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Abstract: In order to achieve fast and accurate detection of Gannan navel orange fruits with different
ripeness levels in a natural environment under all-weather scenarios and then to realise automated
harvesting of Gannan navel oranges, this paper proposes a YOLOv5-NMM (YOLOv5 with Navel
orange Measure Model) object detection model based on the improvement in the original YOLOv5
model. Based on the changes in the phenotypic characteristics of navel oranges and the Chinese
national standard GB/T 21488-2008, the maturity of Gannan navel oranges is tested. And it addresses
and improves the problems of occlusion, dense distribution, small target size, rainy days, and light
changes in the detection of navel orange fruits. Firstly, a new detection head of 160 × 160 feature
maps is constructed in the detection layer to improve the multi-scale target detection layer of YOLOv5
and to increase the detection accuracy of the different maturity levels of Gannan navel oranges of
small sizes. Secondly, a convolutional block attention module is incorporated in its backbone layer to
capture the correlations between features in different dimensions to improve the perceptual ability
of the model. Then, the weighted bidirectional feature pyramid network structure is integrated
into the Neck layer to improve the fusion efficiency of the network on the feature maps and reduce
the amount of computation. Lastly, in order to reduce the loss of the target of the Gannan Navel
Orange due to occlusion and overlapping, the detection frame is used to remove redundancy using
the Soft-NMS algorithm to remove redundant candidate frames. The results show that the accuracy
rate, recall rate, and average accuracy of the improved YOLOv5-NMM model are 93.2%, 89.6%, and
94.2%, respectively, and the number of parameters is only 7.2 M. Compared with the mainstream
network models, such as Faster R-CNN, YOLOv3, the original model of YOLOv5, and YOLOv7-tiny,
it is superior in terms of the accuracy rate, recall rate, and average accuracy mean, and also performs
well in terms of the detection rate and memory occupation. This study shows that the YOLOv5-
NMM model can effectively identify and detect the ripeness of Gannan navel oranges in natural
environments, which provides an effective exploration of the automated harvesting of Gannan navel
orange fruits.

Keywords: Gannan navel orange; ripeness; YOLOv5; weighted bidirectional feature pyramid
network; attention mechanism; Soft-NMS

1. Introduction

The Gannan navel orange is a world-famous high-quality fruit with thin and smooth
skin, juicy flesh, sweet taste, and rich nutrition, which is known as the “Renowned fruit of
China”. Ganzhou City, Jiangxi Province, where it originates, has become the world’s first
navel orange planting area, the world’s third-largest annual output, and the largest navel
orange producing area in China. At present, Gannan navel oranges are usually picked
manually, which greatly reduces the picking efficiency and increases the labour cost. With
the development of orchard industrialisation and scale, the continuous expansion of navel
orange planting scale and production and the realisation of large-scale mechanised picking
is an urgent problem to be solved. Therefore, there is an urgent need to construct and
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improve a target detection system with high accuracy to identify whether Gannan navel
oranges are ripe or not and combine it with agricultural robots to achieve mechanised
harvesting of Gannan navel oranges.

With the continuous development and optimisation of computer vision and target
detection-related algorithms, the accuracy of fruit detection has been greatly improved [1].
Since the 1970s, some scholars have applied traditional computer vision techniques to the
non-destructive detection of fruits and have achieved certain results [2]. Liu et al. [3] used a
histogram of oriented gradients (HOGs) descriptors to train support vector machine (SVM)
classifiers to reduce the effect of different light levels on tomato recognition. Li et al. [4]
accomplished fruit recognition in green tomatoes when the background colour of the leaf
stem is similar, using fusion Fast Normalized Cross Correlation (FNCC) and Hough Trans-
form detection. Kurtulmus et al. [5] detected immature citrus by using colour features with
the Gabor filtering process. However, most of these methods are based on the combination
of threshold segmentation [6], colour space transformation [7], and chemical detection [8]
for fruit detection, which results in a complex decision-making process and low recognition
efficiency, leading to poor robustness and generalisation in natural environments.

In recent years, deep learning has been a research hotspot in the field of agricultural
information technology, and its advantages, such as high recognition accuracy and strong
generalisation ability, have been widely reflected in fruit ripeness recognition research.
Ashtiani et al. [9] proposed a method of fine-tuning the CNN model by using migration
learning to detect the ripeness of mulberries, which achieved good results, but the model
consumed too much time and was inefficient in detection. Appe et al. [10] used a DCNN
model based on VGG16 to detect the ripeness of tomatoes. However, this experiment
lacked image detection in complex backgrounds, and the model’s generalisation effect
on datasets with different backgrounds and complexities needs to be improved. The You
Only Look Once (YOLO) algorithm [11], which is a single-stage target detection model,
has gained prominence in the field of target detection since its introduction and has the
characteristics of high accuracy and speed.

Several researchers and scholars have utilized the YOLO-based model for fruit de-
tection. Fu et al. [12] developed a fast and accurate kiwifruit detection method based
on YOLOv3-tiny [13], with an average precision (AP) of 90.05% and an inference time of
29.4 fps, but the model’s weights are large and the detection accuracy needs to be further
improved to achieve the desired results. Parico et al. [14] used YOLOv4-tiny to generate
a robust real-time pear fruit counter for a mobile application, which recorded more than
50 fps and an AP value of 94.19%. However, it had an associated weight size of 22.97 MB,
which means that a high computational cost is still required. Yu et al. [15] used an improved
YOLOv7-based ripeness detection for pineapples with an mAP value of 95.82%, but the
improved model leaves much to be desired in terms of detection performance in dense and
highly occluded scenarios and is unable to achieve faster detection speed and deployment
on low-power computing devices. It can be seen that deep learning convolutional neural
network has a big advantage in target detection. It can quickly and accurately achieve the
detection task of recognizing the ripeness of fruits in complex environments [16].

However, although algorithms such as deep learning convolutional neural networks
and YOLO models can detect different targets quickly and accurately, complex and chang-
ing natural environments still pose a challenge for fruit detection, such as leaf occlusion,
fruit overlap, light changes, brightness changes, target size, and shooting distant views, all
of which affect fruit ripeness detection precision and accuracy [17]. In addition, the existing
fruit ripeness detection studies mainly focus on crops such as apple [18], tomato [19],
jujube [20], mango [21], and oil palm [22]; as an economic fruit crop of China’s National
Geographic indication products, there are few related studies on Gannan navel orange.

In summary, in view of these limitations, the main objective of this study is to achieve
fast, accurate, and non-destructive detection of Gannan navel orange and its ripeness to
improve the accuracy of ripeness detection of Gannan navel orange under the environments
of shading [23], fruit overlapping [24], light variation [25], and target densification [26]
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and to support the visual detection technology for selective harvesting of Gannan navel
orange fruits in agricultural production. To this end, this paper proposes a Gannan navel
orange ripeness target detection model based on YOLOv5-NMM. In the backbone layer of
the model, we incorporate the CBAM attention mechanism, which improves the feature
extraction and perception ability of the model. In the neck layer of the model, we incorpo-
rate the weighted bidirectional feature pyramid network structure in order to reduce the
computational volume and improve the fusion efficiency of the images. In the prediction
layer, we add a detection header to improve the detection accuracy of dense small targets.
The Soft-NMS algorithm is used in the prediction stage at the end to reduce the missed
detection of overlapping prediction frames. Finally, the feasibility and reliability of the
method in this paper are verified on a home-made dataset.

The subsequent sections are structured as follows: Section 2 describes the preparation
of the Gannan navel orange dataset and the improved algorithms to be used in the YOLOv5-
NMM model proposed in this study. Section 3 evaluates the performance of the YOLOv5-
NMM model through experiments. Section 4 summarises and discusses the work of the
present study and points out the shortcomings of the present study, as well as the outlook
for the future.

2. Materials and Methods
2.1. Image Acquisition

The experimental image acquisition site was located in the navel orange orchard, Anxi
Town (115◦41′ E, 25◦12′ N), Ganzhou City, Jiangxi Province, with the Newhall variety of
Gannan navel oranges as the research object, which was collected at the end of September
and the beginning of December 2023, and the image acquisition equipment was a HONOR
70 smartphone, which captured 3000 images of Gannan navel oranges in different matura-
tion periods, including 1500 mature Gannan navel oranges and 1500 immature Gannan
navel oranges. The resolution was 3072 × 4096 pixels and the image format was JPG. The
types of collected images include single-target images, multi-target images, smooth light
images, backlight images, branches, leaf shade images, images on a rainy day, no branch
and leaf shade images, heavy fruit images, etc. Figure 1 shows some of the collected images
under different light, environment, angle, and other factors.
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Figure 1. Some Gannan navel orange samples in different environments. (a) forward light;
(b) backward light; (c) rainy; (d) overlap; (e) long-distance vision; (f) dense.

2.2. Dataset Production

In order to identify Gannan navel orange fruits at different mature stages, the fruits
were divided into two categories according to different growth stages, one of which was
the mature navel orange. The other is immature navel-oranges (including the young fruit
stage and expansion stage). The format of the experimental dataset is the YOLO dataset
annotation format, and LabelImg 1.8.6 software is used to label Gannan navel orange
with different maturity levels in the images (a total of 12,967 Gannan navel orange fruit
labels are annotated, among which 7280 labels are mature Gannan navel orange labels
and 5687 labels are immature Gannan navel orange labels). After all the labelling was
completed, the 3000 Gannan navel orange photos were randomly divided into 2400 as the
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training set, 300 as the validation set, and 300 as the test set in the ratio of 8:1:1. The basic
information of the dataset is shown in Table 1.

Table 1. The number of pictures and labels of Gannan navel orange with different maturity.

Dataset Number of Pictures Labels of Mature Labels of Immature

training set 2400 6060 4624
validation set 300 628 463

test set 300 592 600
Total 3000 7280 5687

2.3. YOLOv5 Object Detection Algorithm

The YOLO target detection algorithm is used in this experiment; after its development
in recent years, the YOLO version has been updated to YOLOv9, and YOLOv5, among
many versions, has a relatively lightweight network structure, which is more suitable for
deployment on mobile devices. It uses CSPDarknet53 as the backbone network and also
optimises the header network to reduce the number of parameters and calculations in the
model and improve the efficiency of the model. The YOLOv5 model is mainly composed
of four parts: input, backbone, neck and prediction layer. The input layer establishes
the image processing strategy and anchor frame generation mechanism, and the image
processing uses Mosaic data enhancement and adaptive calculation of optimal anchor frame
values for different training sets. The backbone layer mainly uses the Conv, C3, and SPPF
basic structure of the input image for feature extraction. Different levels of feature maps
are extracted by applying convolutional operations, and features are fused by cross-stage
connection to reduce parameter redundancy and improve model accuracy. The neck layer
uses a feature pyramid network structure to enhance semantic features from top to bottom,
fully integrating the semantic information of deep and shallow features in feature maps at
different scales and constructing a Path Aggregation Network structure to enhance feature
information from the bottom up. The prediction layer generates the category probability
and location information of the predicted targets and applies three detection heads to
predict the large, medium, and small targets of the image in three different scales of feature
maps, and the structure of the network is shown in Figures 2 and 3. YOLOv5 has achieved
excellent results in many target detection competitions after its release and has been used
and recommended by many researchers and developers [27–29]. As one of the popular
algorithms in the field of target detection, YOLOv5 has a total of five base network models,
which are YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, and the five models
have the same network architecture, which only differs in depth, as well as width. Among
the single-stage target algorithms, YOLOv5s has good detection accuracy and fast detection
speed, so YOLOv5s is used in this paper for Gannan navel orange detection.

2.4. Improved YOLOv5-NMM Ripeness Detection Model for Gannan Navel Orange
2.4.1. Improve the Multi-Scale Detection Layer

Due to the large number of small target Gannan navel oranges in the dataset, the
original YOLOv5s uses an 80 × 80 size detection head, which is not able to accurately
detect small-sized Gannan navel oranges with different maturity levels. The feature map
generated by YOLOv5s in the P2 layer is 160 × 160, which contains more shallow semantic
features of the Gannan navel orange in small size. Therefore, in this paper, Upsample and
Concat algorithms are applied to fuse the P2 layer of the backbone structure so as to generate
shallow semantic features of Gannan navel orange. Thus, the generated deep semantic
features of Gannan navel orange contain richer small-size, contour texture information.
And we construct the detection head of the 160 × 160 feature maps in the prediction
so as to improve the detection accuracy of small target size Gannan navel orange with
different maturity.
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2.4.2. Add the CBAM Attention Module

In order to better extract the ripeness characteristics of Gannan navel oranges under
complex conditions and improve the model detection ability, the CBAM [30] attention
mechanism is introduced, which consists of a channel attention module (CAM) and spatial
attention module (SAM), and its structure is shown in Figure 4. In CAM, the input feature
map F is subjected to the pooling operation, and then the number of channels is compressed
through the fully connected layer. It is activated by the ReLU activation function and then
expanded to the original number of channels through a fully connected layer to obtain
two activated feature vectors for feature merging. Finally, the attention weight MC of
the included channel is obtained using the softmax function. Finally, the feature vector is
multiplied with the original feature map F to obtain the feature map F’, which is passed
to SAM. In SAM, F’ undergoes a pooling operation to obtain 2 2D vectors, which are then
subjected to a splicing and convolution operation and undergo a sigmoid function to obtain
the spatial attention weights MS of the input features, and finally, the weights MS are
multiplied with the corresponding elements of the input features to obtain the final feature
map. The CBAM module can automatically obtain the importance of each feature space
and feature. The CBAM module can automatically obtain the importance degree of each
feature space and channel by learning and then assign different weights according to the
importance degree to multiply the attention map with the input feature map for adaptive
feature optimisation, which overcomes the limitations of traditional convolutional neural
networks in dealing with information of different scales, shapes, and orientations and at the
same time, suppresses noise and other irrelevant information. Since CBAM is a lightweight
and general-purpose module, the overhead of the module can be ignored and seamlessly
integrated into all C3 architectures in the backbone layer for end-to-end training together
with the underlying convolutional module, which can effectively avoid the influence of
light, environment, brightness, background, and other factors in the recognition process of
Gannan navel oranges and improve the ability to perceive the features of Gannan navel
orange fruits to achieve all-weather picking.

Agronomy 2024, 14, x FOR PEER REVIEW 7 of 14 
 

 

 

 
Figure 4. The CBAM attention module consists of a channel attention module and a spatial attention 
module: Shared MLP is a shared fully connected layer, Avgpool is a global average pooling opera-
tion, and Maxpool is a global maximum pooling operation. 

2.4.3. Introducing Bidirectional Feature Pyramid Network 
A bidirectional feature pyramid network structure (BiFPN) [31] is introduced in the 

neck layer to replace the path aggregation Network (PANet) [32] structure, which solves 
the problems of insufficient information transfer and inaccurate feature fusion in the tra-
ditional feature pyramid network. The network introduces an adaptive weight adjustment 
mechanism, which can automatically learn the importance of each feature map to the final 
detection result, thus fusing the feature maps more accurately, and its structure is shown 
in Figure 5. By introducing bidirectional connections between the pyramid levels, the in-
formation can flow bottom-up and top-down in the network at the same time to better 
allow the features to be fully interacted and fused between the different levels, to solve 
the problems of poor information flow and feature loss, and to extract richer feature rep-
resentations without increasing the number of parameters. It can effectively solve the 
problem of the recognition process of Gannan navel orange over the influence of image 
resolution, serious occlusion, network width and depth, small targets, and other factors 
on feature extraction and, at the same time, reduce the amount of computation for recog-
nising the ripeness of Gannan navel orange and improve the accuracy and efficiency of 
the model. 

Figure 4. The CBAM attention module consists of a channel attention module and a spatial attention
module: Shared MLP is a shared fully connected layer, Avgpool is a global average pooling operation,
and Maxpool is a global maximum pooling operation.



Agronomy 2024, 14, 910 7 of 13

2.4.3. Introducing Bidirectional Feature Pyramid Network

A bidirectional feature pyramid network structure (BiFPN) [31] is introduced in
the neck layer to replace the path aggregation Network (PANet) [32] structure, which
solves the problems of insufficient information transfer and inaccurate feature fusion in
the traditional feature pyramid network. The network introduces an adaptive weight
adjustment mechanism, which can automatically learn the importance of each feature map
to the final detection result, thus fusing the feature maps more accurately, and its structure
is shown in Figure 5. By introducing bidirectional connections between the pyramid levels,
the information can flow bottom-up and top-down in the network at the same time to
better allow the features to be fully interacted and fused between the different levels, to
solve the problems of poor information flow and feature loss, and to extract richer feature
representations without increasing the number of parameters. It can effectively solve the
problem of the recognition process of Gannan navel orange over the influence of image
resolution, serious occlusion, network width and depth, small targets, and other factors on
feature extraction and, at the same time, reduce the amount of computation for recognising
the ripeness of Gannan navel orange and improve the accuracy and efficiency of the model.
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2.4.4. Replace the Non-Maximum Suppression Algorithm

In order to ensure recall, current object detection algorithms have multiple prediction
frame outputs for the same real object. Since redundant prediction frames affect the detec-
tion accuracy, a non-maximal suppression algorithm (NMS) is required. This algorithm
filters out the overlapping prediction frames to obtain the best-predicted output. For the
traditional NMS method, among all the prediction frames of the same category in an
image, if the prediction score of a frame is higher, this frame will be prioritised, and other
frames of the same category overlapping with it and exceeding a certain IOU (Intersec-
tion Over Union) threshold will be discarded (i.e., their confidence scores will be set to
zero). Although this method is simple and effective, in the actual picking environment,
when the Gannan navel orange fruit is more dense and a considerable part of the fruit has
overlapping occlusion, the prediction frames belong to several different fruits themselves;
due to their overlapping with each other, the lower-scoring borders among them may be
suppressed as the detection frames of the same fruit, which results in missed detection.
Therefore, replacing the traditional non-maximum suppression algorithm is improved to



Agronomy 2024, 14, 910 8 of 13

a soft non-maximum suppression (Soft-NMS) algorithm [33]; this algorithm uses a decay
function to calculate the confidence level of the current detection frame, the formula is
shown in Equation (1).

Si =

{
si , IOU(M, bi) < Nt

si( 1 − IOU(M, bi)), IOU(M, bi) ≥ Nt
(1)

The parameter bi is the pending frame, Si is the bi-frame update score, and Nt is a
manually set threshold, generally taken as 0.5. IOU is the ratio of the predicted bounding
box to the true bounding box, and M is the current highest-scoring frame. The Soft-
NMS algorithm uses a decay function to calculate the confidence level, instead of directly
performing violent zeroing. Firstly, the detection frame with the highest confidence is
identified from the detection frames, and the overlap degree IOU between this detection
frame and the current detection frame is calculated. If the IOU is larger than the set
threshold, a decay function is used to calculate the detection frame confidence Si, and the
larger the IOU is, the greater the degree of inhibition will be until all the detection frames
are processed. The improved algorithm can effectively improve the situation of missed
detection, as well as retain more frames to improve the detection capability of dense targets.

2.5. Test Environment Configuration and Network Parameter Setting

The experimental hardware and software environments in this paper are as follows:
model training and testing with Windows 10 operating system, CPU is Intel Xeon Platinum
8255C (Intel Corporation, Santa Clara, CA, USA), GPU is NVIDIA RTX3080 (NVIDIA
Corporation, Santa Clara, CA, USA), with 10 GB of video memory, 40 GB of running
memory; in order to improve the speed of the network training, the GPU is used for
acceleration, the CUDA version is 11.1, and the software environment is Python3.8. All
comparison experiments are run in the same environment.

The model underwent training with a batch size of 16, the test iteration epoch is
200 rounds, and the initial learning rate is 0.001. The training and testing of this experiment
are completed on the AutoDL Server (Beijing Seetatech Technology Corporation, Beijing,
China), which adopts a high-performance hardware configuration and an optimised deep
learning framework and provides perfect security measures so that it can excellently
complete the model training and prediction tasks.

2.6. Experimental Evaluation Indicators

The process of detecting the ripeness of Gannan navel orange needs to consider the
detection precision and speed. In terms of model detection precision, Precision (P), Recall
(R), and AP are selected as evaluation indexes. In terms of model detection performance,
mean average precision (mAP), model weight size, and number of parameters were chosen
as evaluation indicators to test the model performance. When robotic picking is carried out
in the natural environment, in order to prevent the peel damage of fruits in the process of
robotic arm picking, the picking action is more soothing. So there is no high requirement
for the model detection rate. Therefore, this experiment takes the mean average precision
mean value mAP as the first evaluation index, and the formula of its relevant evaluation
index is shown in (2)–(5).

P =
TP

TP + FP
× 100% (2)

R =
TP

TP + FN
× 100% (3)

AP =
∫ 1

0
P(R)dR × 100% (4)

mAP =
1
k

k

∑
i=1

APi × 100% (5)
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where TP denotes the number of samples predicted by the model to be positive and are
positive samples, FP denotes the number of samples predicted by the model to be positive
but are negative samples, FN denotes the number of samples predicted by the model to be
negative samples but are positive samples, k denotes the number of categories of the data,
APi denotes the average precision of detection objectives for category i, and mAP denotes
the mean of all its categories of APi.

3. Results
3.1. Analysis of Model Training Results

In order to better represent the detection performance of the YOLOv5-NMM model, we
compare the original YOLOv5 model with the improved YOLOv5-NMM model. The curves
of the changes in the performance indicators of the two models during the training process
are shown in Figure 6. As can be seen from the change curve of precision in Figure 6a and
the change curve of mAP in Figure 6b, during the iterative training process, the change in
the model training process is constantly and rapidly rising in the first 50 rounds, and the
indexes gradually converge and stabilize in the training process after that. After 200 rounds
of training, the precision value and mAP value finish convergence, indicating that the
model has reached the fitting state. Since mAP integrates the accuracy and recall of Gannan
navel orange ripeness of two categories, the weight value at the optimal number of rounds
of mAP is selected as the model weights for this model. At this time, the YOLOv5-NMM
model P is 93.2% and mAP is 94.2%. In contrast, the YOLOv5 model has a P of 88.3% and
an mAP of 87.1%, which shows that the improved YOLOv5-NMM model has a greater
improvement in terms of precision and mAP values. In addition, we also compared with
the fruit ripening models in the literature mentioned in the introduction and found that the
map of most of these fruit detection algorithms is below 90%. The YOLOv5-NMM model is
in the leading position in terms of precision and mAP value. Some examples of Gannan
navel orange detection are shown in Figure 7, from which we can see that the algorithm in
this paper is able to accurately detect the ripeness of Gannan navel oranges under different
environmental conditions. In summary, this experiment has achieved the expected purpose.
The YOLOv5-NMM model is able to accurately detect the ripeness of fruits and has a better
detection effect on small targets, multiple targets, branch and leaf shading, heavy fruits,
and the effect of light.
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3.2. Analysis of Ablation Experiment Results

To further validate the performance of the YOLOv5-NMM model, under the same
experimental conditions, ablation experiments were set up for the Gannan navel orange
ripeness detection dataset to validate the performance of the five groups of networks, and
the results are shown in Table 2. Group 1 is the basic YOLOv5s network model, and Group
2 adds a multi-scale detection layer on top of Group 1, and the mAP value of the improved
model improves by 2.2%, which indicates that the improved multi-scale detection layer
can improve the detection accuracy of small-size and dense Gannan navel oranges; Group
3 introduces the CBAM attention mechanism on the basis of Group 2, and the mAP value
is improved by 1.4%, and its results prove that the CBAM attention mechanism can better
capture the key information of the complex scene in the image of Gannan navel oranges
and improve the accuracy and robustness of the task; Group 4 introduces the BiFPN. The
mAP value of the improved model is improved by 0.6%, and the number and size of model
parameters do not increase, which indicates that BiFPN can effectively enhance the transfer
of features and information fusion between different network structure layers and can
obviously improve the detection accuracy of the YOLOv5 algorithm while having fewer
parameters and computational complexity, which makes it suitable for embedded devices
and practical deployments. The last group replaces the original non-extremely large value
suppression algorithm on the basis of Group 4, and the improved Group 5 constitutes
the YOLOv5-NMM model, whose mAP value reaches 94.2%, which indicates that the
improved Soft-NMS can effectively improve the situation of leakage detection, and increase
the detection ability for dense targets. Through the analysis of the above ablation test data,
it is found that the improved model can achieve better detection results.

Table 2. Results of ablation experiments.

ID Add One Layer CBAM BiFPN Soft-NMS Precision (%) Recall (%) mAP (%) Param (M) Size of
Model (MB)

1 × × × × 88.3 84.7 87.1 7.03 14.6
2

√
× × × 91.2 86.8 89.3 7.12 14.8

3
√ √

× × 91.9 87.4 90.7 7.18 15.1
4

√ √ √
× 92.4 87.9 91.3 7.13 15.0

5
√ √ √ √

93.2 89.6 94.2 7.19 15.3
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3.3. Comparative Analysis of Different Detection Models

In order to obtain a high-precision, lightweight, reliable and easy-to-deploy ripeness
detection model for Gannan navel orange and to qualitatively evaluate the detection
capability of the improved YOLOv5-NMM model, under the same experimental conditions,
algorithmic comparisons were made between the improved model and mainstream Faster
R-CNN, YOLO v3, YOLOv7-tiny, and the original YOLO v5 models for the Gannan Navel
orange image in the test set. The statistical results of the performance index of each
model are shown in Table 3, and the detection results are mainly from the comparison of
the two aspects of detection accuracy and algorithm size, in which the highest detection
accuracy is the mAP of 94.2% for YOLOv5-NMM, which is higher than that of the other
algorithms Faster R-CNN, YOLOv3, YOLOv7-tiny, and the original YOLO v5 models by
6.1, 8.0, 7.1, and 3.9 percentage points. Meanwhile, in terms of model size, the improved
YOLOv5-NMM model weight size is only 15.3 M, and its performance is obviously due to
other models.

Table 3. Performance comparison of different target detection models.

Model Precision (%) Recall (%) mAP (%) Size of
Model (MB)

Faster R-CNN 86.7 82.6 88.1 216.4
YOLO v3 87.9 83.8 86.2 121.7
YOLOv5s 88.3 84.7 87.1 14.6

YOLOv7-tiny 85.8 81.9 90.3 17.6
YOLOv5-NMM 93.2 89.6 94.2 15.3

4. Discussion

Aiming at the problem of the maturity detection of Gannan navel oranges in the
natural environment, this paper is based on the YOLOv5 target detection network and
improves the detection accuracy of small-sized navel oranges with different maturity in
Gannan by improving the multi-scale detection layer. In order to improve the perception
ability of the target and realize the detection in complex scenes, a lightweight channel
attention module CBAM is introduced. The bidirectional feature pyramid network is
added to better fuse the hierarchical features of different scales. Finally, the non-maximum
suppression algorithm was improved to improve the missed detection and retain more
boxes to improve the detection ability of dense targets.

In the evaluation process of the model, this project set up five groups of networks for
ablation experiments and carried out a quantitative analysis of the experimental results. Ex-
perimental analysis shows that the improved YOLOv5-NMM model has good performance
in terms of detection accuracy and calculation amount. The mAP value increased from
87.1% to 94.2%, which indicates that the original YOLOv5 model has certain limitations
in the recognition of fruit maturity, while the YOLOv5-NMM model can effectively deal
with the recognition of fruit maturity in environments such as small targets, overlapping,
dense, and illumination changes. At the same time, we also found that the number of
parameters and model size did not grow, which provides good conditions for our next
deployment on mobile devices. In the process of comparison with the current mainstream
algorithms, by comparing with the Faster R-CNN, YOLOv3 model, YOLOv7-tiny model,
and the original YOLOv5 model, the YOLOv5-NMM model has achieved good results on
the Gannan Navel-orange dataset, while other algorithms have poor performance due to
insufficient accuracy or too large model.

At the same time, we compared the YOLOv5-NMM model with the algorithms in the
cited references and found that the requirements of detection algorithms for different kinds
of fruits are slightly different. For example, the detection of jujube needs to focus on how to
detect and recognize the small targets, and the research on grapes focuses on the study of
the dense targets. The YOLOv5-NMM model algorithm in this study draws the advantages
of these algorithms. Therefore, the recognition of the maturity of Gannan navel orange
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under the environment of small targets, overlapping, dense, and light changes has been
comprehensively improved.

5. Conclusions

In summary, the focus of this paper was to investigate the use of target detection
technology to identify the maturity of Gannan navel orange. The mechanized harvesting of
Gannan navel oranges under an all-weather environment is realized and the development
and growth of the navel orange industry are promoted through the method of precision
agriculture. This includes improved detection capabilities under conditions such as small
targets, shading, heavy fruit, dense distribution, brightness, and light environments. It
can also be lightweight and deployed in embedded devices and has achieved good results
in comparison with existing mainstream detection algorithms. This is of great practical
significance and value to the development of the Gannan navel orange industry.

However, due to the high similarity between the blurred immature Gannan navel
oranges at the edge in the image background and the green leaf background contour,
there are still few samples that recognize the background as immature Gannan navel
oranges in the recognition process, which affects the detection accuracy. In addition, the
recognition rate of the improved Gannan navel orange ripeness detection model needs to
be improved under dark and low light conditions, and the sensitivity of the model to low
light needs to be further strengthened. To address the above problems, subsequent research
is needed to gradually improve the performance and reliability in practical applications by
increasing the training sample data, improving the algorithm structure, and adjusting the
model parameters. Finally, migrating this YOLOv5-NMM model to other fruit ripeness
recognition will be another focus of future research, and we have already conducted small-
scale tests on other fruits with good results. In the next step, we will also conduct in-depth
research on embedding the Gannan navel orange ripeness target detection model into an
agricultural picking robot with a high-definition camera combined with a picking robotic
arm, which can really realize efficient mechanized picking operations.
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