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Abstract: Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, while salicylic
acid was the name given to the active ingredient of willow in 1838. From a physiological point of
view, these two molecules present in plants have never been compared, even though they have a
great number of similarities, as we shall see in this work. Both molecules have biosynthesis pathways
that share a common precursor and both play a relevant role in the physiology of plants, especially
in aspects related to biotic and abiotic stress. They have also been described as biostimulants of
photosynthetic processes and productivity enhancers in agricultural crops. We review the coincident
aspects of both molecules, and propose an action model, by which the relationship between these
molecules and other agents and plant hormones can be studied.

Keywords: antioxidant; nitric oxide (NO); phytomelatonin; plant hormones; plant stress; Reactive
oxygen species (ROS); salicylic acid

1. Melatonin and Salicylic Acid in Plants

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic molecule with a wide range of cellular
and physiological actions in living organisms, including animals and plants. It was discovered in
animals (cow) by Lerner and colleagues in 1958 and in 1959 in humans [1,2]. Then, in 1995, two papers
simultaneously demonstrated the presence of melatonin in plants, and it is now accepted that
melatonin is present in all higher plants [3,4], where it is sometimes referred to as phytomelatonin [5,6].
Chemically, melatonin is an indoleamine derivative of the amino acid tryptophan, and its biosynthetic
melatonin pathways from tryptophan have been extensively studied in both animals and plants
(Figure 1). Tryptophan is converted into 5-hydrotryptophan in animals, whereas in plants tryptophan
is mainly transformed into tryptamine. These last two compounds are converted into serotonin
(5-hydroxytryptamine), which is finally converted into melatonin (N-acetyl-5-methoxytryptamine)
through the compounds N-acetylserotonin or 5-methoxytryptamine (see Figure 1). All the enzymes
involved in melatonin biosynthesis have been described and characterized in many species of animals
and plants [7].

The name salicylic acid (SA) (ortho-hydroxybenzoic acid) was given to the active ingredient of
willow (Salix sp.) bark by Raffaele Piria in 1838. The first commercial production of synthetic SA
began in Germany in 1874. Aspirin, a trade name for acetylsalicylic acid, was introduced by the Bayer
Company in 1898 and it rapidly replaced the use of SA as it produced less gastrointestinal irritation
but had similar medicinal properties [8]. Salicylic acid is a phenolic compound. The shikimic acid
pathway takes part in the biosynthesis of most plant phenolic compounds. The most common pathway
in plants for SA synthesis is the phenylalanine pathway (Figure 1). However, SA biosynthesis may
also be carried out by the isochorismic acid pathway. The hydroxylation of benzoic acid catalyzed by
the enzyme benzoic acid 2-hydroxylase synthesizes SA. Benzoic acid is synthesized by trans-cinnamic
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acid (produced from phenylalanine by the action of enzyme phenylalanine ammonia lyase), either via
β-oxidation of fatty acids or via a non-oxidative pathway in which trans-cinnamic acid is hydroxylated
to form ortho-coumaric acid followed by oxidation of the side chain (Figure 1) [9–12].
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Figure 1. Biosynthetic routes of salicylic acid and melatonin in plants.

Melatonin and SA biosynthesis pathways share a final common precursor—chorismic
acid—which is generated from shikimic acid (a condensation product of phosphoenolpyruvic acid
from glycolysis and erythrose 4-phosphate from the pentose phosphate pathway (Figure 1). Chorismic
acid is the precursor of the synthesis of three aromatic amino acids—phenylalanine, tryptophan and
tyrosine. Melatonin is synthetized from tryptophan through the anthranilate/indole pathway and SA
from phenylalanine, in addition to the direct isochorismic acid route (Figure 1).

With respect to catabolism, melatonin is usually hydroxylated in different positions of the
indole ring, with 2-hydroxymelatonin being the major catabolite [13]. In the case of SA, several
conjugates have been described, such as methyl salicylic acid, salicyloyl-L-aspartic acid, salicylic acid
2-O-β-glucoside and salicyloyl-glucose ester [9].

2. Common Effects of Melatonin and SA in Abiotic Plant Stress

Melatonin has been considered a multiregulatory molecule in higher plants because of the wide
and diverse range of cellular and physiological actions attributed to it. In 2004, the action of melatonin
as a growth promoter was demonstrated in etiolated Lupinus albus [14]. Also, melatonin is able to
induce root primordials from pericycle cells, generating new adventitious and lateral roots [15].
A significant role of melatonin against abiotic stress was also postulated, using a cold-induced
apoptosis model in carrot cells [16]. Thus, melatonin has been attributed with the capacity to
regulate cellular and plant growth; promote seed germination and rooting; optimize photosynthetic
efficiency and water/CO2 foliar exchange; regulate the internal biological clock and flowering and
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ripening/senescence processes; and finally, to act as an endogenous biostimulator against abiotic or
biotic stressors [17,18].

Many physiological functions have also been assigned to SA. In 1989, Carswell and colleagues
reported that acetyl SA can promote colony formation in maize protoplasts, suggesting a role
in the regulation of the cell cycle [19]. The first indication of a physiological effect on the part
of SA was the discovery of it role in flowering induction and bud formation in tobacco cell
cultures [20]. The pioneering works of Malamy et al. (1990) on the effect of SA in Tobacco
Mosaic Virus [21] and of Métraux et al. (1990) on the role of SA as signaling in systemic acquired
resistance (SAR) [22] clearly demonstrated the implications of SA in plant pathogen responses.
Also, SA influences seed germination, seedling establishment, cell growth, respiration, stomatal closure,
senescence-associated gene expression, basal thermotolerance, nodulation in legumes, and fruit yield,
among others [8,9,23,24]. In both cases (melatonin and SA), the role in some of these processes may
be indirect because they modulate the synthesis and/or signaling of other plant hormones [25,26]
(see below). Table 1 presents a list of the physiological effects in which both molecules (melatonin
and SA) seem to play a relevant role. As can be seen, there are many coincidences between both
molecules, but undoubtedly the aspects that have aroused most interest are those related to their
actions in improving resistance to stress situations.

Table 1. Common physiological effects described for melatonin and SA in plants.

Physiological Effect

Vegetative development
Seed germination

Plant growth
Photosynthesis

Mineral nutrition
Crop yield

Carbohydrate metabolism
Nitrate metabolism

Antioxidant network
Senescence

Plant pathogen response

Reproductive development
Flowering

Seed formation

Abiotic stresss
Water stress: drought, flooding
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Tables 2 and 3 show some representative examples in which the protective roles of melatonin
and SA against different abiotic stresses have been studied. As can be seen, many aspects show
close similarities between both molecules. In general, both are involved in responses to abiotic stress
situations, including a marked improvement in the water status in drought situations, enhanced
biosynthesis of photosynthetically active pigments as well as of the photosynthetic rate, an increase
in metabolites and antioxidant enzymes to balance the redox status, osmotic adjustment to reduce
of membrane injury under stress conditions, and in some cases, growth promotion and enhanced
productivity and yield [8,17,18,27–30].
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Table 2. Effects of melatonin in abiotic stress responses.

Abiotic Stress Plant Species Melatonin Treatment (µM) Effects Observed Reference

Cold Arabidopsis 10–30 ↑ fresh weight, shoot height and primary roots, survival [31,32]
Cold Cucumber 50–500 ↑ GSH pool, ↓ ROS burst [33]
Cold Rhodiola crenulata 0.1 ↑ cryopreservation of callus [34]
Cold American elm 0.1–0.5 ↑ regrowth frozen shoots [35]
Cold Watermelon 150 ↑ photosynthesis, ↓ cold-related microRNA [36]
Cold Wheat 1 mM ↑ redox balance, Chls, osmorregulation, ↓ ROS burst [37]
Cold Cabbage 10–1000 ↑ anthocyanins, proline, redox balance, ↓ ROS burst [38]

Cold, salt, drought Bermudagrass 20–100 ↑ fresh weight, osmorregulation, ↓ ROS burst, cell damage [39,40]
Cold, salt, drought Arabidopsis 50 ↑ sucrose, survival rate [41]

Cold, drought Barley 1 mM ↑ photosynthesis efficiency, ABA, water content, ↓ ROS burst [42]
Heat Phacelia 0.3–90 ↑ germination [43]
Heat Arabidopsis 5–20 ↑ thermotolerance [44]
Heat Tomato 10 ↑ thermotolerance and cell protection [45]

Metal-Cu Pea 5 ↑ plant survival [46]
Metal-Cu Red cabbage 1–100 ↑ fresh weight, germination, ↓ membrane peroxidation [47]
Metal-Cd Tomato 25–500 ↑ Cd tolerance, phytochelatins, ATPase activity [48]
Metal-Pb Tobacco 0.2 ↑ cell culture growth, ↓ mortality cells, ROS burst [49]
Oxidative Arabidopsis 5–10 ↑ plant survival, autophagy, ↓ oxidized proteins [50]
Oxidative Pisum sativum 50–200 ↑ photosynthesis efficiency, pigments, water content, ↓ ROS burst [51]

Salinity Malus 0.1 ↑ shoot height, leaf number, chlorophylls, ↓ electrolyte leakage [52]
Salinity Malus 0.1 ↑ shoot height, K+ channels, K+ level, ↓ ROS burst [53]
Salinity Citrus 1 ↑ osmorregulation, Chls, ↓ ROS burst, membrane peroxidation [54]
Salinity Sunflower 15 ↑ root and hypocotyl growth, antioxidant potential [55]
Salinity Cucumber 1 ↑ germination, GA4, ↓ ROS burst, membrane peroxidation, ABA [56]
Salinity Vicia faba 100–500 ↑ plant height, RWC, photosynthetic pigments, osmolites, phenolic [57]
Salinity Tomato 50–150 ↑ photosynthesis, PSII efficiency, D1 protein turnover, ↓ ROS burst [58]

Alkalinity Tomato 0.25–1 ↑ seedling growth, photosynthesis, ion homeostasis, ↓ ROS burst [59]
Salinity, drought Soybean 50–100 ↑ seedling growth, leaf size, biomass, seed yield [60]

Drought Cucumber 100 ↑ germination, root growth [61]
Drought Grape 0.05–0.2 ↑ seedling growth, osmorregulation, photosynthesis, ↓ ROS burst [62]
Drought Malus 100 ↑ water status, Chls, photosynthesis efficiency, ↓ ROS burst [63]

Leaf-senescence Barley 0.01–1 ↓ senescence, ↑ Chls [64]
Leaf-senescence Malus 10 mM ↓ senescence, ROS burst, ↑ Chls, photosynthesis efficiency [65,66]
Leaf-senescence Arabidopsis 20–125 ↓ senescence, ROS burst, ↑ Chls, photosynthesis efficiency [67]
Leaf-senescence Rice 10–20 ↓ senescence, ROS burst, cell death, ↑ Chls [68]
Leaf-senescence Perennial ryegrass 20–100 ↓ senescence, ROS burst, ↑ Chls, photosynthesis efficiency [69]

↑, Increased content or increased action. ↓ Decreased content or decreased action.
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Table 3. Effects of SA in abiotic stress responses.

Abiotic Stress Plant Species SA Treatment (µM) Effects Observed Reference

Cold Hordeum vulgare 100 ↑ antioxidative enzymes, ice nucleation activity [70]
Cold Musa acuminata 500 ↑ chloroplast and mitochondria ultrastructure [71]
Cold Lycopersicon esculentum 100 ↑ resistance, antioxidative enzymes, PR proteins [72]
Cold Prunus persica 1 mM ↑ antioxidative enzymes, antioxidant metabolites, firmness [73]
Heat Triticum aestivum 500 ↑ proline content, water potential, gas exchange, glutamyl kinase activity [74]
Heat Arabidopsis thaliana 10 ↑ survival, thermotolerance, ↓ oxidative damage [75]

Metal-Cd Brassica juncea 1 mM ↑ mineral nutrients [76]
Metal-Cd Cucumis melo 100 ↑ photosynthesis efficiency, water use efficiency [77]
Metal-Cd Glycine max 120 mM ↑ Chls, photosynthesis efficiency, antioxidative enzymes, GSH [78]
Metal-Cd Ricinus communis 500 ↓ gas exchange, Chls [79]
Salinity Glycine max 500 ↑ antioxidative enzymes, ascorbate [80]
Salinity Vigna radiata 500 ↑ photosynthesis efficiency, plant dry mass, glycinebetaine [81]
Salinity Torreya grandis 500 ↑ photosynthesis efficiency, net CO2 assimilation rates, Chls [82]
Drought Zea mays 1 ↑ net dry weight, water potential, leaf rolling [83]
Drought Simarouba glauca 50 ↑ polyphenols, alkaloids [84]
Drought Triticum aestivum 1 mM ↑ moisture content, dry mass, Rubisco, SOD, Chls [85]

UV-B Poa pratensis 150 mg/m2 α-tocopherol, SOD, CAT, anthocyanins [86]

↑, Increased content or increased action. ↓, Decreased content or decreased action.
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3. Melatonin and SA in Biotic Stress (Plant Pathogen Response)

Tables 4 and 5 provide a list of the papers related to the positive effect of melatonin and SA
on plant pathogen responses. In the first paper, related to melatonin and fungus plant-pathogen
infection, melatonin-treated apple trees using root irrigation improved the resistance of Malus prunifolia
against the fungus Diplocarpon mali (Marssonina apple blotch). At 20 days, the treated trees showed a
lower number of damaged leaves, higher chlorophyll content, a more efficient Photosystem II, and less
defoliation than infected untreated trees. In general, melatonin helped plants with resistance to fungal
infection, reducing lesions, inhibiting pathogen expansion, and generally alleviating disease damage [87].
Also, in some in vitro assays, different concentrations of melatonin showed growth inhibition activities
against plant fungal pathogens such as Alternaria spp., Botrytis spp., and Fusarium spp. The same
occurred in plant-pathogen attacks by Penicillium spp. in non-sterilized Lupinus albus seeds [17]. Table 4
shows five papers that used the Arabidopsis/Pseudomonas syringae as a model of plant–bacterial pathogen
interaction. Melatonin induced pathogen-related genes in Arabidopsis (also in tobacco plants), which
is in accordance with the possible role of this methoxyindole as a defence signalling molecule against
pathogens in plants. In a recent and significant paper, Zhang et al. (2017) demonstrated that melatonin
attenuates severe potato late blight caused by Phytophthora infestans. Melatonin induced plant innate
immunity against fungal infection, inhibiting mycelial growth and changing expression of many genes
associated with stress and virulence [88]. In sum, melatonin up-regulates pathogenesis-related, SA and
ethylene-dependent genes, an effect that was suppressed in mutants defective in SA and ethylene
signalling. Also, melatonin increased nitric oxide (NO) and SA-related genes, accompanied by reduced
susceptibility to the pathogen, leading to an increase in both melatonin and NO. SNAT knockout
mutants not only exhibited reduced levels of melatonin, but also lower levels of SA, along with a greater
susceptibility to the pathogen [89]. No studies on plant viruses and melatonin have been published to
date. Nevertheless, in animals, melatonin is a good therapeutic alternative for fighting bacterial, viral and
parasitic infections [90]. Also, during sepsis, melatonin has been reported to block the overproduction of
pro-inflammatory cytokines and increase interleukin-10 levels. With respect to viral infection, Venezuelan
equine encephalomyelitis (VEE) is an important human and equine disease caused by the VEE virus.
Reactive oxygen species (ROS) have been implicated in the dissemination of the responsible virus, and
its deleterious effects may be diminished by melatonin treatment. The administration of melatonin
significantly decreased the virus level in the blood and brain compared with the levels seen in infected
control mice [90].
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Table 4. Effects of melatonin in biotic stress responses.

Plant Species Biotic Stressor Melatonin
Treatment (µM) Effects Observed Reference

Malus prunifolia Diplocarpon mali 50–500
↑ Resistance to fungal infection
↓ Leaf lesions, cell death
↓ Pathogen expansion

[87]

Arabidopsis and tobacco Pseudomonas syringae DC3000 10 ↑ Defence related genes
↑ Resistance (10-fold vs. mock) [91]

Arabidopsis Pseudomonas syringae DC3000 SE of SNAT
↓ Melatonin (50%), SA
↓ Defence related genes
↓ Resistance to infection

[89]

Arabidopsis Pseudomonas syringae DC3000 20
↑ NO and melatonin
↑ Defence related genes
↑ Resistance

[92]

Arabidopsis and tobacco Pseudomonas syringae DC3000 1 ↑ MAP kinases cascade [93]

Arabidopsis Pseudomonas syringae DC3000 50
↑ CBF/DREB1 (stress factors)
↑ CCA1 (internal clock factors)
↑ Defence related genes

[41,94]

Lupinus albus Penicillium spp. 20–70 ↑ Resistance to fungal infection [17]

Rice Xanthomonas oryzae, XooMagnaporthe
oryzae, blast fungus – Changes in melatonin biosynthesis

enzymes transcripts [95]

Solanum tuberosum Phytophthora infestans 10 mM ↑ Resistance to fungal infection
↑ fungicide effects, ↓ virulence [88]

Manihot esculenta Xanthomonas axonopodis MeRAV1/2 (AP2/ERF) upregulate 7 melatonin
biosynthesis genes [96]

↑, Increased content or increased action. ↓, Decreased content or decreased action.

With respect to SA, the exogenous application of SA at non-toxic concentrations to susceptible
fruits and vegetables could enhance resistance to pathogens and help control post-harvest decay [97].
SA effectively reduced fungal decay in a concentration-dependent manner, as can be seen in the
examples of Table 5. In the case of SA, some studies indicate that it inhibits viral replication [98–100].

Table 5. Effects of SA in biotic stress responses.

Plant Species Biotic Stressor SA Treatment
(mM) Effects Observed Reference

Fragaria ananassa Botrytis cinerea 1–2 ↓ ethylene, fungal disease, ↑ fruit quality [101]

Lycopersicon esculentum Botrytis cinerea 5 ↓ ethylene, lycopene, fungal disease, ↑ fruit
quality [97]

Mangifera indica Collectotrichum gloeosporioides 2 ↑ colour, firmness, ↓ disease severity [102]

Malus domestica Penicillium expansum 0.07–0.7 ↑ efficacy of antagonist C. laurentii [103]

Prunus avium Penicillium expansum 2 ↑ antioxidative enzymes, chitinase, glucanase,
fungal resistance [104]

Pyrusbretschneideri Penicillium expansum 2.5 ↑ antioxidative enzymes, PAL, chitinase,
glucanase, ↓ disease severity [105]

↑, Increased content or increased action. ↓, Decreased content or decreased action.

4. Melatonin, SA and ROS/RNS Network

A relevant role for NO in melatonin responses is proposed, mainly for auxin-like and plant
immune responses. NO and other radical nitrogen species (RNS) and ROS are key signals that increase
under abiotic/biotic stress [8,106]. Generally, RNS and ROS signals tend to act in a coordinated
way. NO levels are self-regulated and also regulate the ROS network through NO-dependent,
post-translational modifications [107]. NO modulates several functions through protein modifications
by nitration, S-nitrosylation and the ligation of NO to transition metals, but also through the
modification of lipids (nitro-fatty acids) and DNA (8-nitroguanine) [108–112]. Moreover, NO triggers
a set of responses to alleviate stress and cellular damage, which includes transient metabolic
reprogramming in both primary and secondary metabolic pathways [107].

Abiotic and biotic stress induce an increase in endogenous melatonin through the upregulation of
melatonin biosynthetic genes [96,113]. Melatonin also increases NO levels through the upregulation
of nitrate reductase (which usually reduces nitrate to nitrite, but can also reduce nitrite to NO
using NADPH as a cofactor). Also melatonin induces the NO synthase-like pathway, in iron
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deficiency-induced NO in rice [114]. Thus, melatonin can also act as an NO and ROS scavenger,
and curiously, in an NO feedback mechanism, NO induces melatonin biosynthesis [113].

Although some data point to the possibility that melatonin might act as an upstream signal,
the complexity of the melatonin–NO interaction makes it difficult to elucidate whether melatonin is
upstream or downstream of NO. Also, H2O2 (an important signal molecule in stress situations), seems
to be decisive in the upregulation of melatonin biosynthesis enzymes, taking as a response an increase
in melatonin levels in stressed plants. In short, mitogen-activated protein kinase (MAPK) signalling,
SA, NO, and H2O2, as well as their cross-talk, are required for melatonin-mediated innate immunity
in Arabidopsis. Also, melatonin and NO change the expression of several transcription factors and
hormone signalling elements, which determines the overall anti-stress response. Also, some plant
hormones such as IAA, CKs and ABA can stimulate NO production [25,26].

This complex relationship between ROS, NO and melatonin is pictured in Figure 2. In the
case of abiotic stress, no model including the signalling cascade for melatonin and SA has been
proposed to date. Fleta-Soriano et al. (2017) studied the role of melatonin in plant response to drought
stress and recovery in maize plants [115]. Furthermore, in that study, the endogenous contents of
melatonin positively correlated with those of stress-related phytohormones, particularly with those of
SA, although exogenous application of melatonin did not alter the contents of any phytohormone.
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A model of melatonin/SA/NO/ROS action in biotic stress responses (pathogen resistance)
has been proposed [9,25] (Figure 3). Pathogen attack increases NO, SA and melatonin levels
through ROS. In the well-known model of Arabidopsis/Pseudomonas syringae DC3000 (avrRpt2),
plant–pathogen interactions revealed that the mitogen-activated protein kinase cascade (MAPKKK3)
and OXI1 (oxidative signal-inducible1) kinases are responsible for triggering melatonin-induced
defence signalling pathways [93,116]. The key enzyme in SA biosynthesis—isochorismate synthase-1
(ICS-1)—was upregulated by melatonin, increasing SA levels and triggering a pathogen-induced
response. Also, melatonin and NO were able to induce jasmonic acid (JA) biosynthesis and
increase several sugar and glycerol levels, all of which activate pathogen-related gene expression.
The melatonin-induction of ethylene biosynthesis, through ACC synthase (ACS6), collaborates in the
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induction of pathogenesis-related genes (PR), whereby ethylene insensitive (EIN), enhanced disease
susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4) and NPR1 factors are key signalling components
in the plant SA- and ethylene-mediated defence responses [17,41,91,92,96,116–119]. More recently,
it has been demonstrated that MeRAV1 and MeRAV2 factors (apetala2/ethylene response factor,
AP2/ERF) are essential for plant disease resistance against bacterial blight in cassava through the
upstream of transcription factors of melatonin biosynthesis genes [96].Agronomy 2018, 8, x FOR PEER REVIEW  9 of 15 
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5. Future Perspectives for Melatonin and SA in Agronomic Applications

Both molecules are of great interest as modulating agents of anti-stress responses in plants. Also,
both have the capacity to directly or indirectly interact with ROS and RNS. Knowledge of the possible
relationships with other hormones in aspects related to pathogen resistance and the response to
abiotic stresses is of great relevance. The possibility of “sensitizing” plants to abiotic agents through
priming or other methods might be of interest in order to increase the resistance of crops. SA- or
melatonin-induced activation to reduce damage caused by water deficits (drought), while maintaining
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the proper metabolism in the face of this stress situation is clearly an essential objective for increasing
plant/crop development and yield. Obtaining transgenic plants that overexpressed SA and melatonin
biosynthesis genes could be another interesting approach, both for research per se and for application
in crops, provided that the limitations to the use of transgenic plants are not transgressed. In both
cases, the over-accumulation of SA and melatonin in plant tissues increase the resistance response
against stressors. Figure 4 shows a schematic model in which both molecules studied in this paper
present agonist behaviour to reduce or moderate the harm caused by stressors with the final aim of
improving plant development and crop yield.Agronomy 2018, 8, x FOR PEER REVIEW  10 of 15 
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