusion
(WBF) algorithm. This integrated model achieved an average accuracy of 79.3% in complex
environments, which is an improvement of 8.7% and 9.6%, respectively, compared to a
single model, indicating that it possesses a more accurate pest and disease identification
capability in tea garden environments.

Hu et al. [18] processed leaf blight (TLB) images using the Retinex algorithm, which
facilitated the analysis of disease severity by using a more efficient region-based convolu-
tional neural network for TLB detection and a trained VGG16 network for TLB severity
grading. Wang et al. [19] proposed a learning framework based on supervised data cluster-
ing, which was able to accurately and simultaneously obtain 2D top views of trees with
high accuracy in terms of canopy color, shape, and overlap by using pixel-level classifiers
and supervised clustering methods. Zhang et al. [20] introduced an information entropy
masked visual transform (IEM-ViT) model using the information entropy weighting (IEW)
method with a masked autoencoder (MAE) combined with an asymmetric encoder-decoder
architecture, which is able to quickly recognize seven types of tea diseases with 93.78%
accuracy. Compared with common image recognition algorithms such as ResNet18, VGG16,
and VGG19, the recognition accuracy is improved by nearly 20%. Bao et al. [21] proposed
an uncrewed remote sensing method based on DDMA-YOLO, which is able to efficiently
detect and monitor tea leaf blight (TLB). Using ultra-high-resolution image reconstruction
and Retinex image enhancement, combined with the DDMA-YOLO model, improved the
detection accuracy. These research results focus on the rapid progress and broad application
prospects of CNNs in the field of tea pests and disease recognition.

However, although the above algorithms can realize pest detection, the models are not
able to recognize small-sized or dense pests well, while the above methods make it difficult
to achieve a good balance between detection accuracy and real-time performance.

CNNs cannot fully capture the global information of leaves when processing tea pest
and disease images, especially for small-sized or densely diseased parts. Local feature
extraction is the focus of CNNs, which may not be able to express these features adequately
for dense or small-sized infestations. Some of the tiny or dense tea pests and diseases may
be distorted or ignored in the processing due to the size problem, thus affecting the accuracy
of recognition. In addition, CNNs have limitations in feature fusion for diseases of different
scales, morphologies, and complexities, making it difficult to effectively integrate global and
local information. The Transformer, via the self-attention mechanism, can better understand
the contextual information of the target object, capture long-range dependencies, and obtain
global information, thus improving the accuracy of detection. Therefore, many researchers
have proposed the strategy of combining CNNs with Transformers to achieve the goal of
exploiting the local feature extraction capability of CNNs and combining the advantages of
Transformers in modeling global information.

Li et al. [22] proposed a lightweight Transformer model named PMVT, which is
improved based on MobileViT and is used for plant disease recognition. The model has
a small number of parameters and computational effort and is suitable for plant disease
identification on mobile devices. Hu et al. [23] proposed a tomato pest and disease detection
method based on improved YOLOv5n and proposed the use of EfficientViT to replace the
backbone network, which maintains high accuracy with low computational and memory
costs. These studies have achieved significant results in improving the accuracy of pest and
disease detection.

Hence, this paper proposes a detection model, TeaVitNet, which combines a lightweight
CNN with Vision Transformer [24]; TeaVitNet is a lightweight, generalized, responsive, as
well as more friendly, network model for mobile. The model consists of the input, backbone,
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neck, and head. First, the Transformer module is integrated into the backbone network,
which enables the CNN to capture local information and acquire global information with
the help of the Transformer at the same time to improve the understanding of complex
pests and diseases. Secondly, for the multi-scale and resolution pests and diseases in tea leaf
images, Feature Pyramid Network (FPN) [25] and Path Aggregation Network (PAN) [26]
are introduced into the neck to improve the model’s ability to learn multi-scale features
and better adapt to different sizes and shapes of pests and diseases in the complex envi-
ronment of tea leaves, which enhances the accuracy and robustness of the detection of
pests and diseases in tea leaves. In addition, a receptive field module is embedded in the
neck to capture local and global features in tea leaf images more comprehensively, which
helps to recognize complex minute features on the leaves. Subsequently, to enhance the
focus on different features, the model introduces the Efficient Multiscale Attention Module
EMA [27] attention mechanism to enhance the extraction of important features in tea leaf
pest and disease regions. Meanwhile, the ODCSPLayer structure is used in the neck layer to
obtain richer gradient flow information while maintaining lightweight. Finally, this paper
employs a series of data augmentation strategies to improve the generalization ability and
robustness of the model.

2. Materials and Methods
2.1. Tea Pests and Diseases Dataset

In this study, we conducted detailed field research on Maoshan Tea Factory in Jurong
City, Jiangsu Province, China, in which the staff of the tea factory pointed out that leaf
blight and Apolygus lucorum are two common challenges in tea growth. Of note, leaf
blight is a disease, while Apolygus lucorum is an insect pest. These hazards have significant
adverse effects on the quality of tea, so this paper takes these two pests and diseases as the
research object.

In this study, we used both a DJI Mavic 3T drone and a cell phone to collect images
of tea pests and diseases. The drone collected images of tea trees at a height of 2 m to
ensure the clarity and detail of the images. In this way, we collected drone images with
a resolution of 1920 × 1080, while we also used a smartphone for image collection from
a ground perspective. The smartphone has an image resolution of 3024 × 4032, which
provides a higher resolution image that helps to capture more detailed pest and disease
characteristics. By combining these two approaches, we screened 450 high-quality images
of tea pests and diseases. These images cover pest and disease conditions from different
viewpoints from the air and ground, providing a rich and diverse dataset for our study. A
representative sample of these tea pests and diseases is shown in Figure 1a,b.

Agronomy 2024, 14, x FOR PEER REVIEW 5 of 24 
 

 

  

(a) (b) 

Figure 1. Representative samples of tea pests and diseases: (a) Apolygus lucorum; (b) leaf blight. 

Figure 1a shows Apolygus lucorum, which usually feed on the young leaves of tea 
trees and live by sucking the plant sap by stinging, especially in the early stage of tea tree 
growth. Their sucking action may lead to deformation, yellowing, and deflation of tea tree 
leaves. In Figure 1b, symptoms of leaf blight usually appear as brown spots of varying 
sizes and irregular shapes on the leaves of tea trees, which may gradually spread with the 
development of the disease and lead to yellowing and wilting of the leaves in severe cases, 
or even cause the leaves to fall off. 

2.2. Data Augmentation 
The sample size of the dataset obtained above is small, which is not enough to sup-

port the effective training and evaluation of deep learning models. To solve the problem 
of a small sample size, this paper uses three image enhancement methods based on ran-
dom rotation, brightness adjustment, and adding noise. Random rotation can increase the 
sample diversity, simulate the same sample taken from different angles, and allow the 
model to learn that the features of pests and diseases can still be recognized even from 
different viewpoints. Brightness adjustments can simulate the actual lighting variations, 
improve the accuracy of the model in real applications, and enhance the feature saliency 
at the same time. Adding noise improves the robustness of the model, making it more 
resistant to noise and less dependent on clean data. These enhancement methods aim to 
generate more diverse image samples, thus improving the robustness and accuracy of the 
model in different scenes. Specific data augmentation examples are shown in Figure 2. 

  

(a) (b) 

Figure 1. Representative samples of tea pests and diseases: (a) Apolygus lucorum; (b) leaf blight.



Agronomy 2024, 14, 633 5 of 23

Figure 1a shows Apolygus lucorum, which usually feed on the young leaves of tea
trees and live by sucking the plant sap by stinging, especially in the early stage of tea tree
growth. Their sucking action may lead to deformation, yellowing, and deflation of tea tree
leaves. In Figure 1b, symptoms of leaf blight usually appear as brown spots of varying
sizes and irregular shapes on the leaves of tea trees, which may gradually spread with the
development of the disease and lead to yellowing and wilting of the leaves in severe cases,
or even cause the leaves to fall off.

2.2. Data Augmentation

The sample size of the dataset obtained above is small, which is not enough to support
the effective training and evaluation of deep learning models. To solve the problem of a
small sample size, this paper uses three image enhancement methods based on random
rotation, brightness adjustment, and adding noise. Random rotation can increase the
sample diversity, simulate the same sample taken from different angles, and allow the
model to learn that the features of pests and diseases can still be recognized even from
different viewpoints. Brightness adjustments can simulate the actual lighting variations,
improve the accuracy of the model in real applications, and enhance the feature saliency
at the same time. Adding noise improves the robustness of the model, making it more
resistant to noise and less dependent on clean data. These enhancement methods aim to
generate more diverse image samples, thus improving the robustness and accuracy of the
model in different scenes. Specific data augmentation examples are shown in Figure 2.
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The dataset after data augmentation contains 2100 images. We used the annotation
software: LabelImg 1.8.6 [28] to annotate the expanded dataset, in which the number
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of labels of Apolygus lucorum and leaf blight in the pre-expansion dataset was 1583 and
1962, and the number of labels of Apolygus lucorum and leaf blight in the post-expansion
dataset was 9629 and 13,260. The distribution of labeled data is shown in Table 1. In the
experimental phase, we divided the dataset into training and validation sets according to
the ratio of 8:2. The information on the number of images and labels in the training and
validation sets is shown in Table 2.

Table 1. Distribution of dataset labels.

Distribution Before Data Augmentation After Data Augmentation

Images 450 2100
Apolygus lucorum 1583 9629

Leaf blight 1962 13,260

Table 2. Target numbers in dataset.

Distribution Training Validation

Images 1680 420
Apolygus lucorum 7703 1926

Leaf blight 10,608 2652

2.3. TeaVitNet

In this paper, we propose a detection model, TeaVitNet, which combines CNNs with
Transformers. The model network structure diagram is shown in Figure 3 and consists of
an input, backbone, neck, and head.
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(1) Backbone: MobileViT [29] is used as the feature extraction network of the model; the
network module inherits the advantages of lightweight CNNs with fewer numbers
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of parameters and less computation and adopts a visual Transformer based on the
mechanism of multi-head self-attention to encode the global information to construct a
lightweight feature extraction network, which can sufficiently extract the information
of the local and global samples, and generate the feature maps of different scales to
the neck network.

(2) Neck: Multiscale attention EMA-PANet [27] is used as a neck feature fusion network;
EMA-PANet has three feature fusion branches and a fusion feature enhancement
module. An efficient multi-scale attention mechanism is added to the output nodes
of the network to effectively capture cross-dimensional interactions and establish
inter-dimensional dependencies, and the fusion of multi-scale contextual information
makes the network pay more attention to useful information. Its network structure
mainly consists of RFBNet [30], ODCSPLayer [31], and EMA [27].

(3) Head: The feature maps generated by the neck are used to predict target bounding
boxes, category probabilities, and confidence levels for the bounding boxes. Multiple
bounding boxes are predicted for each anchor location, while the network also predicts
the category probability and object confidence of the targets contained within each
bounding box.

2.4. MobileViT: Lightweight Feature Extraction Network

In tea pest and disease identification, models need to be run on mobile or edge devices.
These devices usually have limited resources and require models that are lightweight and of
high performance. MobileViT [29] is designed to achieve lightweight but high performance
visual recognition and processing on mobile devices. Traditional Vision Transformer
models (ViT) usually have many parameters, which makes it difficult to achieve efficient
computation in resource-limited environments such as mobile devices. For this reason,
MobileViT synthesizes the advantages of Vision Transformer (ViT) and the design concepts
of lightweight CNN models to reduce the number of parameters and the computational
complexity of the model to adapt to the computational and storage resource limitations of
mobile devices. Therefore, MobileViT is used as the feature extraction backbone network of
the model in this paper. Table 3 lists the parameters of the MobileViT network structure in
this paper.

Table 3. Network structure parameters of MobileViT.

Input Layer Output Size Stride Repeat

Image 640 × 640
Conv 320 × 320 2 1
MV2 320 × 320 1 1
MV2 160 × 160 2 1
MV2 160 × 160 1 2
MV2 80 × 80 2 1

MobileViT Block 80 × 80 1 1
MV2 40 × 40 2 1

MobileViT Block 40 × 40 1 1
MV2 20 × 20 2 1

MobileViT Block 20 × 20 1 1

MobileViT is mainly composed of the MV2 [32] module and MobileViT block; Figure 3
illustrates the backbone network structure in this paper. The MobileViT block of the
backbone network elicits three feature maps, denoted C1, C2, and C3. MV2 is a linear
bottleneck inverted residual block proposed in MobileNetV2; its structure is shown in
Figure 4; the MV2 module realizes feature expansion, depth separable convolution [33],
and compression via the bottleneck block, combined with the inverted residual connection,
which makes the inputs and outputs add up directly, and promotes the direct transfer of
information. The reduced number of parameters and computational load makes the model
more suitable for running in resource-constrained environments such as mobile devices.
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The MobileViT block consists of three main components: a local information coding
module, a global information coding module and a feature fusion module, and its structure
is shown in Figure 5.
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(1) Local information coding module

For a given input feature vector X ∈ KH×W×C, an n × n standard convolution is first
used to capture the local spatial information, and then a 1 × 1 linear combination of the
learned input channels is used to generate the output tensor XL ∈ KH×W×d, which projects
the tensor to a higher-dimensional space.

(2) Global information coding module

In order to enable MobileViT to acquire global information, the authors expand the
output tensor XL after local information encoding into N non-overlapping flat blocks
XU ∈ KP×N×d, where P = wh, N = HW/P, N is the number of flat blocks, and h and w
are the height and width of each flat block, respectively. The relationship between each flat
block is then encoded by the Transformer to obtain XG ∈ KP×N×d.

XG(p) = Trans f ormer
(

XU(P)

)
, 1 ≤ p ≤ P (1)

(3) Feature fusion module

For XG obtained by the global information coding module, it is collapsed into
XF∈ KH×W×d, and then XF is projected into the low C-dimensional space by 1 × 1 con-
volution and combined with X by tandem operation. The n × n convolution is then used
to fuse these connected features, resulting in an output tensor of Y ∈ KH×W×C. Since
XU(P) uses convolution to encode local information in the n × n region, and XG(p) encodes
global information for the pth position of the pth flat block, each pixel in XG can encode
information from all pixels in X. The output tensor is the same as that in XG(p). Therefore,
the overall effective perceptual field of MobileViT is H × W.
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The local information coding module adopts a CNN-like structure for down sampling
operations in the network, specializing in local features of the image, aiming at capturing
the details and local texture information of the image. The global information encoding
module acts as a Transformer encoder for MobileViT and is responsible for encoding the
whole image by introducing the Transformer architecture to help the model understand
the overall semantic information of the image. The feature fusion module, on the other
hand, is responsible for organically combining the features extracted from the local and
global information encoding modules, aiming to produce a more representational image
representation. These three key modules work together to form the core of the MobileViT
model. Its strength lies in the fact that by processing both local and global information
and fusing them effectively, the model can efficiently process visual tasks on resource-
constrained devices.

2.5. ODCSPLayer

ODConv [31] is a dynamic convolutional method designed to dynamically adjust the
convolutional kernel based on the features of the input data to better capture the correlation
and spatial structure among objects. It introduces four types of dynamic convolution kernel
attention, namely spatial, channel, filter, and kernel attention, for adjusting the weights
of convolution kernels in different dimensions. Using a parallel attention strategy, each
convolutional layer applies all four types of attention simultaneously, ensuring that all
spatial locations, channels, filters, and kernels have different effects on each input sample.
This mechanism of dynamically adjusting the convolutional kernels enhances the feature
representation capability of the network, making it more adaptable to different input data
distributions and task requirements, thus improving target capture and task performance.

In this paper, we introduce the ODCSPLayer module in EMA-PANet to address
the challenges in the task of tea pests and disease detection. The ODCSPLayer module
aims to obtain richer information about the gradient flow and further reduce the number
of parameters in the model. Its design is inspired by the residual linkage structure in
ResNet and the design concept of ELAN [34], and combines the features of ODConv,
which can dynamically adjust the convolution kernel to capture the correlation and spatial
structure between objects better. The structure of the bottleneck is shown in Figure 6b,
which includes a 1 × 1 convolutional layer for feature map dimensionality reduction, a
full dimensional dynamic convolutional layer ODConv, a 1 × 1 convolutional layer for
dimensionality upgrading, and a residual join. In the residual join, the input features
are added to the output features that have been downscaled by convolution and then
upscaled by convolution, thus preserving important information and effectively reducing
the number of parameters. This design allows the ODCSPLayer module to obtain richer
information about the gradient flow while keeping the model lightweight.
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2.6. Multiscale Attention EMA-PANet

Due to the presence of different sizes of Apolygus lucorum and leaf blight in tea pest
and disease images, to effectively capture multi-scale features in the images and fuse global
and local information, this paper adopts EMA-PANet as the neck network of the model.
The EMA-PANet network structure is shown in Figure 3. PANet adopts top-down and
bottom-up feature extraction, which helps obtain the feature information at different scales
and makes the network capable of better perceiving and recognizing diseases and pests
in tea images. However, tea leaf disease and pest images may contain various scales and
complex features, while Apolygus lucorum and leaf blight may exist at very small scales or
localized areas, which poses a challenge for the model to capture and understand these tiny
features. To address this problem, this study introduces an Efficient Multiscale Attention
(EMA) [27] mechanism after the three output branches of PANet. The EMA mechanism
takes full advantage of the hierarchical structure and multi-branch output of PANet to
help the model better detect and utilize the feature information at different scales while
enhancing the attention to the global semantic information and local details.

The structure of the Efficient Multiscale Attention Module (EMA) based on cross-
space learning is shown in Figure 7. This module efficiently handles multi-scale features
via feature grouping, parallel sub-networks, and cross-space learning mechanisms. First,
it decomposes the channel dimension into multiple sub-feature groups and extracts the
attention weight descriptors via parallel paths while applying cross-space learning methods
to capture the dependencies between the channels and spatial locations. This design
encodes the network output with a global average pooling operation, captures spatial
information and models long-range dependencies, and utilizes spatial attention maps
to integrate the output feature maps for pixel-level correlation and global contextual
information capture, thus enhancing the performance and expressive capability of neural
networks in pixel-level task processing. In addition, the method can handle both short-term
and long-term dependencies, allowing the network to utilize contextual information more
efficiently, which in turn improves the overall performance level.
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2.7. RFBNet

RFBNet utilizes the Receptive Field Block (RFB) [30] mechanism to enhance the fea-
ture characterization of convolutional neural networks in target detection tasks, which is
inspired by the receptive field in the human visual system and improves the effectiveness
and robustness of feature extraction by adjusting the network structure.

The structure of RFBNet is shown in Figure 8. It adopts a multi-branch small convolu-
tional kernel layer containing 3 × 3, 1 × 3, and 3 × 1 convolutional layers, which effectively
reduces the parameters and computation of the model. It also combines regular convolu-
tional branches and dilated convolutional branches, with each dilated convolutional layer
using a different dilation rate. These dilation convolutional layers simulate and regulate the
effect of the eccentricity of the sensory field in human vision, which helps the network to
better understand the detailed information of the image. Finally, the RFBNet connects and
integrates the feature maps of all branches into one convolutional array, further enhancing
the feature characterization capability of the model.
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2.8. Training

The experimental conditions of this paper are shown in Table 4. The training parameter
settings for the TeaVitNet model are shown in Table 5. The dataset is divided into a training
set and a test set in the ratio of 8:2.

Table 4. Experimental conditions.

Experimental Environment Details

Programming language Python 3.9
Operating system Windows 11

Deep learning framework PyTorch 2.0.1
GPU NVIDIA GeForce RTX 3060

Table 5. Training parameters.

Training Parameters Details

Epochs 300
batch-size 4
Img-size 640 × 640

Learning rate 0.01
Optimizers Adam

2.9. Evaluation Metrics

In this paper, model performance is measured in terms of two evaluation criteria:
average precision (mAP@0.5) and number of parameters.

mAP evaluates the performance of the model by calculating the average precision
across all categories. Precision is used to measure the proportion of samples predicted
as positive by the model that are truly positive, and recall is used to indicate the ratio of
the number of positive samples successfully identified by the model to the number of all
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positive samples in the dataset. The accuracy and recall are shown in Equations (2) and (3)
as follows:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

TP is the number of positive samples predicted, FP is the number of positive samples
predicted incorrectly, and FN is the number of negative samples predicted incorrectly. The
model uses mAP@0.5 as a metric to assess the accuracy of the model, denoting the value of
mAP when the IoU threshold is taken as 50%, which is obtained by averaging the APs of
each category, calculated as shown in Equations (4) and (5). The specific computational
procedure of AP is as follows: First, the TeaViTNet model is used to predict the test set
and obtain the predicted bounding boxes and corresponding confidence levels for each
image. Then, non-maximum suppression (NMS) processing is applied to these bounding
boxes to eliminate overlapping bounding boxes and retain the ones with the highest
confidence level. Subsequently, the IoU (intersection and concurrency ratio) value between
each predicted bounding box and the true bounding box is calculated. Subsequently,
all predicted bounding boxes are sorted in descending order of confidence. For each
confidence threshold, precision and recall are computed, and the precision and recall under
all confidence thresholds are plotted as PR (precision–recall) curves. Finally, the average
precision (AP) is calculated by numerically integrating the area under the PR curve.

AP =
∫ 1

0
P(r)dr (4)

mAP =
1
n

n

∑
i=1

APi (5)

where n is the total number of categories and AP is the average precision (AP) of the
category. In this paper, the total average precision of the model is denoted as AP0.5, the
average precision of Apolygus lucorum is denoted as APTAL, and the average precision of
leaf blight is denoted as APTLB.

The model parameter quantity is the number of parameters to be learned in the
model, a metric used to assess the spatial complexity and size of the model, and thus an
important metric for assessing model lightweighting. Controlling the size of the parameter
quantity is crucial for model lightweighting because a lower parameter quantity usually
means a leaner model that requires less storage space and computational resources. In
resource-constrained environments, optimizing the number of parameters helps to improve
the operational efficiency of the model, speeds up inference, and facilitates the rapid
deployment and adaptation of the model to various real-world application scenarios.

3. Results
3.1. Training Results

To visualize the performance of the model proposed in this paper during the training
phase, this section visualizes the mAP@0.5 metrics by visualizing the model during the
training process, and the visualization results are shown in Figure 9. From the figure, it can
be observed that in the first 75 epochs of training, the growth rate of the model’s metrics is
relatively fast, followed by a relative slowdown in the convergence of the model between
75 and 200 epochs, but still maintains steady growth. After more than 200 epochs, the
model’s performance metrics basically remain stable, with no obvious improvement trend,
indicating that the model has reached a high performance level during the training process.

To obtain a clear picture of the predictive performance of the TeaVitNet model on
different categories, in this section, the confusion matrix is plotted by testing and plotting
the validation set, in which the number of labels for Apolygus lucorum is 1926, and the
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number of labels for leaf blight is 2652, and the results of the confusion matrix are shown
in Figure 10.
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3.2. Comparison Experiments
3.2.1. Performance Comparison of Different Backbone Networks

To verify the effectiveness of MobileViT selected as the backbone network in this
paper, a series of experiments are conducted to compare different types of CNN models.
Among them, the lightweight CNN models include MobileNetV1 [33], MobileNetV2 [32],
MobileNetV3 [35], ShuffleNet [36], and ShuffleNetV2 [37], and the heavyweight models
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include VGG [38] and ResNet50 [39].The experimental results of the models are shown in
Table 6. In the experiments, the VGG model achieves the highest AP0.5, but at the same
time, its number of parameters is also the largest, so it is not suitable for the deployment of
mobile devices. Considering the trade-off between the combined accuracy and the number
of parameters, MobileViT was finally chosen as the backbone network of the model.

Table 6. Performance comparison of different backbone networks.

Model AP0.5 APTAL APTLB Params (M)

MobileNetV1 85.1 84.3 85.8 5.1
MobileNetV2 85.2 84.2 86.2 4.3
MobileNetV3 85.4 85.3 85.5 4.9

ShuffleNet 84.6 84.7 84.5 3.4
ShuffleNetV2 84.9 84.9 84.9 3.3

VGG 89.3 88.7 89.9 35.6
ResNet50 85.9 86.7 85.1 22.9
MobileViT 87.6 86.6 88.7 2.7

3.2.2. Performance Comparison of Different Attention Mechanisms

To deeply verify the influence of the attention mechanism in the MobileViT model on
the fusion of global and local information, as well as the extent of the model’s attention to
the feature information at different scales, this section generates the corresponding feature
maps using the MobileViT baseline network using several different attention methods
(CBAM [40], ECA [41], SE [42], and EMA) and transforms them into heat maps for visual-
ization, which are shown in Figure 11. Meanwhile, the effects of four different attention
mechanisms on model accuracy are shown in Table 7.

Table 7. Performance comparison of different attention mechanisms.

Model AP0.5 APTAL APTLB

CBAM 88.4 88.4 88.3
ECA 87.7 87.2 88.2
SE 87.9 88.5 87.2

EMA 88.9 88.6 89.2

3.2.3. Comparison of Different Models

To verify the superiority of the proposed model in this paper with other mainstream
models, we conducted experiments comparing TeaViTNet with SSD [43], Faster R-CNN [44],
YOLOv5n, and YOLOv7tiny [45]. By comparing the performance of different models on
the same dataset, we can evaluate the superiority and applicability of the proposed model.
The results of the comparison experiments are shown in Table 8.

Table 8. Results of the comparison experiments.

Model AP0.5 APTAL APTLB Params (M)

SSD 87.9 87.1 88.7 26.1
Faster R-CNN 89.3 89.2 89.4 40

YOLOv5n 87.4 87.5 87.3 7.1
YOLOv7tiny 87.8 87.4 88.1 7.2
TeaViTNet

(Ours) 89.1 88.6 89.6 4.5

As shown in Table 7, the SSD model has a parameter count of 26.1 M, but its AP0.5 is
only 87.9, indicating relatively low performance and a larger number of parameters. In
contrast, the Faster R-CNN model has a parameter count of 40 M, and its AP0.5 is 89.3,
which not only has better performance than SSD but also has a larger number of parameters.
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The YOLOv5n model has a parameter count of 7.1 M and an AP0.5 of 87.4, which shows a
balance between higher performance and a smaller model size. The YOLOv7tiny model
has a parameter count of 7.2 M and an AP0.5 of 87.8, with slightly better performance than
YOLOv5n but with a similar model size. In contrast, our TeaViTNet model has a parameter
count of 4.5 M and an AP0.5 of 89.1, and although the performance is slightly lower than
that of the Faster R-CNN, the model has the lowest parameter count, showing an advantage
in lightweight target detection.
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3.3. Ablation Experiments

To verify the effectiveness of the TeaViTNet model proposed in this paper, MobileViT
is used as the baseline network in the ablation experiments, and the PANet, RFB, EMA, and
ODCSPLayer modules are gradually introduced to explore their effects on the performance
of the TeaViTNet model, and the results are shown in Table 9.
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Table 9. Ablation experiments results.

Model AP0.5 APTAL APTLB Params (M)

MobileViT 87.6 86.6 88.7 2.7
MobileViT+PANet 87.8 86.9 88.7 3.9

MobileViT+PANet+RFBNet 88.3 87.8 89.1 4.3
MobileViT+PANet+RFBNet+EMA 88.9 88.6 89.2 4.5

MobileViT+PANet+RFBNet+EMA+ODCSPLayer
(Ours) 89.1 88.6 89.6 4.5

Table 9 presents the significant impact of the gradual introduction of the modules on
the model performance. The introduction of the PANet module brings a slight enhancement
to the detection of Apolygus lucorum, highlighting its role in multi-scale contextual feature
fusion. This suggests that the introduction of PANet enhances the model’s ability to per-
ceive and recognize Apolygus lucorum at multiple scales, thus improving detection accuracy.
Subsequently, the introduction of the RFBNet module improved the accuracy of Apolygus
lucorum and leaf blight. Their 0.9% and 0.4% enhancements reflect the RFB module’s more
accurate capture of the characteristic information of these two diseases, respectively. This
implies that the RFBNet module effectively enhances the model’s recognition ability by
effectively capturing the minute feature information of these diseases. The introduction of
the EMA module further improves the model’s performance. The attention mechanism
helps the model to pay more attention to important areas, optimizes the learning and
attention of the model for specific target areas, and helps to improve the model’s recog-
nition accuracy for specific targets. Finally, the introduction of the ODCSPLayer further
improves the detection accuracy of the model. The ODCSPLayer serves to express the
image features of tea leaves more comprehensively and accurately, which enhances the
model’s ability to recognize tea pests and diseases. In summary, these experimental results
clearly demonstrate the positive impact of the introduction of each module on the model
performance, revealing their importance in enhancing the model’s recognition of tea leaf
pests and diseases.

3.4. Model Detection Effect

To visualize the performance of the TeaViTNet model proposed in this paper, we selected
some images from the test set for detection, and the results are shown in Figure 12a–f.
Figure 12a–d show images captured from a cell phone viewpoint, while Figure 12e,f show
images captured from a drone viewpoint. In Figure 12a,b, we can clearly observe the large-size
Apolygus lucorum infestations, which can be completely detected by our model. In Figure 12c,d,
although large-sized Apolygus lucorum infestations are still present, they are also interspersed
with tiny leaf blights, and the model can effectively detect these small-sized leaf blights while
detecting Apolygus lucorum. In Figure 12e,f, the model is even able to detect smaller Apolygus
lucorum and leaf blight diseases in tea bushes. The above detection results show that the
TeaViTNet proposed in this paper has a good detection effect.

3.5. Comparison of Different Model Deployment

In this study, the TeaViTNet model is deployed to Raspberry Pi 3B+. Raspberry Pi
3B+ assumes the function of edge computing with Broadcom BCM2837B0 SoC processor, a
64-bit processor based on ARMv8 core (Cortex-A53) operating at 1.4 GHz. It is equipped
with 1 GB LPDDR2 SDRAM memory. The Raspberry Pi 3B+ supports 2.4 GHz wireless
networking, as well as Bluetooth, and comes with a Gigabit Ethernet card. In addition, it
offers a full-size HDMI port, four USB 2.0 ports, a CSI camera port, a DSI screen port, 4-pin
stereo out and composite video ports, as well as a micro-SD port. These features make the
Raspberry Pi 3B+ ideal for a wide range of computing and multimedia tasks, especially in
embedded systems.
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In this section, the different models in Section 3.2.3 are deployed to Raspberry Pi 3B+,
respectively, and the processing time per image after the deployment of the five models is
compared in Table 10.
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Table 10. Deployment results of different models.

Model Processing Time (s) Params (M)

SSD 6.4 26.1
Faster R-CNN 8.3 40

YOLOv5n 4.7 7.1
YOLOv7tiny 4.2 7.2

TeaViTNet (Ours) 3.1 4.5

Based on the experimental data in Table 10, we can observe the processing time of
different models on the Raspberry Pi 3B+. The SSD model has a processing time of 6.4 s, the
Faster R-CNN model has a processing time of 8.3 s, the YOLOv5n model has a processing
time of 4.7 s, the YOLOv7tiny model has a processing time of 4.2 s, and our model TeaViTNet
has a processing time of only 3.1 s. These data show that the TeaViTNet model runs most
efficiently on the Raspberry Pi 3B+, followed by the YOLOv7tiny and YOLOv5n models.
The SSD and Faster R-CNN models have longer processed times, which is because they are
of higher complexity and require more computational resources. Therefore, the TeaViTNet
model proposed in this paper meets the requirements of practical scenarios.

4. Discussion

This paper presents the TeaViTNet model designed to be applied to the detection of
tea pests and diseases. The model is based on MobileViT, which takes advantage of the
Transformer architecture to extract multi-scale features in tea leaf images. MobileViT helps
to capture and analyze tiny pest and disease features via the self-attention mechanism and
global feature extraction and adapts to scenarios with limited mobile device resources. To
further enhance the model performance, a multi-scale attention EMA-PANet network is
introduced, in which the EMA module optimizes the model’s learning and attention to
specific targets, and the PANet module improves the model’s ability to perceive multi-
scale information. In addition, the RFBNet module was added to effectively capture
the information of tiny features and improve the accuracy of pest and disease features.
The introduction of the ODCSPLayer convolutional block in the PANet network aims to
improve the network efficiency and understand tea garden images more comprehensively.
These improvements resulted in significant improvements and superior performance of
the TeaViTNet model in the tea pest and disease recognition task. In summary, TeaViTNet
demonstrates excellent robustness and performance in tea garden image analysis. The
detection results presented in Figure 12 clearly validate the reliability and adaptability of
TeaViTNet for pest and disease identification at different scales and complexities. These
results fully demonstrate the importance of TeaViTNet as an effective and reliable disease-
recognition tool in tea agriculture.

Compared with the existing literature, this study has made some innovations and
contributions in the field of tea pests and disease recognition. Compared to traditional
deep learning-based approaches, the TeaViTNet model takes advantage of the Transformer
architecture and improves model performance by gradually introducing multiple modules.
Despite the results achieved in this study, there are still some limitations to be considered.
First, model performance may be affected by dataset bias, especially under specific tea
plantation environments and climatic conditions. Therefore, future studies could collect
more samples and construct a wider dataset to validate the generalization ability of the
model. Second, model deployment to real tea garden environments may face some technical
challenges, such as model size and inference speed. To address the challenge of model size,
we will further adopt techniques such as model pruning and quantization in the future. By
removing redundant parameters, we can further reduce the computational complexity and
memory consumption of the model, thus improving the deployment efficiency of the model.
For the deployment problem, we will focus on edge computing and distributed reasoning
in the future. Utilizing edge computing technology to perform partial model inference on
offline or edge devices can reduce communication delay and bandwidth consumption with



Agronomy 2024, 14, 633 21 of 23

the cloud. Meanwhile, distributed reasoning strategies are used to assign model reasoning
tasks to multiple edge devices for parallel processing to improve reasoning efficiency and
concurrent processing capability. These measures will help to improve the deployment
efficiency and performance of the model in real tea garden environments. Therefore, future
research could focus on solving these problems and further optimizing the model.

This study is of great significance to the field of tea pests and disease identification.
First, the proposed TeaViTNet model provides a new solution for the automatic identifi-
cation of tea pests and diseases, which helps to improve the efficiency and quality of tea
cultivation. The model combines the efficient feature extraction capability of MobileViT
with the advantages of components such as PANet and RFBNet, enabling real-time accurate
detection even on mobile devices. This is important for the timely control of pests and
diseases and the reduction in losses. Secondly, the modules and techniques introduced in
this study can provide lessons and references for pest and disease identification tasks in
other crops.

5. Conclusions

In this study, an innovative visual Transformer model, TeaViTNet, is proposed, which
cleverly combines the powerful feature extraction capability of deep learning and the Trans-
former’s self-attention mechanism and achieves remarkable high-precision recognition
results in the recognition of pests and diseases in tea images. Experimental results show
that the TeaViTNet model not only surpasses the current mainstream models in recognition
accuracy but also exhibits significant advantages in model size. Although the current study
is mainly limited to the laboratory environment, and the stability and generalization ability
of the model in real complex environments still need to be further verified, the potential of
the TeaViTNet model has been initially demonstrated.

In the future, the TeaViTNet model can continue to be refined and optimized. For
example, the TeaViTNet model pre-trained in the identification of tea pests and diseases can
be used for migration learning to identify pests and diseases of other crops, thus promoting
the development and progress of the agricultural field. Meanwhile, real-world application
tests are conducted to deploy the model into real agricultural scenarios and conduct field
tests to verify its stability and reliability in complex environments.

Overall, this study provides a valuable direction for exploration in the field of tea pests
and disease identification. Future research will not only continue to improve the model but
also expand its application scope, provide technical support for intelligent monitoring of
agricultural pests and diseases, and promote the development of agricultural automation
and intelligence.
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