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Abstract: Rapeseed (Brassica napus L.) with substantial lipid and oleic acid content is of great interest
to rapeseed breeders. Overexpression of Glycine max transcription factors Dof4 and Dof11 increased
lipid accumulation in Arabidopsis and microalgae, in addition to modifying the quantity of certain
fatty acid components. Here, we report the involvement of GmDof4 and GmDof11 in regulating
fatty acid composition in rapeseeds. Overexpression of GmDof4 and GmDof11 in rapeseed increased
oleic acid content and reduced linoleic acid and linolenic acid. Both qPCR and the yeast one-hybrid
assay indicated that GmDof4 activated the expression of FAB2 by directly binding to the cis-DNA
element on its promoters, while GmDof11 directly inhibited the expression of FAD2. Thus, GmDof4
and GmDof11 might modify the oleic acid content in rapeseed by directly regulating the genes that
are associated with fatty acid biosynthesis.
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1. Introduction

Rapeseed (Brassica napus L.) is among the most important oil crops worldwide, providing
high-quality edible oils and industrial raw materials [1–3]. The production and yield of rapeseed has
rapidly increased in China in recent years [4]. Rapeseed oil is principally a mixture of seven main
fatty acids [5], namely palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2),
linolenic acid (C18:3), eicosenoic acid (C20:1), and erucic acid (C22:1), of which oleic acid is the most
abundant and has the highest nutritional value [6]. Therefore, creating new rapeseed varieties with
a high seed oil content that is rich in oleic acid content is a primary goal for rapeseed breeders [7].
Remarkable progress in increasing the content of seed oil and proportion of oleic acid has been reported
by traditional breeding and putative candidate genes have been dissected using quantitative trait loci
mapping and molecular markers [8–11].

Genetic engineering is a potentially efficient method of modifying the expression of single
or multiple genes that are involved in lipid metabolism [7,12]. In B. napus, the overexpression
of genes encoding glycerol-3-phosphate dehydrogenase [13], acyl-CoA: lysophosphatidic acid
acyltransferase [14], mitochondrial pyruvate dehydrogenase kinase [15], and diacylglycerol
acyltransferases [16–19] significantly increased seed oil content. Liu et al. [20] overexpressed
triacylglyceride (TAG) synthesis pathway genes in B. napus, including BnGPDH, BnGPAT, BnDGAT,
and ScLPAAT, and found that the overexpression of a single gene could increase the content of seed
oil, but the simultaneous overexpression of multiple genes may result in more substantial changes in
oil composition.

Agronomy 2018, 8, 222; doi:10.3390/agronomy8100222 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0002-5350-8938
http://www.mdpi.com/2073-4395/8/10/222?type=check_update&version=1
http://dx.doi.org/10.3390/agronomy8100222
http://www.mdpi.com/journal/agronomy


Agronomy 2018, 8, 222 2 of 13

Besides lipid synthase, a number of genes encoding seed-specific transcription factors (TFs) have
been shown to play important roles in the regulation of lipid biosynthesis [7,21]. Previous reports
have suggested that altering the expression levels of the plant-specific B3 domain family members
LEAFY COTYLEDON 2, FUSCA3 and ABSCISIC ACID INSENSITIVE 3 [22–24]; NF-YB type TF
LEAFY COTYLEDON 1 [7,25]; AP2/EREB domain TF WRI1 [26,27], Arabidopsis 6b-interacting protein
1-like 1 [28]; BnGRF2 (GRF2-like gene from B. napus) [21]; and, SHOOTMERISTEMLESS [29] resulted
in a change in the proportions of seed storage materials. These genes could be used to genetically
improve the oil content and composition of rapeseed.

Fatty acid dehydrogenase (FAD) and fatty acid elongase (FAE) are the key enzymes that determine
fatty acid composition in seed oil. FAD catalyzes the biosynthesis of polyunsaturated fatty acids,
such as linoleic and linolenic acid [30,31], while FAE catalyzes the chain elongation reaction, resulting
in the formation of long-chain fatty acids, including eicosenoic and erucic acid [30,32]. Previous
studies have suggested that inhibition of FAE1 expression increases oleic acid and reduces erucic acid
content in rapeseed seed oil [33,34], as did inhibition the expression of the BnFAD2 gene in transgenic
seeds [34]. Jung et al. [35] found that expression of the B. rapa BrFAD2 gene in an antisense orientation
increased the synthesis of oleic acid in B. napus. FAD3 desaturase is responsible for the synthesis of
linolenic acid [36], in BnFAD3 mutants of B. napus, the concentration of linolenic acid was significantly
reduced [37].

Dof (DNA binding with one finger) is an important family of TFs in plants, with its members being
widely involved in seed development, plant growth, morphogenesis, nutrient metabolism, and other
processes [36,38–40]. As far as we know, comprehensive analysis of Dof family factors in B. napus
has not been previously performed, with few reports of the function of Dof genes in B. napus [41],
even though genome-wide analysis has been performed in other Brassica plants [42]. In soybean,
28 Dof members have been identified [43], and eight of them, including GmDof4 and GmDof11,
are strongly expressed in the flowers and pods of soybean. Wang et al. [44] found that fatty acid and
seed oil content, and seed weight were significantly increased in GmDof4 and GmDof11 overexpressing
lines of A. thaliana. Further studies showed that GmDof4 and GmDof11 directly downregulated the
expression of the seed storage protein gene CRA1. Moreover, GmDof4 and GmDof11 have been shown
to induce the expression of the β-subunit of the ACCase encoding gene acetyl CoA carboxylase (accD)
and long-chain-CoA synthetase gene 5 (LACS5), respectively [44]. These results indicate that GmDof4
and GmDof11 can simultaneously increase seed oil content by upregulating genes that are involved
in fatty acid synthesis and downregulating genes associated with the accumulation of seed protein
in Arabidopsis. In addition, increased lipid accumulation was demonstrated after heterologous
expression of GmDof4 in Chlorella ellipsoidea [45], indicating that GmDof4 regulates seed oil content and
composition both in higher and lower plants.

In the current study, using the rapeseed cultivar ‘Yangyou 6’ as receptor, we created GmDof4 and
GmDof11 overexpression B. napus lines via Agrobacterium-mediated transformation. ‘Yangyou 6’ is a
double low variety, which is widely planted in the Jiangsu province of China. Our results demonstrated
that, when compared with non-transgenic lines, the content of oleic acid in the transgenic lines
increased significantly, whereas the content of linoleic acid and linolenic acid were reduced. We found
that GmDof4 and GmDof11 could activate or inhibit genes that are involved in fatty acid synthesis by
directly binding to promoter regions. These findings indicate that GmDof4 and GmDof11 have the
potential to improve the quality of rapeseed oil.

2. Materials and Methods

2.1. Plant Growth and Transformation

B. napus cv. ‘Yangyou 6’ plants were grown at 24 ◦C using a 16-h photoperiod in a growth chamber.
GmDof4 (Accession No: DQ857254) and GmDof11 (Accession No: DQ857261) DNA sequences were
cloned using the primer pairs: GmDof4-F: GACGCACTCACTGACATCAACACTAG, GmDof4-R:
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GGTGAGATAAGATTTAGAAGAGGCGTG, and GmDof11-F: GAGACTTCGCAATTTGCATGACTC,
GmDof11-R: CTAGCTACTGCTAGAGTGAAGTCATTG, respectively, as designed by Wang,
et al. (2007) [44]. The Soybean cultivar 8904 was used for cloning GmDof. The overexpression vectors
pBIN438-GmDof4 and pBIN438-GmDof11 were kindly gifted by Professor Shouyi Chen (Institute of
Genetics and Developmental Biology, Chinese Academy of Sciences). The vectors contained a neomycin
phosphate transferase II (NPT II) gene as a selection marker. The GmDof4 and GmDof11 genes were
driven using a CaMV 35S promoter. The vectors were introduced into the Agrobacterium tumefaciens
strain GV3101 for genetic transformation into B. napus.

GmDof4 and GmDof11 overexpressing lines of B. napus were generated as described by De Block
et al. [46] with some modifications. Certified, uniform, and healthy seeds were surface-sterilized with
sodium hypochlorite solution and then rinsed in sterile distilled water. The seeds were germinated in
the dark on 1/2 MS basal medium containing 2% (w/v) sucrose. Seven-day-old hypocotyl explants
(~15 mm) were prepared and cultured on co-cultivation medium [MS medium supplemented with
2% (w/v) sucrose, 1 mg/L 2,4-D (2,4-dichlorophenoxyacetic acid), and 1 mg/L benzyladenine (BA);
pH 5.8] for three days. Explants were then transferred to selection medium [MS medium supplemented
with 2% (w/v) sucrose, 1 mg/L 2,4-D, 1 mg/L BA, 300 mg/L cephalosporin (Cef) and 30 mg/L G418;
pH 5.8] and incubated at 25 ◦C. The explants with shoot initials were transferred to shoot outgrowth
medium [MS medium supplemented with 2% (w/v) sucrose, 0.3 mg/L NAA, and 300 mg/L Cef;
pH 5.8]. Finally, green shoots were transferred to root initiation medium [MS medium supplemented
with 2% (w/v) sucrose, 0.3 mg/L NAA, and 300 mg/L Cef; pH 5.8]. All of the regenerated plantlets
were transferred into pot containing nutritious soil after becoming fully developed.

2.2. PCR, Semi-Quantitative, and Quantitative Real-Time PCR Analyses

Total DNA was extracted from the young leaves of each transgenic plant using the CTAB method,
as described by Porebski et al. [47]. PCR was performed to identify positive transformants using
specific primers.

Total RNA was extracted from non-transgenic and GmDof -overexpression seedlings, and the
young seeds of B. napus using an RNA isolator (Vazyme, Nanjing, China) in accordance with the
manufacturer’s instructions. First-strand cDNA synthesis was performed using the first-strand cDNA
synthesis kit HiScript Q RT SuperMix with oligo(dT)23 (50 µM) and Random hexamers (50 ng/µL)
as primers for semi-quantitative PCR analysis (Vazyme, Nanjing, China). T2 generation seeds were
collected at 30 days after flowering (DAF), from which 30 seeds were randomly selected and used for
RNA extraction.

Semi-quantitative PCR was performed, as follows: 95 ◦C for 3 min then 32 cycles of 95 ◦C for 30 s,
annealing (56 or 58 ◦C; detailed information shown in Supplemental Table S1) for 30 s, polymerization
at 72 ◦C for 30 s, followed by 72 ◦C for 5 min. Real-time PCR was performed in an Mx3500p (Agilent,
Santa Clara, CA, USA) using FastStart Universal SYBR Green Master (Rox) (Roche Applied Science,
Penzberg, Germany). BnActin transcripts were used as the internal reference [18,22]. Relative gene
expression was calculated using the2−∆∆Ct method. qPCR was performed with three biological
replicates and three technical replicates for every sample.

To identify whether the expression of genes related to fatty acid metabolism in transgenic
seeds, namely, FAB2 (Fatty acid biosynthesis 2), FAD2, FAD3, FAD6, FAD7, FAD8, FAE1, and FAE7,
were regulated, the expression pattern of genes involved in lipid and fatty acid synthesis were analyzed
in seeds at 30 DAF. Amplification primers of these genes were designed to amplify all homologous of
specific gene. The primers used for qPCR and the gene ID are listed in Supplementary Table S1.

2.3. Determination of Seed Oil and Fatty Acid Composition

Total seed oil content of the transgenic and non-transgenic plants was determined using
near-infrared reflectance (NIR) spectroscopy [48]. Fatty acid concentration was measured using
the method that was described by Taylor et al. [49]. The seeds of transgenic (T2 generation) and
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non-transgenic plants were ground to a fine powder in a mortar. Five mL of iso-propanol were mixed
with 0.5 g seed powder and incubated at 100 ◦C for 5 min. The solution was immediately cooled on
ice and 2.5 mL of dichloromethane added. The samples were shaken at 200 rpm for 30 min at room
temperature after which, 4 mL of dichloromethane and 4 mL of 1 mol/L KCl in 0.2 mol/L H3PO4

were sequentially added into each tube to separate the organic and aqueous phases. The samples were
vortexed and centrifuged at 2000 rpm for 20 min. The supernatant was washed twice with 4 mL of
dichloromethane, and the original organic phase combined with the washes and dried under nitrogen
to yield triacylglycerol. The triacylglycerol was hydrolyzed and the fatty acid esterified, as described
by Fatima et al. [50].

Fatty acid composition was analyzed using a gas chromatography-mass spectrometer (Trace
GC DSQII, Thermo, Waltham, MA, USA) with a DB-WAX capillary column (30 m × 0.25 mm ID ×
0.25 µm df) [49]. The peaks were identified by reference to the identified retention times of internal
standard FAMEs (Sigma, Lot No.: 18919-1AMP, St. Louis, MO, USA). GC was performed using a gas
carrier (helium) flow rate of 30 mL·min−1 and a column and injector temperature of 250 ◦C. Running
temperatures were as follows: 50 ◦C for 2 min, increasing to 220 ◦C at a rate of 4 ◦C/min, and held at
220 ◦C for 7 min. Each experimental material was biologically replicated three times.

2.4. Detection of DNA Binding Specificity of GmDof4 and GmDof11 by Yeast One-Hybrid Assay

The yeast strain, Y1HGold (MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4∆, gal80∆,
met-, and MEL1) containing the AbAr reporter gene was used as the assay system. GmDof4 and
GmDof11 were amplified and fused to the GAL4 DNA binding domain on the pGADT7 plasmid.
Two or three copies of the cis-DNA elements of interest at the promoter of potential targeted genes
were synthesized, annealed, and cloned into the “prey” plasmid pAbAi. Then, the recombinant “prey”
plasmid was then digested using BstBI for 1 h and transfected into yeast Y1HGold cells according to
the manufacturer’s protocol (Clontech, Mountain View, CA, USA). The PCR-identified recombinant
Y1HGold strains were then used to introduce pGADT7-GmDof4 or pGADT7-GmDof11 plasmids.
The transfected yeast cells were then cultured in SD/-Leu/-Ura plates. Finally, cultures were placed
on SD/-Leu/-Ura + AbA (0.2 mg/L) plates. Strains growing in colonies indicated positive GmDof
binding on the corresponding cis-DNA element.

2.5. Statistical Analysis

All experimental data, including seed oil and fatty acid content analysis, were compared
statistically using one-way analysis of variance (ANOVA) followed by Student’s t test to determine
significant differences among the means of different groups using Statistical Product and Service
Solutions (SPSS) v16.0 software.

3. Results

3.1. Dof Family Numbers in B. napus

Based on the Arabidopsis annotated Dof genes, 134 homologous genes of AtDof were identified
using BlastP (E-value≤ 1× 10−5, identity≥50% and coverage≥50%) in the B. napus reference genome
of Darmor-bzh [51] (Supplementary Table S3). BlastP results showed no homology of either GmDof4 or
GmDof11 in the B. napus reference genome using the DNA sequences of GmDof4 and GmDof11 as query
terms (results not shown).

3.2. Generation and Identification of B. napus Transgenic Plants

To investigate whether GmDof4 and GmDof11 could regulate lipid biosynthesis in rapeseed,
they were transfected into rapeseed plants, under the control of the CaMV 35S promoter, while using
the Agrobacterium-mediated method. B. napus L. cultivar “Yangyou 6” was used as the receptor and
hypocotyl explants were prepared from seven-day-old seedlings. Each experiment was performed
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using approximately 650 explants. Twenty and 12 rooted plantlets were obtained for GmDof4 and
GmDof11 transformation, respectively. The existents of GmDof4 and GmDof11 in plantlets were
identified using PCR (Figures S1 and S2), with the putative transformants then transferred into
nutritious soil and placed in a green house. The RNA of the plantlets was extracted and first-strand
cDNA synthesized, with the expression of GmDof4 and GmDof11 genes in individual transgenic
plants detected by semi-quantitative PCR (Figure 1). Finally, seven and five overexpression lines of
GmDof4 and GmDof11 were obtained, respectively. Two GmDof4 transformants (DOF4-2 and DOF4-20)
demonstrated no GmDof4 expression, and the expression of GmDof11 in the DOF11-12 transformant
was very low. Based on the expression levels of GmDof4 and GmDof11, the transgenic plants DOF4-9,
DOF4-13, DOF11-1, and DOF11-6 were further analyzed. When compared with the non-transgenic
plants, no significant difference was observed in their growth and development. The presence of the
GmDof transgene in T1 generation transgenic plants was confirmed by PCR.
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Figure 1. Semi-quantitative RT-PCR analysis of GmDof4 and GmDof11 transgenic plants. BnActin
expression is displayed as the internal control. The lengths of the amplification products of BnActin,
GmDof4 and GmDof11 were 144 bp, 135 bp and 186 bp respectively.

3.3. Changes in the Fatty Acid Composition of GmDof4 and GmDof11 Overexpressing Lines of B. napus

The relative content of the principal fatty acids in the seeds of GmDof transgenic and
non-transgenic lines was analyzed using gas chromatography (GC). The T1 and T2 progenies of DOF4-9,
DOF4-13, DOF11-1, and DOF11-6 lines were produced by self-pollination. The seeds of homozygous
T1 lines that had no gene segregation were used for the fatty acid content determination. The results
showed that the quantities of major unsaturated fatty acids, such as oleic, linoleic, and linolenic acid,
underwent significant alteration in four transgenic lines compared with the non-transgenic plants.
However, the content of the two principal saturated fatty acids, namely, palmitic acid and stearic acid,
were consistent with those of the non-transgenic lines (Figure 2, Supplementary Table S2). Among the
fatty acids, the content of oleic acid in four overexpression lines was significantly increased, from 62.8%
in the non-transgenic rapeseed to 67.11–71.32%. Conversely, the content of linoleic and linolenic acid
in the four overexpression lines was significantly lower than in the non-transgenic lines. In addition,
total lipid content was measured in the seeds of the overexpression and non-transgenic plants by NIR.
Seed oil content of the GmDof4 and GmDof11 overexpression lines was ~39%, being not significantly
different than the non-transgenic lines (Figure 3). These results indicate that the expression of GmDof4
and GmDof11 stimulated the accumulation of oleic acid and regulated the fatty acid composition of
rapeseed, but, neither gene could increase total seed oil content.
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Figure 3. Total lipid contents in the seeds of GmDof4 and GmDof11 transgenic plants. The data represent
the means ± SD of three replicate experiments and were analyzed by Student’s t-test (n = 3).

3.4. Changes in the Expression of Fatty Acid Metabolism-Related Genes in GmDof4 and GmDof11
Transgenic Plants

Referring to previous reports, the expression of target genes that were directly controlled by
GmDof4 and GmDof11 were additionally analyzed, including the 12S storage protein subunit encoding
gene CRA1, the ACCase β subunit encoding gene accD, and LCAS5. The expression of accD was
significantly upregulated in two GmDof4 transgenic seeds compared with its expression in the
non-transgenic plants. FAB2, which is responsible for oleic acid synthesis, FAD3 and FAD8, which is
responsible for the synthesis of linolenic acid from linoleic acid, were significantly upregulated by
more than threefold in both lines (Figure 4). However, no significant difference was found in the
expression of the other genes, except for LACS5, which was slightly upregulated. The expression of
accD was also upregulated by approximately threefold in two GmDof11 transgenic seeds. However,
the expression of FAD2 and FAD6, which are the coding genes responsible for the synthesis of linoleic
acid, was inhibited (Figure 4). These results indicate that GmDof4 and GmDof11 do upregulate the
expression of accD, and both genes jointly and specifically upregulate or downregulate the genes that
are involved in the synthesis of fatty acids.

In addition, qPCR results demonstrated that the gene expression levels of FAE1 and FAE7,
which are responsible for the synthesis of eicosanoic acid, were lower than the detection limit of
the qPCR technique (Ct > 40). Moreover, there was no expression of the CRA1 gene in both the
GmDof4 transgenic and non-transgenic seeds, but it was detected in the two GmDof11 transgenic seeds
with slight expression (expression level relative to BnActin ≈ 10−4), indicating that CRA1 might be
upregulated slightly in the GmDof11 transgenic plants.
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3.5. Yeast One-Hybrid Assay to Detect Target Genes of GmDof4 and GmDof11

Based on the transcriptome data in various tissues and organs of B. napus obtained earlier by
our group, more than one copy of the CRA1, FAB2, and FAD2 genes was found in B. napus (Table 1).
Analysis of the promoters demonstrates numerous Dof-binding cis-DNA elements in the promoter
regions of these genes (Table 1). To test whether GmDof4 and GmDof11 regulated the expression
of the aforementioned genes by directly binding to their promoter regions, we investigated part of
the putative Dof binding elements in the 1.5 kb promoter region of the CRA1, FAB2, and FAD2 genes
according to the binding features of GmDof4 and GmDof11. The results showed that GmDof4 protein
could bind strongly to the FAB2-1 and FAB2-2 cis-DNA elements (Figure 5a). These results suggest
that GmDof4 protein may regulate FAB2 by binding directly to their promoters. Analysis of GmDof11
protein binding activity demonstrated that GmDof11 binds strongly to FAD2-1 but weakly to CRA1-1
and FAD2-2 (Figure 5a). These results indicate that the GmDof11 protein can directly regulate CRA1
and FAD2.

Table 1. Number of transcripts of GmDof regulated genes in seeds at 34 days after flowering (DAF)
and the cis-DNA elements of these genes.

Cis-DNA Element
Sum

AAAAG TAAAG CTTTT CTTTA

FAB2

BnaA03g20420D 1 4 3 3 11
BnaA05g03490D 6 5 3 5 19
BnaC03g24420D 5 3 2 2 12
BnaC04g03030D 3 0 3 2 8

FAD2
BnaA05g26900D 7 4 3 5 19
BnaAnng09250D 4 3 5 2 14
BnaC05g40970D 9 6 11 4 30
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Figure 5. GmDof4 and GmDof11 interact with the cis-DNA elements in the promoter regions of
downstream genes in the transgenic plants (a) Interaction between GmDof4 and the cis-DNA elements
in the promoter regions of CRA1 and FAB2. The bolded and underlined sequences indicate the core
sequence of the Dof-binding elements. The putative Dof-binding elements were cloned into pAbAi,
and these plasmids were transfected into yeast Y1HGold cells with pGADT7-GmDof4. Growth of the
transfected yeast cells on the SD/-Leu/-Ura + AbA (0.2 mg/L) plates indicates that GmDof4 protein
can bind to its corresponding cis-DNA element. PTC is a strain that contains pGADT7-GmDof4 and a
pAbAi plasmid with an element in the promotor region of AtaccD, which was confirmed to interact
with the GmDof4 protein. NTC is a strain that contains pGADT7-GmDof4 and an empty pAbAi plasmid.
(b) Interaction between GmDof11 and the cis-DNA elements in the promoter regions of CRA1 and
FAD2. The bolded and underlined sequences indicate the core sequence of the Dof-binding elements.
The putative Dof-binding elements were cloned into pAbAi, and these plasmids were transfected into
yeast Y1HGold cells with pGADT7-GmDof11. Growth of the transfected yeast cells on SD/-Leu/-Ura
+ AbA (0.2 mg/L) plates indicates that the GmDof11 protein can bind to its corresponding cis-DNA
element. PTC is a strain that contains pGADT7-GmDof11 and a pAbAi plasmid with an element in the
promotor region of AtCRA1, which was confirmed to be interacting with GmDof11 protein. NTC is a
strain that contains pGADT7-GmDof11 and an empty pAbAi plasmid.

4. Discussion

4.1. Overexpression of GmDof4 and GmDof11 Augmented the Oleic Acid in B. napus Seed Oil

GmDof4 and GmDof11 are TFs involved in the regulation of seed oil synthesis in soybean.
Overexpression of GmDof4 or GmDof11 augments oil synthesis in transgenic Arabidopsis and the
single-cell microalga C. ellipsoidea [44,45]. GmDof4 and GmDof11 overexpressed rapeseed plants were
produced using Agrobacterium-mediated genetic transformation. However, no significant change was
found in the seed oil content in the four transgenic lines. Comparison of the fatty acids in GmDof4 and
GmDof11 transgenic and non-transgenic plants showed a significant change in fatty acid composition.
The relative level of the monounsaturated fatty acid oleic acid increased, while the relative levels of the
polyunsaturated fatty acids linoleic and linolenic acid decreased significantly in the GmDof transgenic
plants compared with the non-transgenic plants. These results suggest that GmDof4 and GmDof11
may play a role in the late stage of fatty acid synthesis in B. napus, by regulating the synthesis of a
few specific fatty acids rather than the carbon metabolic flux that would alter the relative levels of the
major fatty acids. This phenomenon is different from those in Arabidopsis and C. ellipsoidea. The total
lipid content increased significantly in transgenic Arabidopsis seeds and C. ellipsoidea cells, but the
relative levels of each fatty acid did not change, except for linoleic acid in Arabidopsis overexpressing
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GmDof4 [44,52]. The difference may be due to the large genome of B. napus and the complex network
regulation of the synthesis and accumulation of oil during seed development. Therefore, increasing
the oil content of rapeseed may require precise and more targeted genetic engineering.

4.2. GmDof4 and GmDof11 Regulated the Genes of Fatty Acid Synthesis by Binding to the Cis-DNA Elements
in the Promoter Region of These Genes

In oil crops, lipid and fatty acid synthesis involves a number of enzymes [5,7,12]. FAB2,
which encodes a stearoyl-ACP desaturase, catalyzes the synthesis of oleic acid. The expression
level of FAB2 affects the content of oleic acid [53,54]. Kachroo et al. found that the stearic acid content
in the FAB2 gene mutant (ssi2) was approximately 18 times higher than that in WT plants, and the
content of oleic, linoleic, and linolenic acid was significantly reduced. Meanwhile, FAB2 is involved in
the activation of NPR1-dependent and -independent defense responses [55–57]. FAD2 and FAD3 are
two important enzymes in the synthesis of unsaturated fatty acids in seed oils. They are integrated
into the endoplasmic reticulum and they are responsible for the catalysis of the conversion of oleic
acid to linoleic acid and then linolenic acid. Furthermore, in plastids FAD6 is an isoenzyme of FAD2,
while FAD7 and FAD8 are isoenzymes of FAD3 [31,58]. FAD6, FAD7, and FAD8 are closely related to
the synthesis of unsaturated fatty acids on chloroplast membranes [59]. The expression of these genes
affect leaf lipids in Arabidopsis [31,56]. Therefore, we examined the expression of these desaturases in
transgenic lines.

accD, which encodes the β-subunit of ACCase, was upregulated in seeds of the GmDof4 transgenic
plants at 30 DAF. This result is consistent with studies in Arabidopsis. In addition, FAB2, FAD3, and FAD8
genes were significantly upregulated. This finding suggests that GmDof4 likely increased oleic acid
synthesis by increasing the expression of genes that are related to oleic acid synthesis, in spite of the
upregulated FAD3 not increasing the content of C18:3, which is possibly due to the complexity of the
regulation of fatty acid accumulation in seeds. The expression of FAD2 and FAD6 were downregulated
in GmDof11 transgenic seeds. The downregulation of FAD2 may have caused a decrease in the content
of linoleic acid and linolenic acid, thereby increasing the proportion of oleic acid. It is not clear whether
the change in the expression of FAD6 and FAD8 in the overexpression plants changed the response
to stress. Expression of FAE1 and FAE7 genes, which are responsible for erucic acid (C22:1) synthesis,
were not detected in all plants. This result may be due to the fact that the rapeseed variety that is
used here has low erucic acid characteristics, and erucic acid synthesis genes are severely inhibited.
In addition, although the expression of accD was upregulated in the seeds of the four transgenic lines,
seeds oil content of did not increase. This result indicates that other regulation mechanisms in the
seeds of B. napus related to the accumulation of oil.

In Arabidopsis, GmDof4 binds directly to the Dof-binding cis-DNA element in the promoter
regions of the accD and CRA1 genes, and GmDof11 directly regulates the expression of LCAS and
CRI1 genes [44]. In this study, we found that GmDof4 bound to the cis-DNA element in the promoter
region of FAB2, whereas GmDof11 bound to the cis-DNA element in the promoter region of CRA1 and
FAD2. These results indicate that GmDof4 and GmDof11 regulated components of fatty acid synthesis
in seed oil by regulating the expression of specific genes. Whether the slight upregulation of the CRA1
gene in GmDof11 transgenic seeds was caused by the direct interaction of GmDof11 and the cis-DNA
element of CRA1 should be further examined using a dual luciferase reporter system. Evaluation
of the number of Dof binding elements (A/T)TTTG or CAAA(A/T) at the promoter regions of the
potential target genes revealed that they contained a large number of Dof binding elements (Table 1).
While considering that there are 134 putative Dof genes in B. napus, the existence of those elements
indicates that the specific spatial and temporal expression of these genes may be regulated by various
Dof TFs. This makes it possible to regulate the expression of the genes that are involved in lipid
and fatty acid synthesis in B. napus by GmDof4 and GmDof11. Interestingly, except for BnaC.accD.c
(BnaC09g27690D), which showed incomplete genome sequencing at the promoter region, the 1.5 kb
promoter region of three accD duplicates in B. napus were identical (Figure S3). The homology of the
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accD gene to Arabidopsis was 96.74%. In addition, it has been suggested that the 5′-untranslated region
(UTR) of plant FAD2 genes is evolutionarily conserved [35,60]. These results strongly suggest that the
regulation of expression of the genes involved in fatty acid synthesis might also be highly conserved.
GmDof4 and GmDof11 proteins increased oleic acid content in seed oil by activating or inhibiting
genes that are associated with fatty acid synthesis in B. napus. Both proteins may be used as a genetic
resource to improve the quality of rapeseed oil.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/8/10/222/s1,
Figure S1: PCR analysis of putative transformants of GmDof4, Figure S2: PCR analysis of putative transformants
of GmDof11, Figure S3: Homology of the accD gene promoters in B. napus and A. thaliana, Table S1: Amplification
primers used for Semi-quantitative and quantitative RT-PCR, Table S2: Composition of the major fatty acids in
GmDof4 and GmDof11 transgenic seeds, Table S3: the Dof genes in B. napus.
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