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Abstract: Crop plant height is a critical parameter for assessing crop physiological properties,
such as above-ground biomass and grain yield and crop health. Current dominant plant height
estimation methods are based on digital surface model (DSM) and vegetation indexes (VIs). However,
DSM-based methods usually estimate plant height by growth stages, which would result in some
discontinuity between growth stages due to different fitting curves. Additionally, there has been
limited research on the application of VI-based plant height estimation for multiple crop species.
Thus, this study investigated the validity and challenges associated with these methods for estimating
canopy heights of multi-variety rice throughout the entire growing season. A total of 474 rice varieties
were cultivated in a single season, and RGB images including red, green, and blue bands, DSMs,
multispectral images including near infrared and red edge bands, and manually measured plant
heights were collected in 2022. DSMs and 26 commonly used VIs were employed to estimate rice
canopy heights during the growing season. The plant height estimation using DSMs was performed
using different quantiles (50th, 75th, and 95th), while two-stage linear regression (TLR) models based
on each VI were developed. The DSM-based method at the 95th quantile showed high accuracy,
with an R2 value of 0.94 and an RMSE value of 0.06 m. However, the plant height estimation at
the early growth stage showed lower effectiveness, with an R2 < 0. For the VIs, height estimation
with MTCI yielded the best results, with an R2 of 0.704. The first stage of the TLR model (maximum
R2 = 0.664) was significantly better than the second stage (maximum R2 = 0.133), which indicated
that the VIs were more suitable for estimating canopy height at the early growth stage. By grouping
the 474 varieties into 15 clusters, the R2 values of the VI-based TLR models exhibited inconsistencies
across clusters (maximum R2 = 0.984; minimum R2 = 0.042), which meant that the VIs were suitable
for estimating canopy height in the cultivation of similar or specific rice varieties. However, the DSM-
based method showed little difference in performance among the varieties, which meant that the
DSM-based method was suitable for multi-variety rice breeding. But for specific clusters, the VI-based
methods were better than the DSM-based methods for plant height estimation. In conclusion, the
DSM-based method at the 95th quantile was suitable for plant height estimation in the multi-variety
rice breeding process, and we recommend using DSMs for plant height estimation after 26 DAT.
Furthermore, the MTCI-based TLR model was suitable for plant height estimation in monoculture
planting or as a correction for DSM-based plant height estimation in the pre-growth period of rice.

Keywords: rice canopy height estimation; unmanned aerial vehicle; digital surface model; vegetation
index; two-stage linear regression
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1. Introduction

Crop canopy height is a crucial growth parameter that can capture variations in yield,
biomass, and growth stages of different crop varieties [1–3]. The height variability of crops
provides important information on plant health, growth, and response to environmental
effects [4]. Currently, traditional manual plant height measurements are taken in the field
using a meterstick, which is time-consuming and labor-intensive [5]. This method fails to
meet the demand for high-throughput monitoring of crop traits. Therefore, it is necessary
to compare the existing methods of canopy height estimation to analyze their stability and
applicability and develop standardized approaches.

Due to the lower costs and flexible working methods, an increasing number of re-
searchers are employing unmanned aerial vehicles (UAVs) to gather multispectral data
for estimating crop growth parameters [6–8]. The spectral features of crop canopies are
closely related to visible and near-infrared vegetation indexes (VIs), which are significantly
influenced by plant height [9]. For a decade, RGB-based and multispectral-based VIs
have been commonly utilized for monitoring plant height. O. Payero, M. U. Neale, and L.
Wright [10] discovered that the normalized difference vegetation index (NDVI), infrared
percent vegetation index (IPVI), and transformed vegetation index (TVI) exhibited sensitiv-
ity to changes in alfalfa plant height during the early growth stage. Papadavid, Hadjimitsis,
Toulios, and Michaelides [11] compared manual measurement results with the estimation
results of potato plant height by NDVI, soil-adjusted vegetation index (SAVI), and weighted
difference vegetation index (WDVI) and found that the linear model based on WDVI had
the best potato plant height estimation, with an R2 value of 0.89. However, variations
in VIs could be different depending on crop variety, growth stage, and environmental
conditions [12,13]. In addition, most of the plant height estimation methods based on VIs
focused on similar or fewer varieties. For example, Zhen, Yunsheng, Moses, Rui, Li, and
Jun [14] selected the tested wheat variety “Sumai 188” as an experimental material; Guo,
Xiao, Li, Hao, Zhang, Sun, de Beurs, Fu, and He [15] selected the maize variety “Zhengdan
958” as an experimental material; and the VI-based plant height estimation for multiple
species of rice has not been reported. Therefore, there is a need to evaluate the applicability
of VIs in estimating the canopy height of multiple rice varieties.

On the other hand, the use of digital surface models (DSMs) obtained by UAVs for
estimating crop canopy height has been widely examined [16]. DSMs include information
about the height of ground surfaces, vegetation, and other objects. Demir, Sönmez, Akar,
and Ünal [17] utilized a DSM of wheat to estimate canopy height, obtaining a t value of
1.82 for a statistical t test between the field measurements and plant heights retrieved from
the DSM. Similarly, Zang, Wang, Yang, He, Zhou, Zheng, and Li [18] extracted wheat plant
height using a DSM, and the R2 and RMSE of the predicted plant height and the measured
values were 0.96 and 6.32 cm, respectively. These results suggest that utilizing DSMs for
extracting canopy height is an effective approach [19]. The current research method based
on DSMs divided the plant height program into different time intervals, which could lead
to some discontinuities between intervals due to different fitting curves [16]. Therefore, we
hoped to give a uniform plant height estimation method based on DSM over the whole
growth period of multiple rice varieties.

Additionally, no comprehensive comparison of plant height estimation methods utiliz-
ing DSM, RGB-based Vis, and multispectral-based VIs throughout the growth period has
been reported. In light of these considerations, we utilized UAVs to collect RGB images
and multispectral images throughout the entire growth period of multiple varieties of rice,
analyzed the accuracy and consistency of the DSM-based method and the VI-based method
for estimating rice heights throughout the entire growth stage, and investigated the effects
of varieties and growth period on their performance.
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2. Materials and Methods
2.1. Experimental Field

The experiment was conducted in 2022 at the experimental farm of the China National
Rice Research Institute, located in Fuyang district, Hangzhou city, Zhejiang Province
(119◦55′ E, 30◦04′ N). The experiment field is characterized by a subtropical monsoon
climate. The physical and chemical properties of the soil before sowing were as follows:
alkaline soluble nitrogen content of 115.37 mg kg−1, effective phosphorus content of
14.20 mg kg−1, fast-acting potassium content of 140.19 mg kg−1, organic matter content
of 30.48 g kg−1, cation exchange capacity of 18.37 mg kg−2, and pH value of 5.83. In this
study, 550 plots were established, including 474 breeding lines, of which 4 varieties of
20 replicates were randomly placed in the fields. The rice seeds were sown in a nursery
bed on 12 June 2022, and seedlings with three leaves were transplanted in mid-June with a
spacing of 20 × 20 cm, with one seedling per hill. A total of 10 rows and 12 columns were
planted in each plot with 40 cm spacing between plots (Figure 1). Field irrigation, pest
control, and other management practices followed local high-yielding cultivation methods.
From the final experimental records, selected breeding lines differed widely in growth
stage characteristics and yield characteristics (Figure 2).
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2.2. Field Data Collection

Image data collection using a DJI P4M quadrotor UAV (DJI Technology, Shenzhen,
China) was conducted once a week before 10 a.m. to prevent excessive sunlight. The
UAV platform was equipped with six 1/2.9-inch CMOS image sensors, including one RGB
sensor for conventional visible light imaging and five monochrome sensors for multispectral
imaging, including blue (B), green (G), red (R), red edge (RE), and near-infrared light (NIR).
Radiometric calibration was performed using standard diffuse reflectance panels with
30% and 50% reflectance. The UAV flew at a height of 10 m and maintained a speed
of 1 m per second during the flight. A heading overlap rate of 70% and a side overlap
rate of 52% ensured sufficient coverage and overlap between consecutive images and
adjacent flight lines, respectively. The camera captured images every 2 s along the flight
direction, storing one RGB image and five spectral narrow-band images at 1600 × 1300
pixel resolution in JPG format on an SD card. The camera settings were configured to Auto
mode, allowing for automatic control of color balance and exposure when capturing images.
In total, 11 collection sessions were conducted under weather conditions that were clear
and calm. However, on the 41st and 76th days after transplanting (DAT), data collection
faced challenges due to heavy fog and continuous rainfall.

Rice plant height was measured once a week from 10 days after transplanting. Rice
plant height was obtained as follows: five representative plants were randomly selected
in each plot and the height from the top to the ground of each plant in the natural state
was measured by a ruler. The average value of 5 plants was taken as the ground-measured
plant height for each plot.

2.3. Image Preprocessing

The raw canopy images were stitched using DJI SmartMap software (V3.4, DJI Tech-
nology, Shenzhen, China) to create orthophoto maps, including RGB images, DSMs, and
five single-band spectral images (R, G, B, NIR, and RE). Each single-band image had a size
of 16,056 × 14,530 pixels and the DSM had a size of 8028 × 7265 pixels. To facilitate further
analysis, the orthophoto maps covering the entire growth period of the rice varieties were
divided into single-plot images. The Otsu threshold method [20] was used to separate the
rice plants from the background. In this study, the digital values of the five single-band
spectral images were utilized to calculate 14 RGB-based VIs and 12 multispectral-based VIs
(Table S1) [15,21–39]. The mean values of the VIs were computed for each rice plot.

2.4. Plant Height Estimation Methods

In this study, the rice plant height was estimated using digital values in the DSMs and
regression based on RGB-based VIs and multispectral-based VIs, as illustrated in Figure 3.
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For the DSMs, we calculated the difference between the DSMs acquired during rice
growth stages and the DSM acquired during the pre-planting (soil surface) period to
estimate the plant height. Using masks on single-band images for DSMs would result in
more errors due to the difference in spatial resolution between DSMs and other single-band
images. According to the manual plant height records, the surface was considered the
background when the relative bare soil height was less than or equal to 15 cm. We tested
different quantiles (the 50th quantile, the 75th quantile, and the 95th quantile) to assess the
stability of the method based on the DSM.

For VIs, we performed a one-way regression using VIs that are frequently used to
represent changes in surface vegetation coverage and plant growth (Table S1). For canopy
height estimation, we utilized a linear regression model as the base model. However,
the relationship between the vegetation index and plant height varies in the early and
late stages of growth [40]. To address this phenomenon, we constructed a 2-stage linear
threshold regression (LTR) model to segment the entire growth period [41].

First, we considered the most straightforward linear model:

y = Xβ + ε (1)

where X is the observation VI of rice lines/varieties over the target period, y is the predicted
plant height, β is the parameter vector, and ε is the error vector. The least squares method
estimates β. We sampled each plot from t1 to tn and assumed the existence of a threshold
tk, turning Equation (2) into a child model:

y =

{
Xβ1 + ε1, i ≤ k
Xβ2 + ε2, otherwise

(2)

The general linear F test [42] can be used to assess the significance of adding a threshold
to a model. The null hypothesis of the linear F test, H0, states that there exists no significant
nonlinearity in the training instances; thus, the parent model is sufficient to model the
instances. The alternative hypothesis, H1, states that there exists a significant nonlinearity
in the training instances, and therefore, a threshold, tk, needs to be set to split the model.
The constructed F statistic is shown in Equation (3), where SSE1 represents the sum of
squared errors for Equation (1), SSE2 represents the sum of squared errors for Equation (2),
df 1 represents the degrees of freedom for Equation (1), and df 2 represents the degrees of
freedom for Equation (2). The p value of the F test is determined by comparing the value of
the F statistic to the F distribution. If the p value is less than the considered significance
level (α = 0.05), then H1 is accepted, the model is further split into the child models, and
the optimal threshold (tk) is the time at which the p value is the lowest.

F =
(SSE1 − SSE2)d f2

(d f1 − d f2)SSE2
(3)

2.5. Data Analysis and Model Evaluation

The DSM-based method and VI-based method were performed using the Scikit-Learn
and Seaborn packages in Python (version 3.7.0), and we compared the performance of
support vector machines (SVMs), random forest (RF), and linear regression and TLR models.
The models’ performance and generalization ability were evaluated using fivefold cross-
validation [43]. The coefficient of determination (R2) and the root-mean-squared error
(RMSE) were used to evaluate the plant height estimation model performance, and the R2

and RMSE were calculated from Equations (4) and (5), respectively:

R2 = 1 −

n
∑

i = 1
(xi − x̂i)

2

n
∑

i = 1
(xi − xi)

2
(4)
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RMSE =

√√√√√ n
∑

i = 1
(xi − x̂i)

2

n
(5)

where n is the total number of samples; xi and x̂i are the measured and estimated values of
plant height, respectively; and xi is the mean value of all samples.

3. Results
3.1. Rice Canopy Height Estimation Based on DSMs

The estimation results of rice canopy height based on DSMs are shown in Figure 4. The
estimations at different quantiles produced similar overall effects, with R2 values ranging
from 0.88 to 0.94 and RMSE values ranging from 0.06 to 0.08 (Figure 4a–c). Among them,
the best performance was achieved by estimating canopy height using the 95th quantile,
with an R2 of 0.94 and an RMSE of 0.06 m. At 13 DAT, the DSM-based canopy height
estimation was consistently lower than the ground-measured plant height. The average
RMSE for the three quantiles at 13 DAT was 0.10 m, with R2 values less than 0, indicating a
poor extraction performance (Figure 4d). The estimation effect at 22 DAT was initially poor
but improved significantly with increasing quantiles. After 26 DAT, the differences in plant
height estimation results at three quantiles started to narrow.
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Figure 4. Comparison between canopy height estimation based on DSMs and measured canopy
height: (a) the 50th quantile; (b) the 75th quantile; (c) the 95th quantile; (d) R2 between canopy height
estimation based on DSMs and measured canopy height at different days after transplanting.

Figure 5 illustrates the distribution of the digital values in DSMs for the same plot
between 13 and 82 DAT. At 13 DAT, the difference between the 50th and 95th quantiles
was 20 cm (Figure 5a); at 26 DAT, the difference between the 50th and 95th quantiles was
30 cm (Figure 5b). The digital values in DSM gradually transitioned from a left-skewed
distribution to a normal distribution as growth progressed, with the difference between the
50th and 95th quantiles being less than 5 cm (Figure 5c–f). By combining the DSMs-based
estimation and the data distribution characteristics, it was recommended to use the DSM
for estimating rice canopy height after 26 DAT.
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3.2. Rice Canopy Height Estimation Using VIs

To explain the phase transition of the vegetation indexes and rice canopy height, we
took a sample of 100 randomly selected plots and chose temporal trends of the OSAVI,
IKAW, and measured height as examples (Figure 6). Before 26 DAT, the OSAVI exhibited a
relatively fast growth rate and displayed a positive correlation with measured rice height.
However, after 26 days, the growth rate of the OSAVI slowed. Before 40 DAT, the IKAW
experienced a rapid decrease and showed a negative correlation with measured rice height.
After 40 DAT, the overall change in the IKAW was minimal, with notable fluctuations
observed only at 56 DAT. However, the growth trend of measured height started to slow
only after 56 DAT, which contrasted with the earlier stages when the OSAVI and IKAW
showed transitions. These observations highlighted the presence of stage differences in the
correspondence between canopy height and vegetation indexes.
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Figure 6. The temporal trends in 100 random plots during the rice growth period: (a) the temporal trend
of OSAVI; (b) the temporal trend of IKAW; (c) the temporal trend of measured height. The solid line
represents the mean of the measured data, and the blue area represents the 90% confidence interval.

The plant height estimation results of different models based on each VI are shown in
Figure 7. The results showed that the LTR model (mean R2 = 0.686) performed significantly
better than the linear model (mean R2 = 0.381), SVM (mean R2 = 0.364), and RF (mean
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R2 = 0.552). Among the vegetation indexes used in the LTR model, the best-performing
index was MTCI, with an R2 value of 0.704, while the worst-performing index was IPVI,
with an R2 value of 0.655. This suggested that the MTCI strongly correlated with the actual
measured height.

Figure 8 provides a comparison of the two stages of the LTR model based on R2. The
results indicated that the first stage of the model (mean R2 = 0.518) performed significantly
better than the second stage (mean R2 = 0.099). The MGRVI-based LTR model had the best
results in the first stage (R2 = 0.664), but the R2 in the second stage was only 0.104. This
indicated that the VIs were more effective in estimating canopy height at the early stage
than at the second stage during growth.
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m1 to m12 refer to the following vegetation indexes: GNDVI, LCI, NDRE, OSAVI, NDVI, IPVI, NIRV,
MCARI, MRGBVI, MRNRVI, MTCI; r1 to r14 refer to the following vegetation indexes: EXG, GRAY,
GLI, MRBVI, IKAW, NGBDI, DRBVI, DGBVI, GBDI, GCC, CIVE, MGRVI, MNGRVI, MNGRBVI.
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To analyze the role of variety on the regression effect, we first proposed a two-stage
regression model for each variety. Next, the k-means clustering algorithm was used to
group similar varieties into 15 clusters based on their regression characteristics (β1, β2 and
tk). After clustering, the LTR model was constructed for each cluster of varieties. The R2

values of the VI-based TLR models in different clusters are depicted in Figure 9. The R2

values of the VI-based TLR models exhibited inconsistencies across groups, with the most
significant fluctuation observed in the R2 values of the IPVI-based TLR model, ranging from
0.042 to 0.909. Notably, the R2 value of the EXG-based TLR model for cluster 14 reached a
maximum of 0.984, which was markedly higher than the R2 value of the model developed
for all species (R2 = 0.701). And there was always a vegetation index under each clustering
cluster that was better than the DSM-based plant height estimation. This indicated that the
regression model based on the VI was more suitable for estimating the plant height of an
individual or a group of closely related rice varieties.
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Figure 9. R2 for each cluster. ci represents cluster i; m1 to m12 refer to the following vegetation
indexes: GNDVI, LCI, NDRE, OSAVI, NDVI, IPVI, NIRV, MCARI, M RGBVI, MRNRVI, MTCI; r1
to r14 refer to the following vegetation indexes: EXG, GRAY, GLI, MRBVI, IKAW, NGBDI, DRBVI,
DGBVI, GBDI, GCC, CIVE, MGRVI, MNGRVI.

4. Discussion

As a fundamental growth parameter for crops, the high-throughput measurement of
plant height contributes to optimizing crop breeding and management methods. However,
current plant height estimation methods have limitations regarding applicable crop va-
rieties [15,44] and growth stages [16]. Therefore, we conducted an analysis by collecting
entire growth period data for 474 rice varieties to analyze the applicability and limitations
of DSM-based methods and regression methods based on VIs for estimating canopy height.

The DSM-based method, specifically using the 95th quantile, demonstrated high
accuracy, with an R2 value of 0.94 and an RMSE of 0.06 m. The overall effects of estimating
plant height using DSMs at different quantiles were consistent (Figure 4). However, it
should be noted that the current plant height estimation methods mainly focused on the



Agronomy 2024, 14, 883 10 of 14

period after tillering [16,45] and did not consider the influence of this stage on plant height
estimation. Our study found that before 26 DAT, the estimation effect varied more among
different quantiles (Figure 4d), which could be attributed to the growth process of rice.
During the early stages of growth, rice underwent leaf extension, resulting in a small
proportion of complete leaves in the canopy image. As the tillering stage began, rice plants
produced tillers from leaf axils [46], leading to an increase in the proportion of complete
leaves in the image. Consequently, the estimation effects of canopy height at different
quantiles gradually stabilized. Therefore, we recommended using the DSM-based method
for rice plant height estimation after 26 DAT. Notable changes occurred at 41 DAT and 76
DAT due to specific environmental conditions during image acquisition. At 41 DAT, there
was rainfall after manual measurement, causing the leaves to sag when the UAV was flying.
At 76 DAT, the presence of fog affected the signal propagation. Consequently, the accuracy
of the reflected signals was compromised, leading to a decrease in their reliability. These
observations highlighted the impact of environmental factors on the accuracy and reliability
of DSM-based canopy height estimation [47]. Furthermore, the DSM-based estimation
method showed approximate results among the clustered clusters of different varieties,
indicating that the DSM-based method was less affected by the varieties (Figure 9). And
it was worth noting that the mean estimated plant height for all samples after 62 DAT
was lower than the actual measured plant height (Figure 4). In Figure S1, we present
the plant height variation curve based on DSM estimation for selected samples, which
showed that the peak plant height occurs around the full heading stage, suggesting that
the underestimated values might be due to canopy aging during the grain filling stage.

In the VI-based regression method, the two-stage linear threshold regression model
showed better performance compared to the traditional linear regression model [40]. The
mean R2 value of the two-stage model was 0.686, outperforming the mean R2 value of 0.381
for the traditional linear regression model. The two-stage model effectively captured the
two-stage relationship between vegetation indices and plant height (Figure S2). However,
the effects of the models after clustering were not consistent across clusters (Figure 7),
which highlighted the importance of varietal differences, e.g., the rice varieties and canopy
optical characteristics [48], in applying the regression effect of VIs in estimating plant height.
Therefore, the VI-based regression model might appropriate specifically for estimating
canopy height for a single variety or a group of rice varieties with similar traits. It is
important to note that the clustering method used in this study might not provide accurate
results for unknown varieties and may not be appropriate for classifying multiple species
based on plant height. The two-stage regression model based on the VIs performed the
best on MTCI, with an R2 value of 0.704. The MTCI index was specifically designed to
be sensitive to changes in chlorophyll content [21], which was strongly correlated with
vegetation growth and development. As plant height increased, chlorophyll content
typically increased as well. By focusing on this sensitive parameter, the MTCI might be able
to provide more accurate estimations of plant height. Furthermore, the regression effect of
the first stage was better than that of the second stage, with mean R2 values of 0.616 and
0.104, respectively, which could be that vegetation indices tended to saturate earlier than
plant height (Figure 6). This result indicated that the VI-based regression model would
possibly be more suitable than the DSM-based method for estimating plant height in the
pre-growth period.

5. Conclusions

This study aimed to assess the effectiveness of DSM-based and VI-based methods
for estimating the heights of multiple rice varieties throughout the entire growth stage.
The results demonstrated that the DSM-based method, particularly using the DSMs at the
95th quantile, achieved high accuracy in estimating rice plant height. However, the DSM-
based method showed relatively poorer estimation results during the early growth stage.
Consequently, considering the trend of digital values in DSMs, we recommend utilizing
DSMs for plant height estimation after 26 DAT. Additionally, it should be acknowledged
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that adverse weather conditions might impair the accuracy of DSM measurements. The
two-stage linear threshold regression methods based on VIs were found to be suitable for
estimating plant height in the early growth stage, especially for a single species or a group of
similar species. But, in the context of significant varietal differences, the estimation results
were not as precise. Furthermore, for specific clusters, the VI-based methods outperformed
the DSM-based methods in plant height estimation. In conclusion, the VI-based TLR model
was recommended for estimating plant height in monoculture plantings, and the DSM-
based model using the 95th percentile was recommended for estimating plant height in
multi-variety crops in further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy14050883/s1, Figure S1: The scatterplot of all plant
height predictions and true values based on vegetation index MTCI; Figure S2: The plot height curve
based on the estimated plant height by DSM; Table S1: RGB-based and multispectral-based VIs.
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