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Abstract: Sea Island cotton is renowned for its superior fiber quality. Although mechanical harvesting
has the potential to significantly increase efficiency and reduce the production cost of Sea Island cotton,
there is still little research in this area. In this study, we analyzed 240 Sea Island cotton germplasm
resources and evaluated 19 traits related to mechanical harvesting. The coefficient of variation ranged
from 5.42% to 66.96%, and the genetic diversity index spanned from 1.57 to 2.07. In most traits studied,
there was a strong correlation between the height of the first fruiting branch and the defoliation rate.
The 19 traits were categorized into 6 factorial groups by principal component analysis, in which
the defoliation factor contributed the most (30.89%). The cluster analysis divided the 240 cotton
accessions into four main groups, with the second group exhibiting favorable mechanical harvesting
characteristics such as higher defoliation rate and first fruit branch height. Using stepwise regression,
a model was constructed with the joint evaluation score F-value as the response variable and eight
traits (X1: PH, X2: SNB, X3: SBN, X4: MBL, X5: AFBM, X7: MLIA, X8: NB, and X13: 15 d DR) as
predictors: Y = −7.2 + 0.01X1 + 0.23X2 + 0.192X3 + 0.038X4 + 0.007X5 + 0.014X7 + 0.025X8 + 2.952X13.
Selected materials suitable for machine harvesting, such as MoShi729, were identified. This study
provides valuable theoretical insights into the mechanical harvesting of Sea Island cotton germplasm
resources and identifies promising materials for targeted breeding and improvement programs.

Keywords: Sea Island cotton; germplasm resources; machine-harvesting traits; comprehensive
evaluation; elite material screening

1. Introduction

Cotton is an important economic crop that serves as the major source of natural fibers
for the textile industry [1]. Historically, the genus Gossypium includes seven heterozygous
tetraploid cotton species, with upland cotton and Sea Island cotton playing the dominant
roles in production [2]. With the rapid development of the textile industry, the quality
requirements for cotton fibers are becoming higher and higher [3]. Sea Island cotton fibers
are known for their length and strength [4] and being superior to upland cotton [5] and
are therefore widely used in the production of high-end cotton textiles. As one of the main
producing areas of Sea Island cotton, Xinjiang region saw mechanical harvesting accounting
for only about 10%, which tended to push up production costs. The Sea Island cotton
varieties that are popular in Xinjiang have ‘zero-branching’ fruiting patterns characterized
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by low height of the first branch and low defoliation rate, resulting in reduced net picking
rates of mechanical harvesting and higher levels of seed cotton pollution, which ultimately
posed challenges to processing and impeded the development of China’s Sea Island cotton
industry [6]. Accordingly, enhancing the suitability of mechanical harvesting has become a
key requirement for the improvement of Sea Island cotton varieties.

Mechanical cotton harvesting was used in the United States as early as 1948 and
the technology was then widely adopted [7]. Mechanical harvesting was introduced in
China in 1973, and by 2015 it had become standard practice for upland cotton in Xinjiang,
China [8]. Mechanical cotton harvesting saves labor, reduces production costs, and expands
economic benefits [9]. Due to favorable characteristics for mechanical harvesting, upland
cotton has become the most widely planted variety, accounting for more than 90% of the
world’s cotton production [10]. Therefore, achieving mechanization is essential to increase
the share of Sea Island cotton in production [11]. Previous studies have found a significant
correlation between plant structures suitable for mechanical harvesting and crop yield,
highlighting the effects of the first fruit branch height [12] and defoliation effectiveness [13]
on mechanical harvesting efficiency. Not only that, but previous research has found that
the plant structure (plant height, degree of looseness, etc.) and early maturity also have
a great impact on the efficiency of mechanical picking, island cotton compared to land
cotton has a higher plant height, the zero-fruit branch type of island cotton plant type is
also more compact, and island cotton has a longer fertility period; all of these factors will
be detrimental to the machine picking of sea island cotton [14].

Germplasm resources assessment is the basis of resource utilization and directed
breeding [15]. The introduction of the term “core germplasm” [16] further emphasizes the
importance of resource assessment and classification. References [17,18] conducted a com-
prehensive discussion on mango resource utilization and pointed out that morphological
data played an indispensable role in the preliminary evaluation of resources. Similarly,
the selection of cold-tolerant germplasm in tropical crops like maize allows for earlier
seeding [19]. Crops such as rice [20] and peanuts [21] could also benefit from excellent
germplasm ascertained through evaluation. Therefore, it is not only feasible but also signif-
icant to evaluate the suitability of mechanical harvesting of Sea Island cotton germplasm
resources. The commonly used comprehensive evaluation method is based on membership
function values, which have been widely used to assess the tolerance to drought [22], salt
and alkali [23], and heat [24].

Different varieties of sea island cotton have different mechanical harvesting effects,
and the main indexes to measure the mechanized harvesting effect of sea island cotton
are not clear. This study comprehensively analyzed the global 240 varieties of Sea Island
cotton, the 19 kinds of quality traits related to machine harvesting, the evaluation of Sea
Island cotton machine harvesting, the screening out the reasonable plant type, and high
defoliation rate, which are suitable for machine harvesting of Sea Island cotton varieties,
for the new varieties of genetic improvement, and breeding to provide a material basis and
theoretical reference.

2. Materials and Methods
2.1. Experimental Materials

The experimental materials used in this study were derived from a collection of Sea
Island cotton germplasm resources, which have been introduced and cultivated since
the 1950s by the Economic Crop Research Institute of Xinjiang Academy of Agricultural
Sciences. Next, 240 Sea Island cotton germplasm accessions were carefully screened accord-
ing to their genetic background and the specific investigation requirements. The sources
of these materials include 14 countries and regions in Asia, Africa, and the Americas
(Figure 1c). This diverse selection highlights the global representation and rich genetic
diversity of the materials examined.
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Figure 1. An overview of the test conditions and a comparison of spray effects. (a) Climate
change in 2023; (b) climate change in 2022; (c) source of germplasm resources; (d) field effect
of defoliant spraying.

2.2. Field Management

In 2022–2023, 240 Sea Island cotton germplasm resource materials were planted at
the Korla cotton breeding base of Xinjiang Academy of Agricultural Sciences. The base
has a temperate continental climate, with an average annual temperature of 3–18 ◦C,
annual rainfall of 39.7 mm, and a loam soil. The mechanically harvested planting mode
with 1 film and 4 rows (10 + 66 + 10 cm) was adopted, and the theoretical density was
222,000 plants·hm-2 with 4 rows per plot and a length of 5 m. On 18 April, artificial
modulation was performed after mechanical coating, followed by artificial topdressing
on 20 July. On 8 September, 12 g 360 g·L−1 of Thifensulfuron-180 g·L−1 per 667 m2 was
applied per 667 m2 [25], and the artificial topdressing was applied. Diquat (moderately
toxic, produced by Bayer, Germany) showed no rainfall within 7 days after the drug. Within
15 days, the temperature (Figure 1a,b) reached the optimal spraying conditions [26], and
the defoliation effect met the experimental requirements (Figure 1d).

2.3. Data Collection

Plant structure and defoliation mainly affect the machine-harvesting effect of Sea
Island cotton, and this experiment centered on the investigation of agronomic traits around
these two types of factors.

Plant height (PH, cm): on 1 September, the height of Sea Island cotton was measured
from the ground to the growing point using a tape measure.

Blade number (NB): on 1 September, the number of all leaves including main stem
leaves and fruiting branch leaves was investigated.

Initial node height (SNB, cm): on 1 September, the height of Sea Island cotton from the
ground to the first fruiting branch was measured using a tape measure.

First fruiting branch node (SBN): on 1 September, from the number of cotyledon nodes
(cotyledon nodes count 0) to the first fruit branch, between the number of nodes is the
number of beginning nodes.

Middle fruiting branch length (MLB, cm): on 1 September, the length of the fifth
fruiting branch was measured with a tape measure.

Lower fruiting branch length (LLFB, cm): on 1 September, the length of the second
fruiting branch was measured with a tape measure.

Upper leaf inclination angle (ULIA, ◦): YX-501 (produced by Beijing Yaxinli Instrument
Technology Co., Ltd., Beijing, China) was used to measure the angle between the upper
(inverted two-leaf) main stem leaves and the main stem of the cotton plant, with the vertical
direction of 90◦ as the baseline, and, in order to minimize the effect of environmental factors
on the angle of leaf inclination, the measurement time was set to be from 13:00 to 15:00
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Xinjiang local time. In order to minimize the influence of environmental factors on leaf
inclination angle, the measurement time was set at 13:00–15:00 Xinjiang local time.

Middle leaf inclination angle (MLIA, ◦): using YX-501 to measure the angle between
the main stem leaves and the main stem in the middle of the cotton plant (the fifth leaf), with
90◦ in the vertical direction as the baseline, in order to minimize the effect of environmental
factors on leaf inclination angle, set the measurement time for the local time of 13:00–15:00
in Xinjiang.

Lower leaf inclination angle (LLIA, ◦): use YX-501 to measure the angle between the
lower part of the cotton plant (the second leaf) and the main stem of the lower part of the
cotton plant (the second leaf), with the vertical direction of 90 ◦ as the baseline; in order
to minimize the effect of environmental factors on the angle of the leaf inclination, set the
measurement time for the local time of 13:00–15:00 in Xinjiang.

Middle fruiting branch angle (AFBM, ◦): use YX-501 to measure the angle between the
middle (fifth fruiting branch) fruiting branch and the main stem, with 90◦ as the baseline.

Lower fruiting branch angle (ALFB, ◦): the angle between the lower (second fruiting
branch) fruiting branch and the main stem was measured using the YX-501, with 90◦ as
the baseline.

Fluorescence parameters: using a portable plant efficiency analyzer (Handy-PEA), we
measured the fluorescence parameters of the inverted bilobed of the main stem of cotton
from 11:00 to 13:00, and the leaves were dark adapted for 30 min beforehand, and maximum
fluorescence (Fv), initial fluorescence (F0), and maximum photochemical efficiency (Fv/Fm)
were recorded and the potential photochemical efficiency (Fv/F0) was counted.

2.4. Data Analysis

Excel 2021 was used for preliminary data sorting, and the genetic diversity index
grading method referred to a previous study [27]. Pearson correlation analysis and cluster
analysis (Euclidean distance and ward.D algorithm) were performed using R 4.3.1. The
data were standardized by SPSS Statistics 26 and then subjected to principal component
analysis. The composite scores were calculated according to the principal component
results. The number of leaves remaining on the cotton was surveyed at 5 d, 10 d, and 15 d
after defoliant spraying.

DR (Defoliation rate, %) =
A − B

A
× 100%

(A: total number of leaves; B: number of remaining leaves.)
Investigate the number of cotton hanging leaves (withered but not falling, falling but

hanging) 5 d, 10 d, and 15 d after spraying defoliant, respectively.

HGY (Hanging rate, %) =
C
A

× 100%

(A: total number of leaves; C: number of hanging leaves.)
The relevant calculation formula [28] is as follows, genetic diversity index:

H′= −∑ PiLnPi

(Pi: the fraction of germplasm resources at level I for a trait as a percentage of the total
number of germplasm copies; Ln: natural logarithm.)

The weights of each variable in the principal components:

Wij =
θj
√
λi

(θj: coefficients corresponding to each variable in the component matrix; √λi : the
open root value of the eigenvalue corresponds to the ith principal component).
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Individual principal component scores:

Fi = wi1X1 + wi2X2 + · · ·+ winXn

Combined score value:

F = α1F1 + α2F2 + · · ·+ αnFn

(αi: percentage of variance for the ith principal component).

3. Results and Discussion
3.1. Genetic Diversity of Machine-Harvesting Traits of Sea Island Cotton Germplasm Resources

The genetic diversity of Sea Island cotton germplasm resources was the highest in
plant height (2.07) and central fruit branch angle (2.07), the lowest genetic diversity index
was 1.57 for total leaf number, and the genetic diversity index of the first fruit branch
node and the first fruit branch height were both 2.00. The genetic diversity index ranged
from 1.92 to 2.05 for triple defoliation rates and hanging rates. Genetic diversity indices
for different traits varied significantly, which helped in subsequent data analysis and
material screening. The study of phenotypic genetic diversity of germplasm resources
is fundamental to the utilization of germplasm resources. Genetic diversity can not only
clarify the population structure and the sources of variations but also show the genetic
model of the population [29,30]. The presence of high genetic diversity within a population
is more favorable for the subsequent screening of specific resources. The present study
found that the genetic diversity of Sea Island cotton is higher than that of land cotton,
which confirms the previous conjectures [31]. The genetic diversity index of plant height
(2.07), leaf inclination in the upper, middle, and lower parts of the plant, and the angle
between the middle and lower parts of the fruit branches were larger, indicating that plant
type, leaf type, and disease resistance of Sea Island cotton population were significantly
different. Overall, the genetic diversity of Sea Island cotton was greatly abundant, which
was conducive to screening materials with the targeted traits, consistent with the opinion
of Pan et al. [32].

At 15 days post-dose, the variation coefficient of the hanging rate was highest (66.96%),
and the maximum photochemical quantum yield of PS II was lowest (5.42%). There were
seven traits in the low-variation range from 0 to 15%, and the top three traits from large
to small were low fruit branch angle, defoliation rate at 10 days post-dose, and low leaf
inclination angle. A total of 12 traits were in the high-variation range of 15% to 100%, and
the first 3 traits from the largest to the smallest were the branching rate at 15 days post-dose,
the branching rate at 10 days post-dose, and the branching rate at 5 days post-dose. The
variation coefficient of defoliation rate at 5 days post-dose was the highest (24.43), which
was 10.03% and 14.74% higher than that at 10 days and 15 days post-dose, respectively.
The variation coefficient of the defoliation rate became smaller and smaller as the time
post-dose was extended. The maximum values of the hanging rate ranged from 50% to
77%, and the difference in the extreme value became smaller and smaller with the extension
of time post-dose (Table 1). The variation coefficient of defoliation rate gradually decreased
at 5, 10, and 15 days after defoliant spraying, suggesting that 5 days post-dose is the key
time point to identify the sensitivity of different germplasm resources to defoliant, which is
consistent with the findings of Li and Wang et al. [33,34]. In this study, we found that the
extreme difference in the hanging rate became smaller and the variation coefficient became
larger as the time post-dose is extended. This was in line with the hanging-sensitivity
characteristic of Sea Island cotton sprayed with defoliants [6]. It indicated that the difference
in the hanging situation among different germplasm resources was increasingly evident.
This was more favorable for selecting resource materials with a low-hanging rate. The
variation coefficients of 19 machine-harvesting traits ranged from 5.42 to 66.96%, with large
differences among varieties, which was consistent with the study by Yu [35].
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Table 1. Analysis of the variation coefficient and genetic diversity index of mechanically harvested
characters in Sea Island cotton.

Traits Mean Max Min Range SD CV (%) H′

PH 86.38 123.92 47.72 76.2 15.11 17.49 2.07
SNB 18.81 38.58 9.14 29.44 5.12 27.21 2
SBN 4.8 8.6 2.7 5.9 1.1 22.87 2
MLB 12.21 30.22 4.52 25.7 6.45 52.77 1.71

AFBM 56.28 79.6 29.6 50 10.27 18.25 2.07
LLFB 12.25 26.56 4.3 22.26 5.85 47.75 1.78
ALFB 70.62 107 38.4 68.6 10.58 14.98 2.05
ULIA 80.25 103.2 51.6 51.6 8.39 10.46 2
MLIA 83.31 112.4 60 52.4 7.9 9.49 2.04
LLIA 93.99 121.2 56.4 64.8 10.89 11.59 2.04
NB 13.86 38.4 5.6 32.8 7.48 53.98 1.57

Fv/F0 3.34 5.29 1.37 3.92 0.66 19.67 2.06
Fv/Fm 0.76 0.84 0.56 0.28 0.04 5.42 1.98
5 d DR 0.63 0.93 0.23 0.7 0.15 24.43 2.05

10 d DR 0.79 1 0.35 0.65 0.11 14.4 2.01
15 d DR 0.88 1 0.5 0.5 0.09 9.69 1.94
5 d HGY 0.29 0.77 0 0.77 0.16 55.36 1.92

10 d HGY 0.19 0.65 0 0.65 0.12 64.08 1.93
15 d HGY 0.13 0.5 0 0.5 0.09 66.96 1.94

3.2. Correlation Analysis of Machine-Harvesting Traits in Sea Island Cotton

Through the correlation analysis of machine-harvesting traits of Sea Island cotton
(Figure 2), it was found that the defoliation rate at different times was negatively correlated
with the hanging rate at different times, and the negative correlation coefficient between
the defoliation rate at 15 days and the hanging rate at 15 days was the highest (0.969). By
comparing the correlation coefficients between the defoliation rate and the hanging rate at 5,
10, and 15 days, it was found that the correlation was gradually decreasing, and thus it was
inferred that the 5 days defoliation rate was the key node to identify the final defoliation
effect, as hanging leaves are leaves that die on the cotton plant and cannot be shed over
time. The significant negative correlation between the defoliation rate of Sea Island cotton
and the rate of hanging leaves suggests that material with a high defoliation rate is sensitive
to defoliants, and the leaves can be shed without difficulty and are not prone to forming
hanging leaves; on the contrary, material with a low defoliation rate will reduce the quality
of machine picking due to the phenomenon of hanging leaves. The defoliation rates at
10 days and 15 days were positively correlated with plant height, first fruit branch degree,
and first fruit branch height. The correlation of resource pairs of zero-type fruit branches
is greater than that of mixed fruiting branch types. The defoliation rate at different times
was positively correlated with the leaf inclination angle in different parts of the plant,
and the defoliation rate at 10 days and 15 days was significantly correlated with the leaf
inclination angle in the middle part of the plant. There was a positive correlation between
the defoliation rate and the total leaf number, which gradually weakened as the time post-
dose lengthened. The hanging rate was negatively correlated with the length of the middle
and lower fruit branches, which was mainly reflected in the mixed fruiting branch types.
Correlation analysis can only distinguish the degree of closeness between variables and
cannot represent the existence of causality between variables [36], but it is a prerequisite for
discovering causality. Wang et al. [37] found that there was a highly significant negative
correlation between the defoliation rate and flocculating rate. Our results showed the same
results, except that the correlation was unstable between defoliation rate and flocculation
rate in the three times, and showed a high–low–high pattern with advancing post-dose
time. This indicated that the appearance of the hanging phenomenon was related to the
planting environment and cultivation method in addition to the characteristics of the
varieties themselves [38]. The first fruit branch node and the first fruit branch height
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were positively correlated with the defoliation rate, respectively, a phenomenon that needs
further verification. The 19 traits of Sea Island cotton were strongly correlated in the zero-
type fruit branch, and it was easier to obtain the resources containing the target traits by
selecting the zero-type fruit branch as the main body.
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Figure 2. Correlations between machine harvested quality traits. A (blue part): zero fruiting branch
type; B (green part): type I fruiting branch type. The scatterplot is at the bottom left, the data
distribution is diagonal, and the correlation coefficient is at the top right; * Represents significant at
the 0.1 level (p < 0.1), ** Represents significant at the 0.05 level (p < 0.05), *** Represents significant at
the 0.01 level (p < 0.01).

3.3. Principal Component Analysis of Machine-Harvesting Traits in Sea Island Cotton

According to the principal component analysis of the standardized data, there were six
principal components with eigenvalues greater than 1 (KMO = 0.765 > 0.6, p = 0.000 < 0.05),
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and their contribution rates were 30.89%, 19.09%, 12.24%, 9.36%, 7.5%, and 5.41% (Table 2).
The cumulative contribution was 84.48%. Among them, principal component 1 was the
defoliation factor, and the load of defoliation rate at different times is larger (0.33, 0.34,
and 0.33). In principal component 5, loads of plant height (0.57), first fruiting branch
height (0.47), first fruiting branch node (0.29), and 5 days hanging rate (0.22) were greater,
indicating that principal component 5 was related to first fruit branch.

Table 2. Principal component analysis of 19 machine-harvesting traits.

Eigenvectors Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

PH 0.15 0.01 −0.09 0.26 0.57 0.28
SNB 0.25 0.23 0.04 −0.01 0.47 0.13
SBN 0.25 0.3 −0.03 0.05 0.29 −0.02
MBL 0.21 0.39 0.04 −0.16 −0.08 −0.16

AFBM 0.07 0.12 0.31 −0.36 −0.17 0.33
LLFB 0.23 0.38 0.04 −0.19 −0.05 −0.13
ALFB −0.05 0.02 0.25 −0.31 −0.09 0.62
ULIA −0.02 −0.19 0.47 0 0.22 −0.08
MLIA 0.05 −0.11 0.52 −0.03 0.16 −0.24
LLIA 0.01 −0.17 0.46 −0.03 0.09 −0.25
NB 0.25 0.33 0.04 −0.13 −0.08 −0.17

Fv/F0 0.03 0.24 0.24 0.55 −0.24 0.12
Fv/Fm 0.02 0.22 0.24 0.56 −0.27 0.13
5 d DR 0.33 −0.13 −0.03 −0.06 −0.22 −0.04
10 d DR 0.34 −0.23 0 0.06 −0.09 0.08
15 d DR 0.33 −0.27 −0.04 0.05 −0.02 0.06
5 d HGY −0.35 0.1 0.04 0.02 0.22 0.06
10 d HGY −0.35 0.19 0 −0.07 0.05 −0.06
15 d HGY −0.32 0.26 0.06 −0.05 0.02 −0.06

CV 5.87 3.63 2.33 1.78 1.43 1.03
CR (%) 30.89 19.09 12.24 9.36 7.5 5.41

CCR (%) 30.89 49.98 62.22 71.57 79.07 84.48

The utilization value of different fruit branch types resources was explored through
dispersion mapping of the Sea Island cotton germplasm resource materials in six principal
components [39] (Figure 3). In the PC1 defoliation factor, the distribution areas of the two
types of fruit branch types formed a partial overlap. There are also some extreme materials
with better and worse defoliation effects, where the zero-type fruit branch materials had a
higher positive contribution to the defoliation factor. In PC2, the fruit branch length factor
showed strong population stratification, and the zero-type fruit branch materials were
mainly distributed in the negative contribution region. The principal component analysis
is a method of data dimensionality reduction, which has the advantage of converting
multiple data into several categories of factors that do not interfere with each other and can
be described more objectively [40]. In this study, 19 traits were combined into 6 types of
factors. When studying the contribution of population resources to each factor, we found
that the positive contribution of the zero-type fruit branch resources was stronger for the
defoliation factor, consistent with the results of the correlation analysis. The advantages
and disadvantages of the two types of fruit branch resources in machine harvesting are
different. The distribution of the principal components in the two-dimensional coordinate
system can be chosen such that the materials are oriented in a certain factor.

The scores of the six principal components were ranked in descending order. The
top 10 resource codes of mixed fruiting branch types Sea Island cotton were YueJin1,
MoShi729, SYR cotton, И24−3386, LuoSaiNa, Antigua, Yue51-11, Giza80, Yunnan8040-2,
and DaXuan71. The top 10 resource codes for the zero-type fruit branch Sea Island cotton
were K-308, DJ9237, 16DJC01, X78, XH14, LuoSaiYa, 17-8, XH32, 572Q, and XH49 (Figure 4).
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3.4. Identification of Key Machine-Harvesting Traits and Construction of Regression Models

The correlation analysis of the composite score F value and 19 groups of traits was
carried out to obtain 16 key traits with significant correlation (Figure 5), and then the step-
wise regression equation was constructed with the F value as the independent variable and
16 groups of traits as the dependent variable, and, combined with the practical production
significance, some traits were excluded, and the stepwise linear regression equation was
finally obtained (VIF < 5): Y = −7.2 + 0.01X1 + 0.23X2 + 0.192X3 + 0.038X4 + 0.007X5 +
0.014X7 + 0.025X8 + 2.952X13 The eight groups of traits were X1: PH, X2: SNB, X3: SBN, X4:
MBL, X5: AFBM, X7: MLIA, X8: NB, X13: 15 d DR. The equation was adjusted for R2 = 0.911,
F = 308.114, and the eight traits accounted for 91.1% of the variation in the composite
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scores. Based on the PCA results, the composite score was calculated and the regression
mathematical model was constructed. The comprehensive evaluation method of resource
population has been widely used in various crops, such as upland cotton [41], sorghum [42],
peanut [43], etc. Chen [44] found that defoliation rate, first branch node position, and total
leaf number could be used as the core indexes for evaluating the machine-harvesting traits
of upland cotton, which was consistent with our results. It was found that 20 materials such
as Moshi729 performed better in terms of the first fruit branch height and defoliation rate,
and had the potential to be a genetically improved parent of Sea Island cotton with machine
harvesting as the breeding direction. The traits used in regression model construction in this
study are easy to obtain in the field, which is suitable for rapid preliminary identification of
breeding materials, can greatly shorten the selection time of conventional breeding parents,
and reduce the probability of missing dominant single plants in the field while avoiding
the human subjective consciousness of the material characteristics.
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3.5. Cluster Analysis of Sea Island Cotton Germplasm Resources

The 240 sea island cotton germplasm resources were clustered into 4 categories
(Figure 6), of which 47 materials were in the first category, accounting for 19.58%. The
second category contained 58 materials (24.17%). The third category included 59 materials
(24.58%). The fourth category had 76 materials (31.67%).

Sea Island cotton material suitable for machine harvesting should be characterized by
the high height of the first fruiting branch, moderate plant looseness, and good defoliation.
By calculating the mean values of the main machine-harvesting indicators, the characteristic
markers of each classified resource were derived (Table 3). The first category had low first
fruiting branch height (17.36), low defoliation rate (58% at 5 days, 74% at 10 days, and 85%
at 15 days), and obvious hanging fruits (37% at 5 days, 25% at 10 days, and 17% at 15 days),
and the lower first fruiting branch height would affect the lower bolls’ harvesting and result
in yield loss, while the low defoliation rate would reduce the quality of the harvesting, and
therefore belonged to the germplasm resources with poor machine-harvesting performance
(SuB51, AK3836, BZ266, Ba3021, AK4154, etc.). The main characteristics of the second
category were high first fruiting branch (20.62), high first fruiting branch node (5.62),
increased fruiting branch node (mid-fruiting branch angle of 50.82, lower fruiting branch
angle of 63.54), compact plant (upper leaf inclination of 76.39, mid-leaf inclination of
80.68, and lower leaf inclination of 88.68), and better defoliation (5-day defoliation rate of
66%, 10-day defoliation). It has a good defoliation effect (5-day defoliation rate of 66%,
10-day defoliation rate of 81%, and 15-day defoliation rate of 91%), and it is not easy to
form hanging branches (5-day branching rate of 25%, 10-day branching rate of 15%, and
15-day branching rate of 11%), so the good plant structure can increase the net rate of
machine harvesting, and the high defoliation rate also ensures the quality of harvesting,
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and therefore it belongs to the germplasm resources with strong machine-harvesting ability
(Moshi 729 et al.).
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Table 3. Characteristics of the four groups of phenotypic data.

Phenotype Group I Group II Group III Group IV

PH 84.95 b 95.8 a 80.41 b 84.71 b
SNB 17.36 b 20.62 a 18.3 b 18.71 b
SBN 4.47 b 5.62 a 4.77 b 4.41 b
MBL 10.60 b 14.38 a 13.34 a 10.68 b

AFBM 54.44 b 50.82 c 57.05 b 60.98 a
LLFB 10.34 c 14.32 a 12.88 ab 11.36 bc
ALFB 71.08 a 63.54 b 74.61 a 72.65 a
ULIA 81.12 a 76.39 b 80.63 a 82.35 a
MLIA 83.86 a 80.68 b 83.08 ab 85.15 a
LLIA 95.27 a 88.68 b 94.97 a 96.49 a
NB 13.20 b 16.76 a 13.48 b 12.34 b

Fv/F0 3.51 ab 3.30 b 3.65 a 3.04 c
Fv/Fm 0.77 ab 0.76 bc 0.78 a 0.74 c
5 d DR 0.58 b 0.66 a 0.61 b 0.64 b

10 d DR 0.74 b 0.81 a 0.78 ab 0.81 a
15 d DR 0.85 b 0.91 a 0.87 b 0.90 a
5 d HGY 0.37 a 0.25 b 0.31 b 0.27 b
10 d HGY 0.25 a 0.15 c 0.21 ab 0.17 bc
15 d HGY 0.17 a 0.11 b 0.15 a 0.11 b

Note: different letters (a, b, and c) represent significant differences (p < 0.05).
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4. Conclusions

In this study, we have found a rich diversity in plant types and defoliation effects in
Sea Island cotton through the analysis of a large number of machine-harvesting traits from
the germplasm resources. Combining correlation analysis, principal component analysis,
and clustering analysis, key machine-harvesting traits were identified, relevant regression
models were established, and excellent materials suitable for machine harvesting were
selected. This study is important for the application of large-scale machine harvesting
in Sea Island cotton and for the improvement of Sea Island cotton varieties suitable for
machine harvesting. However, the study of phenotypic traits still has some limitations
to some extent. Therefore, further in-depth research combined with molecular means is
needed for better resource evaluation.
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