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Abstract: The consequences of changes in spatial resolution for application of thermal 

imagery in plant phenotyping in the field are discussed. Where image pixels are significantly 

smaller than the objects of interest (e.g., leaves), accurate estimates of leaf temperature are 

possible, but when pixels reach the same scale or larger than the objects of interest, the 

observed temperatures become significantly biased by the background temperature as a 

result of the presence of mixed pixels. Approaches to the estimation of the true leaf 

temperature that apply both at the whole-pixel level and at the sub-pixel level are reviewed 

and discussed. 

Keywords: image aggregation; image disaggregation; mixed pixels; oversampling;  

super-resolution; up-scaling 

 

1. Introduction 

For most applications of thermal imaging or thermal sensing in plant science, especially in relation 

to high throughput plant phenotyping, we are interested in determining leaf temperature as an indicator 

of plant water deficit stress or as a measure of transpiration rate or stomatal conductance [1]. The 

measurement of temperature on breeding populations is now starting to be feasible, both using infrared 
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thermometry [2], and using thermography [3,4], though many problems still remain. Temperature 

information is generally obtained either using infrared thermometers (usually with a fairly narrow field 

of view) or by the use of thermal imagers. Unfortunately, the fields of view of these sensors (or the 

individual pixels) commonly contain other objects such as branches or background soil, especially 

where the canopy does not cover the ground completely.  

The smaller that pixels are in relation to the objects being imaged, as with high resolution thermal 

images, the easier it is to extract the temperature of the leaves alone. This extraction of relevant 

information is facilitated if there is available ancillary information that can be obtained from an 

overlaid visible, multispectral or hyperspectral image. Where, however, the pixels (or field of view of 

the thermal sensors) are large in relation to the objects, a large proportion of pixels are mixed as they 

include both leaf and background, especially at the edges of objects or in low resolution images. This 

problem increases as the spatial resolution of the image becomes coarser to a point where the pixel size 

approaches or becomes greater than the object size. When using infrared thermometers that only sense 

the average temperature of a generally quite large field of view without providing image information, 

the problem of mixed fields of view is even more apparent.  

The proportion of mixed pixels increases as the camera is moved further from the object, or as the 

spatial resolution of the sensor (the size of each pixel on the object plane, otherwise measured as the 

angle of view of each pixel or the “instantaneous field of view” or ifov; see [5]) decreases. It is worth 

noting that for some purposes such as irrigation scheduling, the extra information available from 

thermal images with a very high spatial resolution can often be unnecessary and indeed may obscure 

the broader picture so that for some purposes it can be useful to up-scale the image by aggregating 

groups of pixels to give averaged lower spatial resolution images (Figure 1). The need to downscale 

images is a common requirement in remote sensing and conveniently many of the approaches to 

downscaling are similar for both reflective images and for thermal (emission) images. 

Figure 1. Illustration of the effects of up-scaling (aggregation) and down-scaling 

(disaggregation) applied to an airborne image over Tarquinia in Italy (collected during 

NERC ARSF project MC04/07). Note that up-scaling loses information irretrievably. Note 

also that the contrast range also decreases as images are up-scaled. 
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Unfortunately, the process of aggregation loses information—much of it irretrievably—so one cannot 

reconstitute a higher resolution image from a lower resolution one, without additional information. 

This paper therefore investigates the impact of mixed pixels on the extraction of plant temperatures 

from field thermographs of plant canopies and some implications of changing image scale. The range 

of possible approaches for extracting or recovering some finer-scale information from coarse images is 

outlined. Although similar scaling problems relating to mixed pixels arise with all images, in the case 

of thermal images normally only one channel of information is available. As we shall see below, 

however, with RGB or multi/hyper-spectral images further information is available that can be used 

for spectral unmixing [5,6] which allows the estimation of the proportion of different component 

surfaces represented in any pixel. 

2. Impacts of Image Scale on Thermal Imaging for Plant Phenotyping 

The most obvious effect of the aggregation of thermal images (or of reductions in spatial resolution) 

is that the frequency distribution of observed temperatures becomes narrower with truncation of  

the extremes and reduction or elimination of intermediary peaks. Some examples of the changing 

frequency distributions with thermal images obtained at different spatial resolutions are shown in 

Figures 2 and 3 while the effect of artificial pixel aggregation is shown in Figure 4.  

Figure 2. Thermal images from (a) a satellite (Landsat 5 at 120 m spatial resolution) and 

(b) airborne sensors (DAIS at 3 m spatial resolution) taken over an area of Montado 

rangeland near Evora, Portugal (June 2006), with corresponding temperature histograms 

(c) and (d) showing the increase in temperature range with smaller pixels. 
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Figure 3. Thermal images of a given sparse area of a wheat crop obtained from a  

“cherry-picker” (November 26, 2009; taken with a FLIR SC660 (640 × 480 pixels) imager 

with a 19 mm lens) from (a) 2.0 m; (b) 4.0 m; and (c) 8.4 m, together with corresponding 

RGB images from 2.0 m (d) and 8.4 m (e). The pixel sizes increase from (a) to (c) with the 

corresponding temperature frequency histograms (f) becoming narrower. 
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Figure 4. Illustration of the consequences of pixel binning (aggregation) for a thermal 

image for a wheat crop (approximately 73% green leaf area in the image). (a) Thermal 

image taken with a FLIR SC660 camera; (b) corresponding RGB image; and (c) and the 

temperature frequency histograms for binning of 2 × 2, 3 × 3, 4 × 4 . . . 10 × 10 pixels, 

showing that the small peak (indicated by an arrow) representing the cool ears is only 

apparent for the highest spatial resolution images. 
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The observed temperature distribution is important for the analysis of thermal images: Not only 

does it allow one to separate temperatures of different components of the image, but each type of 

object will have a range of temperatures depending on local conditions such as exposure to sunlight. 

The narrowing of the temperature distribution with coarser spatial resolution or increased pixel 

aggregation can lead to large changes in the extreme temperatures observed: for example, the 

minimum temperature detected in the area shown in Figure 3 rises from 29.0 °C in (a), through 31.7 °C 

in (b) to 34.4 °C in (c) as the sensor distance increased from 2 to 8.4 m. This has clear implications for 

estimates of canopy temperature where there are mixed pixels.  

Indeed, it has been suggested that canopy temperature can be extracted automatically from an image 

containing pixels representing both canopy and background, each having their own characteristic 

temperatures, either by eliminating all pixels outside the expected temperature range for the leaves [7], 
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or by the use of automated thresholding algorithms such as the Otsu method (e.g., [8]). The image in 

Figure 4 appears to be a good example where such an approach should work effectively, as the 

flowering shoots stand out very clearly as colder than the background in the thermal image. Inspection 

of the temperature frequency distribution (Figure 4c) shows that for the unaggregated data it is clearly 

bimodal with a small peak that apparently represents the flowering shoots and a broader peak that 

appears to be dominated by temperature background. As shown in Figure 5, the overall histogram can 

be assumed to be the sum of two separate Gaussian curves representing the two main components of 

the image. Although the thresholding algorithm works well on the highest resolution version of the 

image (where the pixel size similar to that of individual leaves), as soon as pixel aggregation is 

performed to reduce the spatial resolution, not only does the mean position of the minor peak change, 

but it also rapidly disappears (Figure 4c) as an increasing proportion of pixels become mixed. 

Figure 5. Illustration of the contribution of leaf and background soil temperatures to  

the overall temperature histogram (data from the highest resolution image in Figure 4, 

extracted using the Otsu thresholding method [8]). 

 

The absolute temperature and its frequency distribution are also important in calculations of 

evaporation or transpiration rates. Although any temperature biases are not critical in phenotyping 

applications, biased data can lead to significant errors when substituted into the energy balance 

Equation [8] to estimate stomatal conductance or transpiration. Accurate calculations require that true 

estimates are available for the leaf temperatures of different surfaces such as shaded and sunlit leaves. 

This variability of leaf temperature (and the corresponding variability of wet or dry reference leaf 

temperatures) can affect the precision of estimates of canopy stomatal conductance or  

evaporation [9,10]. 

3. Review and Evaluation of Methods for Extraction of Component Temperatures 

Approaches to the extraction of sub-pixel information can be conveniently classified into (i) those 

that operate at the whole pixel level; and (ii) those that work at the sub-pixel level. Although these two 

approaches can overlap, we will consider them separately in what follows. More detail may be found 

in remote sensing texts such as [5,11,12] and in appropriate reviews [13]. 
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3.1. Whole Pixel Approaches to Extraction of True Leaf Temperatures 

3.1.1. Histogram Analysis 

The most straightforward approach to the extraction of temperatures of canopy components such as 

sunlit leaves is to identify pixels that correspond to canopy or background based on an analysis of the 

distribution of temperatures among the population of pixels and to use this to segment the image into 

two (or more) classes. Where there is a clear difference between the average temperature of the canopy 

elements and of the background, as for example when the soil is much hotter than the evaporating 

canopy, the histogram of frequency against temperature will be bimodal and it becomes straightforward 

to derive thresholds delimiting the two classes of pixel and hence segmenting the image into 

(predominantly) leaf and (predominantly) background classes. Omitting pixels from near the threshold 

as most likely to represent mixed pixels allows one to obtain useful estimates of the canopy 

temperature from the remaining pixels.  

Heuristic visual identification of the separate peaks can be effective where they exist, while a range 

of automated algorithms are available that can also operate where clear peaks are not apparent. A wide 

range of such automated algorithms are available for thresholding and are implemented in imaging 

software such as Fiji [14]; methods available include isodata [15], Otsu thresholding [8], and various 

types of entropy-based thresholding [16,17]. Where the histogram does not show two clear peaks, 

however, such methods can fail. 

Examples of the use of threshold analysis for the isolation of pixels relating to leaf temperatures 

include the early use of a background sheet [7] and the more recent use of thresholding in a controlled 

environment cabinet for selection of pixels relating to leaves [18]. Unfortunately, this approach is 

critically dependent on the scale of the image used as is illustrated in by the results in Figures 3 and 4. 

Although one might think that use of the minimum temperature (as an indicator of the plant 

temperature) might be a useful alternative to thresholding—as this will largely eliminate the problem 

of mixed leaf/background pixels—the marked dependence of the minimum (e.g., Figure 3) on scale 

means that absolute temperatures cannot readily be obtained by this means. Of course, the minimum 

value may be somewhat subject to error (representing only one pixel) so it may be better to take some 

(arbitrary) lower percentile of the data [19].  

3.1.2. Image Segmentation by Cross-Correlation with a Spectral Image 

An alternative approach to the use of whole pixels involves the use of additional information, such 

as that derived from a simultaneous overlaid RGB, multispectral or hyperspectral image, to identify 

relevant “plant” pixels (Figure 6). The ancillary image is used to identify pixels representing plant and 

to separate them from pixels representing background, often on the basis of vegetation indices (VI) 

based on the difference between reflectance in the red (R) and near infrared (NIR), such as the 

Normalised Difference Vegetation Index (NDVI), though standard image-processing tools such as the 

magic wand in software such as Adobe Photoshop (Adobe, San Jose, CA, USA) can work well for 

identifying leaves in RGB images.  



Agronomy 2014, 4 387 

 

 

Figure 6. An example of automated image processing to determine the temperature of 

plant leaves in an image where only part of the image is relevant. (a) Shows an original 

visible image, while (b) shows the result of image classification of the original image, 

using the ENVI spectral angle mapper algorithm, showing areas classified as leaf in red 

(presented after warping and resampling to match the thermal image). (c) Thermal image 

corresponding to the classified image so that leaf temperatures can then be extracted for the 

pixels in the thermal image that correspond to the red areas in (b). Based on data from 

Leinonen and Jones [20]. 

 

Details on the derivation of different vegetation indices and their application can be found in many 

remote sensing texts (e.g., [5,11,21,22]) while a discussion of pitfalls in their use may be found in [5]. 

The use of vegetation indices is routine in satellite remote sensing and has also been widely used in 

crop-scale studies to identify canopy within the image [20,23–25]. In this approach, one uses the 

ancillary image to identify areas of complete vegetation cover (omitting mixed or non-canopy pixels) 

to determine the true temperature of leaves without any bias that would result from inclusion of 

background. The approach requires that the thermal and the ancillary image are accurately  

co-registered; in practice this is often difficult at a single pixel level, as a result of slight differences in 

view angle resulting from parallax errors or as a result of leaf movement when images are not exactly 

synchronised. Co-registration of information can be facilitated by including physical markers that  

are clearly identifiable across image modalities and/or by using algorithms based on feature 

correspondences (e.g., scale invariant feature transform or SIFT aims at detecting and describing local 

features in images which can then be matched across modalities). It is worth noting that parallax errors 

can be reduced by aggregation of pixels into larger areas, though with the usual loss of information 

associated with aggregation. In addition to providing an estimate of presence/absence of vegetation in 

any pixel, it is possible to use calculated VI to estimate a fraction of vegetation cover in the pixel (fveg); 

this will be discussed in the next section.  

An extreme example of such an up-scaling approach is to combine the field of an infrared 

thermometer with supplementary information from narrow angle red and near infrared radiometers that 

sample reflectance from a similar area to provide an associated estimate of an appropriate VI (see 

Figure 7 below). 
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3.1.3. Mixed Pixels 

Rather than just attempting to identify pure pixels, the approach can be extended to use of the 

ancillary information to quantify the proportion of any pixel that is occupied by vegetation and hence 

to estimate the temperature of the vegetation component. This type of approach has been widely 

applied to satellite imagery for estimation of crop stress indices from thermal channels for irrigation 

scheduling purposes, where the large pixels acquired from MODIS or even Landsat inevitably contain 

both canopy and background soil. This method is particularly suited to the analysis of IR images 

acquired at height (e.g., from blimp or UAV) where relative comparison of canopy temperature of a 

large number of genotypes spread over a wide area is considered. There are again several approaches 

available to estimate the vegetation fraction in the pixel of which perhaps the most powerful is based 

on spectral unmixing (see [5,6,11]). Given spectra for the pure end members, it is possible to estimate 

the fraction of each pixel which is vegetation (fveg) using any standard image processing software such 

as Matlab (Mathworks, Natick, MA, USA), ERDAS Imagine (Hexagon Geospatial, Stockholm, 

Sweden), or ENVI (Exelis Visual Information Solutions Inc., Boulder, CO, USA).  

A simpler approach that is applicable to estimation of fveg is to use the scaled vegetation index  

(VI*) where:  

fveg ≈ VI* = (VI − VImin)/(VImax − VImin) (1)

where VImin and VImax are the minimum (pure soil) and maximum (pure vegetation) vegetation indices 

and it is assumed that the VI is linearly related to fveg. Although NDVI is commonly used as the 

vegetation index in this formulation, unfortunately NDVI is frequently non-linearly related to fveg  

(see [5]) so it is generally better to use the simple difference vegetation index (= NIR-R) which is more 

linearly related to fveg in this formula. Others have used simple regression between observed vegetation 

indices and canopy cover to estimate fveg [26]. Assuming that temperatures combine linearly [5] one 

can write:  

Tpixel = Tveg × fveg + Tsoil (1 − fveg) (2)

where Tpixel, Tsoil and Tveg, respectively, are the pixel average, soil and vegetation temperatures. It 

follows that one can derive the temperature of the canopy component as long as one has Tpixel, Tsoil 

(which may be obtained for an area of pure soil) and fveg. This is the basis for a significant number of 

published approaches to the estimation of canopy temperature for the calculation of crop water stress 

indices (see for example [5,27]). Related approaches include the “triangle” or “trapezoid” methods 

used for estimation of either surface water content [27,28] or a crop water stress index (a measure of 

stomatal opening) [29] from satellite data. A critical limitation of triangle (or trapezoid) methods using 

satellite data is that they generally depend on estimation of the vertices from the extreme pixels on a 

plot of temperature against VI, but in most images pure extremes may not exist (especially the  

non-transpiring pure vegetation point) [5]. 

An alternative approach that avoids a need for explicit estimates of Tsoil that is suitable for satellite 

images with large numbers of pixels at different temperatures and canopy covers [26] is to estimate the 

canopy temperature from covariance analysis of fveg and T and extrapolation to 100% canopy cover. 

Another approach that avoids the need for an explicit estimate of Tsoil is to extract estimates of both 
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soil and vegetation temperatures from the use of multiangular images [30,31]. Clearly the number of 

temperatures that can be extracted depends on the number of independent view angles, with the two 

angles obtained with ATSR-2 radiometer on the ERS satellite being adequate to derive soil and 

vegetation temperatures by simultaneous solution of equation (2) when one has obtained the apparent 

fveg at each view angle from the multispectral data [30]. One can also use a canopy radiation transfer 

model to constrain the temperature extraction as has been proposed by Timmermans et al. [31] for the 

extraction of sunlit and shaded soil and leaf temperatures. 

Figure 7. (a) Plan view, and (b) and (c) photographs, of triplet sensor (containing three 

narrow field of view (6°) sensors, one NIR (800 nm), one R (660 nm) and an infrared 

thermometer (Calex 101A) to estimate temperature of different plants with differing 

chlorophyll contents; (d) Output of sensor during transect of the pots shown in (c), where 

the red line represents measured temperature at any point, the blue line represents the fveg 

(expressed here as a percentage) calculated from the R and NIR sensors, and the blue 

squares represent calculated temperatures for any reading where fveg > 50%. 

 

An interesting alternative approach [32] has been proposed that makes use of the differing 

temperature response in the short-wave thermal infrared (3.55–3.93 μm) and long-wave thermal 

infrared (10.5–11.5 μm) bands of the AVHRR sensor on the NOAH-6 satellite. Because the radiation 

emitted in the short-wave thermal band increases much more rapidly with increasing temperature than 

does that in the long-wave band, these authors showed that it was possible to identify sub-pixel high 

temperature sources from satellite images and to estimate both their temperature and the size of the 

source. Unfortunately, this approach is not in general applicable to crop phenotyping as it requires 

measurements to be made at night (because the short-wave thermal bands is subject to interference by 
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solar radiation during the day) and because the temperature differences between crop and background 

tend to be small (less than 20 K) as compared with the situation discussed by Matson and Dozier 

where temperature differences were more than 175 K [32]. 

3.2. Spatially Precise Sub-Pixel Approaches (Dis-Aggregation) 

As we have seen, in most cases, both when using thermal imagery and when using spot thermal 

sensors, the ifov often covers a heterogeneous area that is not pure leaf. Methods for extraction of the 

component temperatures, but without any sub-pixel spatial information, have been outlined above. It 

can also be possible to derive spatial information at a sub-pixel scale if we have appropriate additional 

spatial information. The two main possibilities are (a) data fusion and (b) oversampling.  

3.2.1. Data Fusion  

This widely used approach involves combining a lower spatial resolution thermal image with finer 

spatial resolution data, such as from a multi- or hyperspectral image (for further details see any remote 

sensing text, e.g., [5,11]). The general method is illustrated in Figure 8 where temperature in thermal 

pixels over an appropriate area is regressed against the corresponding aggregated average fveg from the 

corresponding high resolution pixels. The temperature for each high resolution sub-pixel is then 

estimated (Figure 8—top right) from this regression line (Figure 8—bottom right) using the 

appropriate fveg for that sub-pixel. This approach was developed by Kustas and colleagues [33] and has 

been successfully applied to the disaggregation of low spatial resolution (approximately 5 km) GOES 

satellite thermal data by the use of high spatial resolution NDVI data obtained from aircraft. A key 

requirement for this approach is an ability to overlay accurately the thermal and spectral images; 

although readily achieved at the satellite scale, this process can be imprecise where there is a parallax 

error as when different images are taken from different positions, as is common in field phenotyping 

situations where images frequently need to be obtained at close range (1–2 m) with thermal cameras 

where the visible image is offset from the thermal by perhaps 5 cm. 

Figure 8. An illustration of the process of image fusion for the derivation of a higher 

resolution temperature map (top right) from a low resolution map and a high resolution 

vegetation cover map, by the use of an assumption regarding the relation between 

vegetation cover and temperature (as shown in the bottom right image). 
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3.2.2. Oversampling (or Image Deconvolution)  

A technique, variously called oversampling, blind deconvolution or super-resolution imaging, 

originally developed for astronomical studies, potentially allows one to increase the effective spatial 

resolution from sub-pixel movements of the sensor (see e.g., [34–36]). In its simplest form, the 

approach is based on the oversampling algorithm where, for example for the case of sub-pixels half the 

linear dimensions of the full observed pixel, the calculated value (Vn) the nth sub-pixel in a linear 

vector is given by:  

Vn = On × 2 − Vn-1 = On × 2 − (On-1 × 2 − (On-2 × 2 − ( . . . . . (On-i × 2 − I))) (3)

where On is the nth observation, and On-i is the observation on the initial pixel set as equal to a known 

initial value, I (this initial value is chosen for an area of constant temperature larger than a single 

pixel). To generate the values for all four sub-pixels in a square pixel it is necessary to run a similar 

formula for both the x and y directions. This procedure is illustrated schematically in Figure 9. 

Figure 9. Illustration of the oversampling process in one dimension. The original high 

resolution data set is shown on the left, with the observations calculated as the average of 

two adjacent values in the second column, while the estimated (calculated) values (which 

equal the original) are shown in the third column. 

 

Although in principle such an approach can reconstitute exactly the underlying high resolution 

vector from the overlapping lower resolution vector with each value displaced by half a pixel, this does 

not usually work in practice because noise (error both in the values observed and in their spatial 

placement) leads to potential instability in the algorithm. Successful practical application therefore 

requires an optimisation routine (e.g., based on iterative data fitting) to get the best-fitting  

enhanced results; this can be achieved through the use of any one of several image deconvolution 

algorithms [34,36]. 

4. Technical Aspects Relating to Choice of Sensor 

From a practical point of view, determining which infrared sensor to use for phenotyping plants in 

the field, glasshouses or in the lab depends largely on the application: are relative temperature 

estimates sufficient for one’s purpose or does one need absolute temperature measurements? Is the 

sensor to be mounted on a moving platform (UAV, blimp, Phenomobile) or on a fixed one (cherry 



Agronomy 2014, 4 392 

 

 

picker, tripod). There is no general consensus that establishes which sensor is the best for a given 

application. However, the following factors should be considered to save both time and money: 

4.1. Realistically Define the Objective of the Experiment and Define an Instrument Specification that 

Meets These Minimum Requirements  

The specifications should at least define the precision (“repeatability”), accuracy and sensitivity of 

the thermal sensor required. Note that requirements for higher accuracy and higher thermal sensitivity 

(better than 0.05 K) will increase drastically the price of the sensor. High absolute accuracy may not be 

needed where relative measurements only are needed (see [37] for discussion of this point). 

4.2. Determine the Required Speed of Response of the Sensor  

The mode of operation of a phenotyping platform (moving or fixed) will determine the frequency at 

which data needs to be collected. If the platform is required to move fast in order to limit the effects of 

environmental variation, a higher frequency of data acquisition would be necessary. Higher rates will 

ensure that data points are available for all experimental units. For example, if one aims at measuring 

the temperature of a 10 mm-wide leaf with a thermopile sensor travelling at 1 m s−1, a sensor 

measuring at >100 Hz would be required to capture a non-mixed temperature data point. The drawback 

of increasing frequency is a substantial cost increase for the sensor. 

4.3. Establish the Spatial Resolution of the Sensor (and Its Optics)  

It is necessary to determine the smallest object of interest. Higher resolution infrared cameras can 

measure smaller targets from farther away, but their price increases non-linearly as a function of the 

micro-bolometer size. The field of view of the sensor is determined by the optics—a wider field of 

view will tend to increase the problem of mixed pixels. Today, IR cameras with megapixel resolution 

are available on the market but their price is in excess of k$150. 

5. Conclusions 

This review has briefly outlined the main ways in which image scale is important for the use of 

thermal imaging of plant leaves and canopies in the field for phenotyping purposes. High spatial 

resolution (with pixels substantially smaller than the objects of interest) is usually necessary to obtain 

accurate estimates of the object temperature without confounding by mixed pixels. Where spatial 

resolution is larger than the size of the objects (e.g., leaves when imaging canopies), it is necessary to 

allow for the errors introduced if we are to get accurate estimates of temperature for use in calculation 

of stomatal conductance or transpiration. For simple phenotyping applications, however, where one is 

simply comparing genotypes, the absolute temperatures tend to be of limited interest and consistent 

biases (e.g., as introduced by using extreme values at a constant scale) may not be a problem. Any 

recommendations as to the spatial scale at which one should observe a plant/canopy depends on the 

hypotheses being tested and the need to derive relative or absolute temperature, and whether or not one 

needs to overlay images from different sensors; no simple generalisation can be made. Nevertheless, 

smaller pixels always give more information, including for example even information about temperature 
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variability (which itself may be a useful diagnostic of stress [38]), something that is not available 

where individual pixels cover several leaves or whole canopies. There will, however, always be a trade-off 

between information collected and the speed of data acquisition (sometimes determined by processing 

power and the need for subsequent image processing or even data storage capacity). Sometimes 

excessive detail provided by smaller pixels can hide the general picture, while smaller pixels also make 

it more difficult to overlay images from different sensors. Where leaf-scale information is required, there 

will be a general need for pixels to be smaller than the leaves which may be 0.5 cm or less for small 

grain cereals, but as large as 10 cm or more for larger leaved crops such as maize or grapevine. We 

stress that careful consideration of the image acquisition method (e.g., images acquired under specific 

environmental conditions, variation in IR sensor angle in relation to plant/canopy structure) is invaluable 

to make the analysis of IR images more straightforward and limit issues associated with mixed pixels. 

Notwithstanding the importance of image scale in the use of thermal imaging, it should not be 

forgotten that many other factors affect the accuracy and utility of such approaches. These include 

factors such as canopy height (affecting boundary layer energy transfer processes), canopy structure 

and illumination (affecting leaf illumination) and even time of day, which can affect the magnitude of 

genetic variation in stomatal conductance [1,3]. To this date, a complete treatise of the influence of 

canopy architecture on remote sensing of canopy temperature has not been forthcoming. This is in part 

due to the complexity in quantifying plant architecture and temperature, simultaneously. However, the 

use of 3D digitisation technologies (which explicitly describe the 3D geometry and topology of plants) 

associated with IR imaging (e.g., [39]) are starting to provide some new insights that ultimately will 

close this knowledge gap.  

The various considerations discussed here will need to be incorporated into any phenotyping or 

precision agriculture application of thermal imaging. Perhaps, the difficulties involved interpreting 

thermal imagery, together with the technical problems of associating temperatures with specific plots, 

are the underlying reasons why publications on published applications of thermography to crop 

phenotyping are still very few [3,4,40,41]. The scaling problems have only been addressed 

substantially in the application of satellite imagery for irrigation scheduling with the use primarily of 

NDVI to estimate actual canopy surface temperature [5]. 
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