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Abstract: Soil and water pollution by metals and other toxic chemicals is difficult to measure and
control, and, as such, presents an ongoing global threat to sustainable agriculture and human health.
Efforts to remove contaminants by plant-mediated pathways, or “phytoremediation”, though widely
studied, have failed to yield consistent, predictable removal of biological and chemical contaminants.
Emerging research has revealed that one major limitation to using plants to clean up the environment
is that plants are programmed to protect themselves: Like white blood cells in animals, border cells
released from plant root tips carry out an extracellular trapping process to neutralize threats and
prevent injury to the host. Variability in border cell trapping has been found to be correlated with
variation in sensitivity of roots to aluminum, and removal of border cell results in increased Al
uptake into the root tip. Studies now have implicated border cells in responses of diverse plant
roots to a range of heavy metals, including arsenic, copper, cadmium, lead, mercury, iron, and zinc.
A better understanding of border cell extracellular traps and their role in preventing toxin uptake
may facilitate efforts to use plants as a nondestructive approach to neutralize environmental threats.

Keywords: root border cells; extracellular DNA; neutrophil extracellular traps; rhizofiltration;
heavy metals

1. Root Border Cells

Most plant species synthesize cell populations that are programmed to disperse into the external
environment surrounding the root tip in response to free water or abrasion (Figure 1). For many
years, these so-called “sloughed root cap cell” populations were thought to be a product of tissue
disintegration based on the logical presumption that cells falling from the root surface must be dead.
This was despite the observation in 1919 [1] that “sloughed root cap cells” from pea and corn could
remain 100% viable for months in hydroponic culture. Long-term survival of the detached cells
in culture eventually was confirmed, but the presumption remained that these cells expressed the
phenotypes of the whole plant with regard to pathogen recognition and response [2].
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Figure 1. Dynamics of border cell dispersal upon immersion into water. (A) When roots are maintained
at >98% humidity, border cells remain tightly appressed to the surface and invisible; (B) Upon
immersion of the root tip into water, the root cap mucilage absorbs water instantaneously, and cells
begin to disperse within seconds; (C) Within minutes, all border cells disperse into suspension, leaving
the root tip surface free of cells. Scale bars: 1 mm.

Direct tests revealed instead that protein profiles and gene expression patterns in the detached cells
are markedly distinct even from progenitor root cap cells [3]. Therefore, the term “border cells” was
introduced as a new alternative to “sloughed root cap” cells to emphasize that these cell populations
comprise a cellular interface that does not function biochemically in the same manner as cells within
the root cap [4,5]. Despite observations that border cells synthesize and export a slimy matrix that
immobilizes diverse plant pathogens, the actual function of the cells remained obscure until parallels
with newly described immune responses in animals were discovered [6].

2. Extracellular Traps in Animals and Plants

In 2004, a previously overlooked foundation of mammalian defense was reported for the first
time: In response to stress signals, neutrophils within the blood system export a slimy matrix that
immobilizes diverse pathogens [7]. These “neutrophil extracellular traps” or “NETs” are comprised of
proteins including histone, actin, and enzymes involved in reactive oxygen species (ROS) pathways,
together with extracellular DNA (exDNA) [8]. Pathogens such as Group A Streptococcus produce
extracellular enzymes with DNase activity (exDNase) that facilitate release from NETs and allow
systemic spread of the bacteria [9]. The importance of exDNase as a survival mechanism has been
validated in vitro, as knockout mutations of the exDNases result in loss of pathogen virulence [10].

The discovery of NETs in animals finally provided insight into why plants invest so much energy
in producing thousands of healthy cells destined to disperse from root tips into the soil: A parallel
extracellular trapping process operates in plants [6]. In response to pathogens and other stress signals,
viable border cells rapidly synthesize and export an extracellular complex comprised of DNA together
with >100 proteins including histone, actin and ROS enzymes [11,12]. When root tips are treated with
DNase I, resistance to pathogen invasion is abolished [6,12]. As in animal pathogens such as Group A
Streptococcus, knockout mutations of exDNase in the bacterial plant pathogen, Ralstonia solanacaerum,
result in reduced virulence and loss of ability of the pathogen to move systemically through the
plant [13].

Like the defense pathway-inducing signals from pathogens, metals including lead, copper,
mercury, silver and cadmium also activate ROS pathways in mammalian cells [14,15]. A recent
survey of human neutrophils now has implicated NETs in the systemic localization patterns, or
trapping, of metals within human blood [16]. Given the remarkable parallels between exDNA-based
immune responses in animals and plants, this observation may help to explain a series of studies,
summarized below, suggesting that root border cells also play a role in trapping and localization
of metals.
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3. Border Cell Trapping of Aluminum

Aluminum toxicity is a limiting factor in crop production in acid soils, which facilitate
solubilization of the metal [17]. Genotypic variation in plant sensitivity has been well documented,
but mechanisms for resistance remain under investigation [18,19]. Roots are an important target for
Al-induced damage, and inhibition of root growth occurs rapidly in response to exposure of the root tip
to aluminum [17,20]. The hypothesis that border cells play a role in avoidance of Al uptake was tested
directly using roots of pea (Pisum sativum L.) and snapbean (Phaseolus vulgaris L.) from the Fabaceae
family [21,22]. Seedling roots with and without border cells were immersed into liquid containing
Al[22]. Even though border cells disperse from the root tip within minutes upon immersion into liquid
(Figure 1), there was an obvious increase in Al staining within the root whose border cells were gone at
the time of immersion (Figure 2B) compared with those whose border cells were present (Figure 2C).

Figure 2. Border cell inhibition of aluminum uptake into the root cap detected by lumogallion staining.
(A) Control roots incubated for 30 min at pH 5.2, in the absence of Al reveal no fluorescence; (B) Intense
staining occurs in root tips whose border cells were dispersed prior to immersion of the root into
200 uM Al for 30 min; (C) Reduced uptake of aluminum into root tips whose border cells were present

on the root cap periphery at the time the roots were immersed into 200 uM Al for 30 min [22]. Scale bar:
30 microns.

Border cells from an Al-sensitive snapbean cultivar incubated with Al in a simple salt solution
were killed more rapidly than cells from a resistant cultivar, suggesting that whole-plant tolerance
mechanisms are expressed in the border cell populations [21]. Of particular interest was the finding that
individual cells from the resistant cultivar produced larger mucilage layers (now called “extracellular
traps”) [11] in response to Al than cells from the sensitive cultivar (Figure 3). The mechanisms
underlying Al-border cell interactions remain to be defined. However, Al is known to complex with
DNA, so the discovery that DNA is an integral component of border cell extracellular traps may yield
new hypotheses to be explored [23].

Figure 3. Dosage dependent induction of extracellular trap formation in border cells in response to
aluminum. Extracellular trap formation was visualized using India ink, which does not penetrate
the trap. (A) Border cells from snapbean border cells in water have little or no visible extracellular
trap. Within 1 h of immersion in 50 micromoles aluminum (B) or 100 micromoles (C), increased trap
formation is evident. Trap dimensions at the higher level was significantly greater (p = 0.0001) than the
lower level. [Figure reproduced with permission from reference 21]. Scale bar: 20 microns.
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4. Border Cell Trapping of Other Soil Contaminants

Dynamic interactions in response to copper, cadmium, boron, lead, mercury, iron, and arsenic as
well as aluminum have now been described for border cells of cereals, legumes, cotton, coyotillo and
fern (Table 1) [21,22,24-47]. Efforts to define underlying mechanisms are in early stages of discovery,
but results suggest that signals controlling border cell production and trapping responses in the field
may yield new approaches to plant protection [48-51].

Table 1. Border cells and metals: publications from 2001-2015.

Date Metal Plant Reference
2001 aluminum snapbean [21]
2003 aluminum pea [22]
2003 aluminum wheat [24]
2003 copper Silene [25]
2003 cadmium coyotillo [26]
2004 aluminum barley [27]
2005 aluminum barley [28]
2006 aluminum pea [29]
2007 aluminum-+boron pea [30]
2008 aluminum cowpea [31]
2008 iron rice [32]
2008 lead, mercury mung bean [33]
2009 aluminum pea [34]
2011 aluminum rice [35]
2011 aluminum soybean [36]
2011 coppet, nickel, zinc cowpea [37]
2011 iron rice [38]
2012 iron rice [39]
2012 arsenic cowpea [40]
2012 iron, aluminum rice [41]
2012 aluminum oats [42]
2012 arsenic fern [43]
2013 boron, aluminum pea [44]
2013 aluminum soybean [45]
2013 copper cotton [46]
2014 cadmium fern [47]

5. Border Cell Number vs. Arsenic Uptake into Edible Plants

Two studies with arsenic (Table 1), in cowpea (Vigna unguiculata) and fern (Pteris vittata) [40,43], are
of particular interest in view of a recent in vivo study of arsenic taken from the environment into plants
under diverse growth conditions [52]. A significant inverse correlation was found between number of
border cells produced by the species of interest and uptake of arsenic into the plant (Figure 4). Thus,
for example, members of the Brassica family do not produce populations of viable dispersed border
cells, whereas legumes produce several thousand per day [53,54]. It will be of interest to explore the
possibility that there is a direct relationship between the production and viability of border cells and
the sensitivity of plants to toxins in the soil.
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Figure 4. Arsenic concentration in the edible portion of Brassicaceae (left, no border cell production)
and Fabaceae (right, 3000-4000 border cells produced per root per day) as a function of soil arsenic
concentration. Values were compiled from reference [52]. Open symbols (O) represent vegetables
grown in the greenhouse, closed symbols (®) represent vegetables grown in home gardens, and the
closed triangles (A) represent values from the literature.

6. Rhizofiltration vs. Rhizoprotection

Multiple research studies have focused on phytotechnologies (detection, degradation, removal or
contaminant of soil, groundwater, surface water, sediments, or air), but these studies have suffered from
the inability to show consistent, predictable removal of biological and chemical contaminants [55,56].
However, emerging research on extracellular trapping by border cells of plant roots (Table 1), highlights
the potential for utilization of plants in bioremediation of contaminated water and soil and may help
to explain variability with divergent species. “Rhizofiltration” is a category of phytoremediation that
focuses on using plant root systems to remove contaminants from soil and water [57]. Rhizofiltration
has been researched as a remediation tool for nearly fifty years, but despite continued efforts, use of
this approach has been hampered by unexplained variability in uptake of pathogens and metals by
plants and lack of efficacy in removal of contaminants [58-65]. The discovery that border cells trap
metals suggests that plants have mechanisms to prevent uptake into plant tissue, while at the same
time sequestering contaminants. Because contaminant removal models rely on kinetic constants based
on root uptake, this recent finding could easily account for lack of agreement between modeled and
measured plant “uptake”.

Border cells naturally disperse into liquid and accumulate into a visible mass at the bottom
of the vessel as new border cells are produced to replace the detached populations [1]. It will be
of interest in future studies to test directly the amount of metals and other contaminants that are
trapped by border cells in their role as “neutrophils” protecting the plant from danger [66,67], and to
explore the use of this simple approach to remove hazardous chemicals from soil and water under
diverse conditions. Considering the key role metals can play in the metabolism of microorganisms
as well as plants and animals [16], such information may also yield new insights into potential
relationships between metal trapping and microbial growth, development, and establishment of the
rhizosphere “microbiome” [68,69]. Studies reporting variation in border cell production and properties
among different species will be important tools for defining mechanisms and consequences of metal
trapping [70-75].

7. Conclusions

Phytotechnologies may be used to prevent contaminant exposure and, in effect, be a tool for
primary prevention in environmental public health [76]. Of particular importance will be studies
to determine if the same mechanisms which have been implicated in metal trapping within roots
also operate in border cell populations [77]. An improved understanding of border cell extracellular
traps and their role in preventing toxin uptake may facilitate efforts to further utilize plants as a
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nondestructive approach to reduce environmental threats. Data thus far indicate the promise of
phytotechnologies, and border cell extracellular traps may be the key to take this remediation strategy
to the next level.
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