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Abstract: In recent years, it has become readily accepted among interdisciplinary agriculturalists
that the current global crop yield to land capability ratio is significantly insufficient to achieve
food security for the predicted population of 9.5 billion individuals by the year 2050. This issue
is further compounded by the: (1) food versus biofuel debate; (2) decreasing availability of arable
land; (3) required reductions to the extensive and ongoing environmental damage caused by either
poor agricultural practices or agriculture expansion, and; (4) increasingly unfavorable (duration
and severity) crop cultivation conditions that accompany man-made climate change, driven by
ever-expanding urbanization and its associated industrial practices. Mounting studies are repeatedly
highlighting the critical importance of linking genotypes to agronomically beneficial phenotypes
and/or using a molecular approach to help address this global crisis, as “simply” clearing the
remaining natural ecosystems of the globe for the cultivation of additional, non-modified crops is
not efficient, nor is this practice sustainable. The majority of global food crop production is sourced
from a small number of members of the Poaceae family of grasses, namely; maize (Zea mays L.),
wheat (Triticum aestivum L.) and rice (Oryza sativa L.). It is, therefore, of significant concern that all
three of these Poaceae grass species are susceptible to a range of abiotic stresses, including drought
and salt stress. Highly conserved among monocotyledonous and dicotyledonous plant species,
microRNAs (miRNAs) are now well-established master regulators of gene expression, influencing
all aspects of plant development, mediating defense responses against pathogens and adaptation to
environmental stress. Here we investigate the variation in the abundance profiles of six known abiotic
stress-responsive miRNAs, following exposure to salt and drought stress across these three key Poaceae
grass crop species as well as to compare these profiles to those obtained from the well-established
genetic model plant species, Arabidopsis thaliana (L.) Heynh. Additionally, we outline the variables
that are the most likely primary contributors to instances of differential miRNA abundance across the
assessed species following drought or salt stress exposure, specifically; (1) identifying variations in
the experimental conditions and/or methodology used to assess miRNA abundance, and; (2) the
distribution of regulatory transcription factor binding sites within the putative promoter region of
a MICRORNA (MIR) gene that encodes the highly conserved, stress-responsive miRNA. We also
discuss the emerging role that non-conserved, species-specific miRNAs play in mediating a plant’s
response to drought or salt stress.
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1. Introduction

The global human population relies heavily on the major Poaceae cereal grasses, maize (Zea mays L.),
wheat (Triticum aestivum L.), and rice (Oryza sativa L.), for their daily calorie intake [1,2]. Covering
a large proportion of the global terrestrial land space, Poaceae grasses not only act as a primary
sustenance source for humans (in the form of calories) but also contribute to agricultural pastures
(e.g., rye (Secale cereal L.)) used to feed livestock [1,3]. Two other Poaceae grass species, Sorghum
(Sorghum bicolor (L.) Moench) and sugarcane (Saccharum officinarum L.), form the primary basis of the
plant material source for biofuel production, further highlighting the central importance of Poaceae
grasses [4,5]. It is no longer debatable that modern society is challenged with the task of trying to
address the consequences of climate change, with interdisciplinary research now aiming to provide
food crop security for an exponentially growing population during times of increasingly unfavorable
conditions, and in unsuitable crop cultivation environments [6]. Alarmingly, numerous studies
have demonstrated that drought and/or salinity reduce the yield potential of the major cereal crops
maize, wheat and rice, every growing season [7–14]. Moreover, use of regression modeling based on
historical data and the predictions based on extrapolated trends of crop yield and climatic trends have
highlighted the negative impact climate change associated factors (e.g., reduced precipitation) have
had, and are continuing to have, on global Poaceae crop yield [15,16]. Having greatly modified the
global land cover over the last fifty years, there has been a shift from the historical clearing of depleted
grasslands and savannas, to the alarming and current practice of clearing land rich in biodiversity,
such as tropical forests, for additional grass crop production [17,18]. As one of the largest contributing
factors to greenhouse gas emissions and biodiversity reduction, this practice reinforces the urgent need
for an alternate, molecular-based approach that targets crop yield maximization.

In addition to their central role in regulating developmental gene expression, plant microRNAs
(miRNAs), and more specifically, miRNA-directed gene expression regulation, have more recently
been identified as key regulators of plant metabolism, pathogen defense and for a plant to mount
an effective adaptive response to abiotic stress [19–21]. Alterations to; (1) miRNA accumulation,
and/or; (2) miRNA-directed target gene expression regulation have been extensively described in a
wide range of plant species following exposure of the plant under study to abiotic stimuli such as
drought stress, salt stress, extreme temperature (both elevated and reduced temperatures) and nutrient
deficiency [19–26]. Such research has aimed to construct a more detailed molecular understanding
of the fundamental, abiotic stress induced, miRNA-directed gene expression networks in plants. For
example, the goal of many groups now actively researching in this space is use of knowledge gained
to develop future plant varieties that have been modified to harbor genetic improvements that will aid
in the modified plant’s ability to cope with, or adapt to, an altered growth environment. Additional
studies have further emphasized the critical importance of using a molecular approach to help address
this global crisis, as “simply” clearing even more natural ecosystems for the cultivation of additional,
non-modified crop species is not efficient, nor is this practice sustainable [1,27,28].

Considering the high level of conservation of many MICRORNA (MIR) gene families across the
monocotyledonous and dicotyledonous evolutionary divide, in conjunction with the phylogenetic
proximity of agronomically significant Poaceae crop species [29], investigating and manipulating abiotic
stress-responsive miRNA/miRNA target gene expression modules presents a promising new and
relatively unexplored avenue for the future development of phenotypically superior cropping species.
However, a high level of caution is still required when a traditional genetic model plant species,
such as Arabidopsis thaliana (L.) Heynh (Arabidopsis), is used as the basis of the research platform for
knowledge advancement in an unrelated and agronomically important species. Furthermore, even the
use of a closely related plant species can be problematic when researching a multilayered molecular
mechanism such as miRNA-directed gene expression regulation. Here, we will highlight examples of
the degree of variation in the profile of six highly conserved miRNAs across several plant species in
response to each species being challenged with either the insult of drought or salt stress. Moreover,
the degree of variation in the response of stress-responsive miRNAs to abiotic stress, becomes an even
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more pronounced challenge when attempting to translate findings made in the traditional genetic
model plant species, Arabidopsis, to agronomically important Poaceae grass crop species.

2. The Impact of Drought and Salt Stress on American and Australian Agriculture

Plant agricultural yield is heavily dictated by climatic conditions [30–32], and although crops are
equipped to cope with year-to-year weather variability, recent research has shown that the increasingly
unfavorable conditions that accompany man-made climate change are continuing to have a negative
impact on global agricultural yield [19,30,33]. The Food and Agriculture Organization (FAO) defines
the four key dimensions of food security as; (1) availability; (2) stability; (3) access, and; (4) use,
with each of these key dimensions hindered to differing degrees by climate change events, such
as prolonged periods of drought [34–36]. This growing and alarming trend is ultimately reducing
the global capability to produce the “viable” crop volume required to provide food security, and to
additionally provide the required volume of material to offer an alternate and sustainable biofuel
source for an exponentially growing world population [27,37,38]. In recent years, it has become
widely accepted among plant biologists that the current yield to land capability ratio is significantly
insufficient to meet the needs of the predicted world population of 9.5 billion individuals by the year
2050; a population that will require an additional global agricultural output of 60% to 110% [38–40].
To highlight the negative impacts accompanying the abiotic stresses, drought and salt stress, abiotic
stresses that significantly reduce global agricultural output annually, this review focuses on key
agricultural crop producing regions of the United States of America (US) and Australia, specifically,
the crop producing areas of the west coast of the US that rely on irrigation sourced from the Colorado
River, and the Murray-Darling Basin of Australia, respectively.

In the US, during the 2015–2016 financial year, 345 million (M) tons of maize were produced,
equating to a projected total dollar value of approximately 49 billion (B) US dollars ($USD;
$USD49B) [41]. The total tonnage and dollar value of the 2015/2016 US maize crop is not surprising
considering that from 2013 onwards, 70% of the total human calories consumed globally were derived
from grasses, and of this 70%, maize comprised 91.7% of the C4 grass fraction [42]. However,
the possibility of drought to devastate crop yield potential is readily apparent with Daryanto and
collaegues (2016) demonstrating that a 40% reduction in water availability results in a 39.3% reduction
to total maize yield [43]. Furthermore, this alarming finding is in addition to the study published
in the journal, Nature Climate Change in 2013. Using historical weather records in combination with
modern prediction software, Dai (2013) confidently modeled that the US will suffer from severe and
widespread incidents of drought throughout the next century as a direct result of reduced precipitation
and/or elevated evaporation [15].

Domestically, the terrestrial surface of the Australian mainland consists of approximately
70% (5.5 million km2) rangeland of mostly arid to semi-arid climate [44,45]. This environment is
characterized by; (1) low rainfall; (2) long periods of extreme dryness; (3) infertile soils, and; (4)
largely being an inappropriate environment to sustain standard agricultural practices [33,44,45]. The
lack of suitability of this environment within the Australian mainland for agricultural use is further
shown by the current (March 2018) trend maps obtained from The Australian Government, Bureau of
Meteorology (retrieved from http://www.bom.gov.au/). These trend maps clearly display an increase
in annual mean temperature from 1970–2015, a decline in total annual rainfall over the same period
(1970–2015), and a decline in the Normalized Difference Vegetation Index (NDVI), as of August 2015.
This publicly available data clearly emphasizes the alarming trends of a rising mean temperature,
a reduction in total rainfall, and the almost complete absence of vegetation across the majority of
inland Australia (as shown by the lack of “green” vegetation observed by satellite generated NDVI
imagery). Australian agriculture therefore remains heavily reliant on the farming practices of the
Murray-Darling Basin, an agricultural region that currently contributes approximately 40% of the
nation’s agricultural output, equating to $15B Australian dollars ($AUD; $AUD15B) annually [46,47].
This is an impressive production figure considering that the Murray-Darling Basin only represents

http://www.bom.gov.au/
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approximately 14% of Australia’s total land surface area [46,47]. Of considerable concern however, are
the reports indicating that by 2030, surface water availability in this region will be drastically reduced,
with the utilized data suggesting that this “climatological disaster” has the potential to greatly impede
Australia’s agricultural commodity production capabilities by up to, and in excess of 27% [48–50].
Furthermore, Australia is the world’s sixth largest exporter of agricultural commodities, including; (1)
dairy products ($AUD2.5B); (2) wheat ($AUD2.0B); (3) other cereal-derived flours ($AUD1.5B), and; (4)
wine ($AUD3B). Together, these commodities contribute significantly to the global food supply and to
the national revenue of Australia [47]. It is, therefore, in the nation’s best interest to enhance and refine
current farming practices to ensure their future stability, efficiency and production capabilities [47].

On a global scale, over 800 million hectares of soil is impacted by salinity, including
groundwater-associated salinity, transient salinity, and irrigation-related salinity [51]. Excluding
contributing climatic and topographic factors, the severity and prevalence of salinity affected soil is
enhanced by the destructive impact of human activities, be it agricultural or industrial practices [52,53].
Similar to the impact of drought stress, increasing salinity is reducing the global capability to meet
the ever-increasing demands for ensuring food security while providing an alternate and sustainable
source for biofuel production [37,39]. Therefore, the rapidly growing demands for additional
cultivatable soil poses a significant issue that also requires urgent attention to achieve sustainable food
and energy production [30–32].

In the US, one of the most salt affected rivers, the Colorado River, is also one of the nation’s
longest rivers, spanning 2330 km across seven US states, and two additional states in neighboring
Mexico. The Colorado River is also the main source of agricultural irrigation and domestic water
supply for the Southwest coast of North America. Over three decades ago, Holburt (1984) highlighted
that up until 1982, salinity was causing $USD113M in damage annually in this region, and further
predicted that this dollar figure would at least double in future decades [54]. This prediction has
proved accurate with a 2004 study [55] revealing that salinity associated issues within the Colorado
basin, were causing $USD150M of annual damage to the entire US agriculture industry, and a total of
$USD300M damage to the US economy [55]. Moreover, the United States Department of Agriculture
(USDA) estimated that the state of California (one of the seven US states that the Colorado River and
its associated tributaries flow through), contributed a total agricultural market value of $USD42.6B
in 2012 to the US economy: a figure that represents 10.8% of the total US dollar value for that
year (https://www.agcensus.usda.gov/). Further, when the USDA further breaks this dollar value
down into individual contributions made by the crops, maize, wheat and rice, the 2012 Californian
crop market value of each species in 2012 was $USD419M, $USD341M and $USD782M, respectively
(or, equating to 0.62%, 2.17% and 27% of the total US value of each cropping species, respectively)
(https://www.agcensus.usda.gov/). Therefore, considering the dollar value that these three Poaceae
grass crop species contribute to the US economy, in combination with the demonstrated susceptibility
of the yield of maize [56], wheat [57,58] and rice [14,59] to salt stress, the immediate requirement for
adoption of a molecular approach to generate future phenotypically superior varieties of each of these
species, becomes clear.

The Murray-Darling Basin again provides an excellent example of the negative impact salinity has
on Australian agriculture, with approximately 71% of the nation’s irrigated agricultural production
occurring in this region [46]. The process of large-scale commodity production is rapidly exhausting
the Murray-Darling Basin’s ecological capabilities because of exploitation, drought (see above), and the
ever-increasing levels of salinity due to relentless irrigation practices [60,61]. As outlined above, this
environmental damage has a direct and negative impact on total crop yield and therefore, Australia’s
annual agricultural revenue [46,62]. In 2004, the Wilson Report estimated that dryland salinity was
costing the Murray-Darling Basin an approximate $AUD305M loss in profit per annum [63]. Further,
this dollar value estimate did not include the cost of damage to indigenous heritage sites, nor the
natural environment of the Murray-Darling basin as a whole [63]. Moreover, given that the agricultural
practices on which the Wilson Report data was generated, have continued largely unchanged since
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the release of the Report in 2004, it is reasonable to suggest that this extensive level of damage,
and the monetary costs associated with this ongoing damage, have only increased in each of the
fourteen years since the Report’s findings were released. It is also reasonable to state that if measures
are not implemented in the very near future to enhance current crop capabilities, while in parallel
adjusting traditional and unfavorable farming practices under the constantly changing environment,
rising salinity will continue to have a widespread and negative impact for; (1) landholders; (2)
rural communities; (3) countries that import Australian agriculture products, and obviously; (4) the
Australian nation and its economy as a whole [46,47,62,64].

3. The Role of Plant microRNAs in Response to Drought and Salt Stress

Abiotic stress, including drought and salt stress, is one of the major contributors to global crop
destruction and yield loss. Although plants are evolutionary equipped to employ physiological and
phenotypical mechanisms to adapt to, or to at least tolerate abiotic stress, it is becoming increasingly
evident that molecular-based approaches offer a new, alternate, and attractive avenue to generate plant
lines with enhanced tolerance to this form of stress [65]. Abiotic stress tolerance can be engineered into
new plant lines via the molecular modification of hormone signaling or perception pathways, root
and/or shoot architecture, osmotic potential, or metabolic pathways [66]. Such a molecular approach
primarily requires switching on, or switching off, the expression of a specific gene(s) that encodes
for a specific protein product that is functional at a specific stage of plant development. However,
a molecular approach may also be used to modulate, or to “fine tune”, the expression of a gene to
ensure that a key metabolic enzyme or other biologically relevant protein product is; (1) at the correct
level; (2) localized to the appropriate cell or tissue type, or cellular compartment, and; (3) functional as
a rate limiting step in a complex biochemical pathway [25,67,68].

In the genetic model species Arabidopsis, and once processed from the precursor transcript,
the mature miRNA is loaded by the endonuclease, ARGONAUTE1 (AGO1), to form the catalytic
core of the miRNA-directed, RNA Induced Silencing Complex (RISC), termed miRISC [69]. The
activated miRISC uses the loaded miRNA small RNA (sRNA) as a sequence specificity determinant
to target highly complementary messenger RNA (mRNA) transcripts for expression repression via
either a mRNA cleavage or translational repression mechanism of miRNA-directed RNA silencing [69].
miRNAs are well known regulators of developmental gene expression [70] and have more recently
been identified to also act as central regulators of gene expression in plants to effectively mount; (1)
a defense response against invading pathogens (including viruses, bacteria, and fungi), or; (2) an
adaptive response to environmental challenge, namely to respond to abiotic stress stimuli [20,71].
Taken together, these findings identify the miRNA class of sRNA, an ideal target for molecular
modification as part of the future development of plant lines with engineered resistance (or enhanced
resistance) to abiotic or biotic stress. The first step in the development of such plant lines is the
molecular manipulation of individual miRNA/miRNA target gene expression modules. The most
direct route to achieve this goal is the generation of plant lines with altered miRNA abundance. miRNA
overexpression is a very straightforward procedure and is achieved via fusion of the DNA sequence
encoding the miRNA precursor transcript to a constitutively, and frequently ubiquitously expressed,
promoter such as the 35S promoter from the Cauliflower mosaic virus (CaMV), a widely used promoter
in Arabidopsis transformation approaches [72–75]. Such an approach essentially generates a knockout
mutation for each gene transcript that harbors a target site sequence complementary to the miRNA
sRNA being over-expressed (see studies; [76–78], respectively for Arabidopsis, rice, and wheat-specific
examples). miRNA knockdowns, or complete knockouts, have been generated in planta via the use
of a range of molecular technologies, including the miRNA mimicry [79,80], MIR gene promoter
methylation [81], artificial miRNA [82], short tandem target mimicry [83], and miRNA sponge [84]
technologies. Each approach differs in the degree of efficacy it offers for the suppression of miRNA
abundance (which also differs for each targeted miRNA, per technology). However, each technology
allows for the generation of a plant line with elevated miRNA target gene expression, and therefore,
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enabling use of the generated plant line to study the biological consequence of miRNA target gene
overexpression. The parallel generation of both a miRNA overexpression (a miRNA target gene
knockdown plant line) and knockdown (a miRNA target gene overexpression plant line) plant line
is highly recommended for the accurate assignment of biological function to the miRNA target gene
whose expression is altered in the resulting engineered plant lines: modified plant lines that would be
expected to display reciprocal phenotypes when applying the miRNA overexpression and knockdown
approaches in parallel.

Numerous studies across the key grass crop species, maize, wheat, and rice, have identified both
conserved (found across numerous plant species within the plant kingdom) and non-conserved (found
only in a single species, or a group of closely related species within the plant kingdom) miRNAs
responsive to either drought or salt stress [85–90]. For example, the studies of [85–88], identified
34, 13, 30 and 5 miRNAs, respectively in maize, wheat, rice, and Arabidopsis, responsive to drought
stress. Drought-responsive miRNAs were identified in all four of these studies via the application
of miRNA microarray hybridization technology. This approach enables direct comparison of the
miRNA abundance profiles of “stressed” versus “non-stressed” plants [85–88]. Similarly, 98, 44 and
10 miRNAs were determined responsive to salt stress in the microarray hybridization assays performed
in maize [89], wheat [90] and Arabidopsis [88], respectively. Additionally, Shen and colleagues (2010)
used a modified high throughput assessment, a one-tube, stem-loop primer-based, reverse transcriptase
approach to quantify miRNA abundance via subsequent RT-qPCR assessment [91]. This approach
identified 18 salt responsive miRNAs in rice [91]. More recent miRNA detection studies, primarily
rely on the use of next-generation RNA sequencing (of the sRNA fraction) to identify known and
novel miRNAs responsive to either drought or salt stress [23,92,93]. Next-generation sequencing is a
high throughput approach that allows for the identification and quantification of transcriptome-wide
stress-responsive miRNAs (or other RNA transcripts), compared to a more traditional technology, such
as miRNA microarrays. For example, a next-generation sequencing approach was used in rice [93] and
wheat [23], to identify 18 and 66 drought-responsive miRNAs, respectively.

4. The Varying Responses of Six Highly Conserved microRNAs to Drought and Salt Stress

Curiously, despite instances of high conservation of miRNA sequence, and miRNA target gene
function, across diverse plant species, in combination with the close phylogenetic proximity of
key agronomical Poaceae family members, numerous examples of differential miRNA accumulation
responses to either drought or salt stress have been reported. This is a major issue that requires
consideration when comparing the profile of Arabidopsis abiotic stress-responsive miRNAs, to those
obtained from agronomically important crop species. For example, Zhou and colleges (2010) revealed
that nine miRNAs (including miRNAs, miR156, miR168, miR170, miR171, miR172, miR319, miR396,
miR397, and miR408) in drought-stressed rice, returned an opposing accumulation profile comparative
to the miRNA profile of drought-stressed Arabidopsis [87,88]. Such differences in the response of
individual miRNAs to the same abiotic stress treatment (as determined by sRNA abundance fold
changes) across Arabidopsis, maize, wheat, and rice, are highlighted in Figure 1. Figure 1 clearly shows
that the accumulation trend of six highly conserved miRNAs, including miR159, miR164, miR167,
miR168, miR396 and miR397, can differ following either drought or salt stress treatment of these four
plant species. The selection of the six miRNAs listed in Figure 1 was based on each miRNA being; (1)
firmly classified as a highly conserved miRNA; (2) reported in each of the four plant species discussed
here, and; (3) demonstrated to direct a regulatory role in a plant’s response to abiotic stress in at least
one of the four plant species focused on in this study. We, the authors, readily acknowledge that several
recent review articles have detailed the abundance trends of much larger cohorts of miRNAs, and
across additional plant species to those reported on here (see the following recent reviews [68,94–97]).
However, the primary focus of this article is to identify the experimental and molecular variables that
when taken together, potentially account for the reported accumulation differences in the same miRNA
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sRNA following exposure to abiotic stresses, drought, and salt stress, across the four plant species
under analysis.Agronomy 2018, 8, x FOR PEER REVIEW  7 of 20 
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indicate reduced miRNA abundance in response to the applied stress. Blue shaded boxes indicate that 
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exposure to the same stress. Black shaded boxes identify miRNAs for which data is currently lacking 
in the assessed species. The gene family to which the target gene(s) of each of the 6 selected miRNAs 
belongs is indicated in the line immediately below the name of the targeting miRNA at the top of each 
column, more specifically MYB (MYELOBLASTOSIS), NAC (NAM/ATAF/CUC2), ARF (AUXIN 
RESPONSE FACTOR), AGO (ARGONAUTE), GRF (GROWTH REGULATING FACTOR) and LAC 
(LACCASE). The data used to construct Figure 1 was sourced from studies [23,68,85–103]. 
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Arabidopsis, miR396 abundance was elevated 2.6-fold by drought stress treatment (200 mM mannitol) 
however, miR396 levels were only mildly upregulated by 0.7-fold in drought-stressed maize (16% 
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Figure 1. MicroRNA accumulation trends in Arabidopsis, rice, wheat, and maize in response to
drought and salt stress. The accumulation of miRNAs, miR159, miR164, miR167, miR168, miR396 and
miR397, in response to drought and salt stress in Arabidopsis, rice, wheat and maize. Green shaded
boxes indicate elevated miRNA abundance in response to the applied stress. Red shaded boxes indicate
reduced miRNA abundance in response to the applied stress. Blue shaded boxes indicate that miRNA
abundance has been reported by different studies to have an opposing abundance trend post exposure
to the same stress. Black shaded boxes identify miRNAs for which data is currently lacking in the
assessed species. The gene family to which the target gene(s) of each of the 6 selected miRNAs belongs
is indicated in the line immediately below the name of the targeting miRNA at the top of each column,
more specifically MYB (MYELOBLASTOSIS), NAC (NAM/ATAF/CUC2), ARF (AUXIN RESPONSE
FACTOR), AGO (ARGONAUTE), GRF (GROWTH REGULATING FACTOR) and LAC (LACCASE). The
data used to construct Figure 1 was sourced from studies [23,68,85–103].

Taking a single example, miR396, from the six presented in Figure 1, differential accumulation
trends have been reported for this miRNA in drought-stressed Arabidopsis and maize. Namely, in
Arabidopsis, miR396 abundance was elevated 2.6-fold by drought stress treatment (200 mM mannitol)
however, miR396 levels were only mildly upregulated by 0.7-fold in drought-stressed maize (16% w/v
polyethylene glycol (PEG)-6000) [88,101]. Furthermore, this “positive” drought-induced accumulation
profile for the miR396 sRNA is not universal across plant species. For example, microarray assays of
“drought-shocked” Emmer wheat (Triticum dicoccoides (Körn.) Thell), demonstrated a negative response
for miR396 to this stress with miR396 abundance reduced 3.0-fold [86]. Differential abundance trends
are also observed for miR396 to salt stress across individual plant species. For example, Liu and
colleagues (2008) showed that in Arabidopsis, miR396 abundance was upregulated 3.0-fold in response
to a 300 mM salt (sodium chloride (NaCl)) stress growth regime, while an opposing and negative
accumulation profile was reported for the miR396 sRNA in maize post exposure to salt stress [88,89].
It is important to note here however, that the accumulation profile for miR396 was determined via
microarray analysis in Arabidopsis [88], whereas a PCR-based approach was used to quantify miR396
abundance in the salt-stressed maize samples [89]. The variation in miRNA abundance profiles across
the four assessed plant species in response to drought and salt stress exposure extends beyond miR396,
as readily demonstrated for the other five miRNAs also profiled in Figure 1. Figure 1 also clearly
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highlights the degree of caution that needs to be exercised by a researcher when assessing miRNA
accumulation profiles in response to abiotic stress across individual plant species.

5. Investigation of the Transcription Factor Binding Site Landscapes of MICRORNA Gene
Promoters

To attempt to account, at least partially, for the reported variability in miRNA accumulation
profiles across plant species exposed to the same abiotic stress, the promoter regions of the MIR gene
loci of maize, rice and Arabidopsis that encode miRNAs, miR159, miR164, miR167, miR168, miR396
and miR397, were assessed for the presence of known plant-specific cis-regulatory elements (CREs).
Utilizing PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/), an online
database that houses 435 known, plant-specific CREs, the three kilobase (kb; 3000 base-pairs) region
immediately upstream of the MIR gene sequence encoding the precursor-miRNA (pre-miRNA)
transcript (pre-miRNA; the region of the larger sized non-protein-coding transcript, the primary miRNA
(pri-miRNA) that folds back onto itself to form the stem-loop structure of miRNA precursor transcript)
of each assessed miRNA was retrieved from the NCBI (https://www.ncbi.nlm.nih.gov/) database
for this analysis [104]. To reduce the number of CREs returned for this analysis, search parameters
within the PlantCARE database were limited to only CREs previously associated with responses to
plant hormones, circadian rhythm, or abiotic stress (see Table 1).

Table 1. The number of transcriptional cis-regulatory sites in MICRORNA gene promoter regions.
The presence of known plant-specific cis-regulatory elements (CREs) were identified within the 3 kb
region immediately upstream of the pre-miRNA encoding sequence (the putative promoter region
of each assessed MIR gene). Only plant hormone, circadian rhythm, and abiotic stress-related CREs,
were reported for the putative promoter regions of the 70 MIR genes that encode the mature miRNAs,
miR159, miR164, miR167, miR168, miR396 and miR397, of maize, rice, and Arabidopsis, were included
in this analysis.

Mature
miRNA

Number of
Pre-miRNAs

Number of cis-Regulatory Elements in Promoter
Region of PRE-MIRNA Encoding Sequence Total

Hormone
Related

Circadian
Rhythm-Related

Abiotic Stress
Related

Ath-miR159 3 (A-C) 20 4 16 40
Osa-miR159 6 (A-F) 40 8 47 95
Zma-miR159 8 (A-H) 66 15 56 137
Ath-miR164 3 (A-C) 25 4 25 54
Osa-miR164 6 (A-F) 54 5 65 124
Zma-miR164 8 (A-H) 88 11 76 175
Ath-miR167 4 (A-D) 20 4 31 55
Osa-miR167 10 (A-J) 95 28 82 205
Zma-miR167 4 (A-D) 33 6 31 43
Ath-miR168 2 (A-B) 11 2 10 23
Osa-miR168 1 (A) 6 1 14 21
Zma-miR168 2 (A-B) 16 6 11 33
Ath-miR396 2 (A-B) 18 2 25 45
Osa-miR396 3 (A-C) 26 5 16 47
Zma-miR396 2 (A-B) 12 2 20 34
Ath-miR397 2 (A-B) 10 3 17 30
Osa-miR397 2 (A-B) 22 4 9 35
Zma-miR397 2 (A-B) 17 0 9 26

The online miRNA Repository, the miRBase database (http://www.mirbase.org), was initially
used to identify the pre-miRNA transcript sequences from which the six mature miRNA sRNAs under
analysis are liberated. This approach identified 70 unique pre-miRNA transcripts from maize, rice and
Arabidopsis, and subsequent use of these 70 pre-miRNA transcript sequences in NCBI, further revealed

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://www.ncbi.nlm.nih.gov/
http://www.mirbase.org
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that each is derived from a distinct chromosomal position (a unique MIR gene locus) within the three
searched plant genomes. Upon screening the 3 kb putative “promoter region” upstream of each of
the 70 MIR genes, a total of 1209 CREs relating to plant hormones (n = 579 CREs), circadian rhythm
(n = 110 CREs) and abiotic stress (n = 560 CREs) were identified using PlantCARE (Table 1). The
abiotic stress-related CREs included in this analysis have been demonstrated responsive to, extreme
temperature (heat or chilling), drought, anoxic response, aerobic response, and abscisic acid (ABA)
signaling. Although abiotic stresses such as extreme temperatures or flooding (driving an anaerobic
response) are not the focus of this review, CREs responsive to such stimuli were included nonetheless.
Their inclusion was to attempt to document the considerable overlap in complex gene networks that the
protein products encoded by these genes function in, in a plant that is mounting an adaptive response
to an array of abiotic stresses [105,106]. Similarly, given the high degree of documented crosstalk
between the plant hormone directed gene expression pathways throughout development, and/or
in response to either abiotic and biotic stress [106–109], all plant hormone related CREs responsive
to, ethylene, salicylic acid, auxin, ABA, gibberellin, and methyl jasmonate, were also included in
the PlantCARE analyses (Table 1). Table 1 clearly shows that there is a distinct occurrence of CREs
harbored within the putative promoter region of each MIR gene family assessed (the MIR159, MIR164,
MIR167, MIR168, MIR396 and MIR397 gene families), and further, that the number, and class of
CRE, differs widely per MIR gene family, and per plant species (Arabidopsis, rice, and maize). This
wide variability in CREs presence/absence, and frequency per MIR gene locus/gene family, could
explain in part, the documented differences in response of MIR gene expression (and subsequent
mature miRNA accumulation) to either drought or salt stress across Arabidopsis, rice, and maize.
Table 1 also clearly indicates that when studying miRNA-directed responses to either drought or salt
stress, all experimental analyses should be performed in the specific species of interest, in parallel to
the functional characterization of the miRNA/miRNA target gene expression module in Arabidopsis
(if such functional studies cannot also be performed in the specific plant species of interest).

6. Timing, Treatment, Tissue and “Tolerance” to Drought and Salt Stress

To further account for the variability in miRNA accumulation profiles in response to drought
or salt stress stimuli, the experimental methodology of the stress treatment must also be considered.
It is readily apparent from investigation of the large body of work stemming from either drought or
salt stress treatment of plants, that although the “same” abiotic stress is under investigation, there are
distinct differences arising from variations in the treatment or preparation of tissues being sampled
for subsequent molecular analyses. Specifically; (1) the time of day the tissue is sampled (morning
sampling versus sampling in either the afternoon, evening, or night); (2) the developmental phase of
the plant (e.g. is the plant being stressed during, vegetative phase, reproductive phase or grain/seed
development?); (3) the tissue type selected for analysis (whole plant or seedling versus sampling
of only the root tissue, shoot tissue, or reproductive tissue); (4) the form of stress treatment applied
(withholding water from soil cultivated plants versus the use of various osmotica in growth media for
tissue culture cultivated plants); (5) the severity, timing and length of stress application (mild stress
application over an extended treatment period versus a short and intense burst of stress application),
and; (6) the degree of stress tolerance across cultivars of an investigated species, across subspecies,
or even across closely related plant species. Each of these listed parameters will add to the overall
degree of observed variance in miRNA accumulation, and therefore, miRNA-directed target gene
expression regulation, in response to either drought or salt stress.

Assessment of the CRE landscape of the promoter regions of the six assessed MIR gene families,
including the MIR159, MIR164, MIR167, MIR168, MIR396 and MIR397 gene families, across maize,
rice and Arabidopsis, identified 110 CREs related to circadian rhythm harbored within these putative
promoter sequences (Table 1). The frequency at which circadian rhythm-related CREs were identified,
suggests that the transcription of these MIR genes is likely already influenced by environmental cues,
even in the absence of abiotic stress stimuli. Similar findings have already been reported for Arabidopsis
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miRNAs, miR167, miR168, miR171 and miR398, with the abundance of each sRNA demonstrated
to oscillate between night and day [110]. Further, a tiling array of 114 Arabidopsis miRNAs [111]
identified multiple circadian rhythm-related miRNAs. These two Arabidopsis focused studies, together
with the CRE data presented here in Table 1, clearly identify the importance of considering temporal
dynamics when a researcher is deciding on the appropriate time of day to harvest their tissue(s) of
interest for subsequent molecular assessment of miRNA accumulation and miRNA-regulated gene
expression responses to drought or salt stress treatment. The diurnal cycle has also been shown
to influence the stability of the key machinery protein, DOUBLE-STRANDED RNA BINDING1
(DRB1). In the plant cell nucleus, DRB1 together with functional partners, DICER-LIKE1 (DCL1; an
endonuclease), and SERRATE (SE; a zinc-finger protein with binding affinity for double-stranded
RNA (dsRNA)), are an absolute requirement for the accurate and efficient processing of miRNA
precursor transcripts as part of the production of the mature miRNA sRNA [112–115]. Cho and
colleagues (2014) demonstrated that in the cytoplasm of Arabidopsis cells, the E3 ubiquitin ligase,
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), functions to prevent the protease-mediated
degradation of DRB1 [116]. At night however, COP1 is imported into the nucleus and this relocation
allows for protease-mediated cleavage of DRB1 (in the absence of COP1 in the cytoplasm) [116]. Given
the vital role DRB1 plays in accurate and efficient DCL1-catalyzed miRNA production, this elegant
study further identifies the importance of considering the time of day that samples are to be harvested
post drought or salt stress treatment of Arabidopsis.

Another concern in relation to “timing” is selection of the developmental stage for the application
of drought or salt stress to the plant. As a plant transitions between developmental stages, such as the
transition from vegetative to reproductive development (floral transition), or the subsequent transition
from reproductive to grain and/or seed development, there are pronounced variations to both the
physiological and phenotypic characteristics of the plant, both of which are underpinned by intricate,
yet distinct genetic networks [117,118]. Moreover, the gene networks controlling these transitions in
development, have been shown to be themselves, regulated by miRNAs [119–121]. It is, therefore,
highly probable that if an abiotic stress such as drought is encountered by a cropping species such
as rice during vegetative development, that the molecular responses underpinning the physiological
and phenotypic alterations at this stage of development, would vary greatly compared to those of a
rice plant during the reproductive phase of development if an identical stress was encountered. For
example, He and colleagues (2012) showed that drought stress during reproductive development in
rice resulted in reduced fertility and therefore, overall yield [122]. However, if rice (as well as most
other plant species) encounters drought stress during vegetative development, the stressed plant will
induce ABA regulatory pathways to ensure that its developmental processes are maintained [123–125].
Therefore, these two vastly distinct physiological responses to the same stress, when encountered
at different stages of plant development, would be directed by highly distinct molecular pathways,
including unique miRNA-directed gene expression regulation profiles [123,124].

Stress severity is a very important consideration when designing an experiment. A plant will
employ specific molecular and physiological networks depending upon the severity, and the duration,
of the encountered stress (i.e. is the stress application mild, over an extended treatment period
requiring the plant to adapt with adjustments in photosynthetic rates and stomatal conductance
or is the stress application intense, for a brief treatment period, requiring the plant to circumvent
irreversible damage with heavily reduced transpiration rates and water retention?). In addition to the
severity of the applied stress, one must consider the known limitations that exist when using non-ionic
stress osmotica, such as mannitol (a penetrating osmotica), or PEG (a semi-penetrating osmotica), as a
substitute for drought stress. Osmotica are frequently used to simulate “drought stress” in the genetic
model plant Arabidopsis, as a desired concentration (and therefore stress severity) is easily included
into standard plant cultivation media, allowing for straightforward monitoring and maintenance
of environmental variables. With these points taken into consideration, not only is there variation
in the severity of the stress based on the selected osmotica, unlike “real” drought stress, molecular
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data has the potential to be skewed when osmotica are used: the molecular and/or physiological
response of the plant may be accounting for the reduced water status proximal to the root structure,
and/or to the in planta accumulation of absorbed mannitol or PEG. When investigating miRNA
accumulation studies across key grasses and Arabidopsis, differences in the treatment used to stimulate
drought stress exposure are readily apparent. Of the five papers that investigated miRNA responses to
drought stress in either maize, wheat, rice, or Arabidopsis; one study used mannitol [88], a second study
used PEG [101], 2 studies withheld water to soil cultivated plants (but to differing degrees) [85,87],
and Kantar and colleagues (2011) placed plants on paper toweling to induce “drought-shock” [86].
Obviously, each of these different approaches to stimulate drought stress would yield different miRNA
responses, even if each approach was being applied to the same species, and at the same stage of
development. Furthermore, such a degree of caution should be extended when considering the tissue
type to be sampled for subsequent molecular profiling. The division of higher plant organs into
source and sink tissues is well documented. More specifically, source tissues include those organs
that are photosynthetically active, primarily mature leaves, while sink tissues broadly encompass
the photosynthetically inert tissues such as immature leaves, seeds, and roots [126,127]. Given the
vastly different roles played by these tissues types, in conjunction with the known crosstalk between
the activity of these tissues and plant hormones during periods of abiotic stress, it can be assumed
that there would be variance (potentially considerable variance) in miRNA levels between these
tissue/organ types communicating each tissue’s changed physiological requirements during abiotic
stress [128,129]. Again, when considering the same five papers as above, Liu and colleagues (2008)
used whole Arabidopsis seedlings 14 days post germination [88], while studies [85–87,101] sampled a
variety of young, mature, or whole leaf tissue samples for each plant species under investigation. Such
sampling differences will also add further variance in the results generated, namely the abundance of
individual miRNA sRNAs under investigation.

It is also important to note that, given the demonstrated regulation of the abundance of the
key miRNA pathway machinery protein, DRB1, to external cues such as circadian rhythm (see
above), we next determined whether the encoding genes of other key miRNA pathway machinery
proteins, including the DCL1, SE, DRB1, DRB2 and AGO1 loci, are responsive to drought or salt
stress. To address this, the online tool “Expression Angler” was utilized on The Bio-Analytic
Resource for Plant Biology (http://bar.utoronto.ca/ExpressionAngler/) [130]. The gene identification
numbers for DCL1, SE, DRB1, DRB2 and AGO1 (AT1G01040, AT2G27100, AT1G09700, AT2G28380
and AT1G01040, respectively) were retrieved from The Arabidopsis Information Resource (TAIR,
https://www.arabidopsis.org/). This analysis revealed that there were no significant expression
changes for the DCL1, SE, DRB1, DRB2 or AGO1 genes when Arabidopsis was exposed to a salt or
drought stress growth regime. This finding was unsurprising given that in response to exposure
to either stress, the abundance of some Arabidopsis miRNAs is elevated while that abundance of a
different set of Arabidopsis miRNAs is reduced.

It is important to note that all plant species, cultivars, or genotypes of a specific species, respond
differently to either drought or salt stress due to the respective baseline tolerance of each to either stress
stimulus. Within the Poaceae family of grasses for example, maize, wheat, and rice, are all deemed
sensitive to reduced water availability or salinity, with each displaying severe yield reductions in
response to either stress. However, barley (Hordeum vulgare L.), a closely related member within the
Poaceae family, appears largely unaffected when exposed to either stress [131]. Moreover, it is common
within abiotic responsive miRNA studies to profile the miRNA landscape of a “tolerant” versus a
“sensitive” cultivar. Frequently, such studies elegantly demonstrate considerable differences in miRNA
accumulation profiles for these almost genetically identical plant lines. For example, studies comparing
maize [89], or wheat [90] cultivars, identified reciprocal miRNA abundance profiles for 8 (an additional
ten miRNAs were only detected in one cultivar and not the other) and nine miRNAs, respectively in
response to salt stress. Similarly, a contrast in stress-responsive miRNA, or transcriptome profiles,
is noted for genotypes of the same crop species [23,132,133]. Many contemporary research groups

http://bar.utoronto.ca/ExpressionAngler/
https://www.arabidopsis.org/
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are utilizing genotype-specific molecular stress responses to compare transcriptomes and/or miRNA
profiles between genotypes classed as “stress-sensitive” or “stress-tolerant” for the development of
superior phenotypes for incorporation into future cereal crop breeding programs [23,132,133]. More
specifically, [23] revealed that the significant difference in stress (water-deficiency) tolerance between
four closely related genotypes of durum wheat was underpinned by notable differences in their
respective miRNA profiles. Most notably, 5 novel, and 16 conserved miRNAs, were demonstrated
to have reciprocal abundance profiles in the two “stress-sensitive” and “stress-tolerant” genotypes.
Each of the above outlined variables, including the; (1) timing of stress application; (2) specific form
of stress treatment applied; (3) tissue sampled for subsequent miRNA profiling, and; (4) degree of
stress “tolerance” of the assessed species, all require careful consideration when designing a study
to identify either drought or salt stress-responsive miRNAs in the plant species under investigation,
or when a researcher is considering translating miRNA findings made in one species, to a second
species, regardless of the degree of relatedness of these two species.

7. Non-Conserved microRNAs Responsive to Drought or Salt Stress

A further significant limitation to the use of Arabidopsis as a model species for stress-responsive
miRNA studies is that many of the miRNAs determined “stress responsive” in the species under
investigation, are not present in Arabidopsis. The advent of high throughput sequencing technologies
has repeatedly highlighted that each plant species produces a population of miRNA sRNAs specific
to that species (or across a small clade of closely related species). Such miRNAs are termed,
“non-conserved” or “species-specific” miRNAs, a discovery that further questions the use of Arabidopsis
as an appropriate model for researchers interested in functionally characterizing miRNA-directed
stress responses in species such as maize, wheat and rice. For example, Sunkar and colleges (2008)
conducted RNA sequencing to produce control, drought-stressed and salt-stressed sRNA libraries.
This approach resulted in the identification of 23 lowly abundant, previously unidentified miRNAs,
and an additional, 40 candidate novel miRNAs. Furthermore, each of these newly identified miRNAs
were also shown to have differing abundance across the three generated libraries [102]. Similarly,
studies by Jiao et al. (2011) and Wei et al. (2009) identified 66 and 23 novel miRNAs in maize and
wheat, respectively [85,134]. Although these two studies did not investigate the responsiveness of
the identified species-specific miRNAs to drought or salt stress, these two studies in conjunction
with the findings of Sunkar et al. (2008), readily highlight the shortcomings of using Arabidopsis as
a model to study miRNA-directed responses to drought or salt stress application in agronomically
important cropping species [85,102,134]. Further, given the high prevalence of contemporary research
to employ high throughput sequencing technologies, one can safely hypothesize that the continued
identification of species-specific miRNAs, also demonstrated responsive to abiotic stress stimuli, will
only further highlight this class of miRNA as potential central players in the future development of
modified plant lines with resistance, or enhanced tolerance, to either drought or salt stress. This is
evidenced with several recent next-generation sequencing studies identifying novel miRNAs that
differentially accumulate in response to abiotic stress, such as drought, in the key cereal crops, rice and
wheat [23,92,93]. Interestingly, of the three novel miRNAs (Osa-cand027, Osa-cand052 and Osa-cand056)
identified as drought responsive by Berrera and colleagues (2012), published degradome analysis
failed to identify a putative target gene(s), for any of these three novel miRNAs [93]. Given that target
genes, such as phosphate transporters, amino acid transporters, and ATP-dependent RNA helicases,
were identified as target genes for other novel rice miRNAs also identified by Berrera et al. (2012),
future studies where target genes of these novel species-specific miRNAs are identified, would form
an additional and interesting avenue of further research.

8. Conclusions and Future Perspectives

While not always the case, the accumulation profile of an abiotic stress-responsive miRNA can
vary considerably across different plant species following exposure to drought or salt stress. This
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variation is particularly prevalent when attempting to translate research findings made in the classic
genetic model plant species, Arabidopsis, to agronomically significant crops, such as maize, wheat or
rice. Although Arabidopsis has long served as an exceptional model to functionally characterize the
plant miRNA pathway, including the characterization of miRNA-directed gene expression regulatory
responses to abiotic stress, findings made in Arabidopsis may have little, to no, biological relevance in
an agronomically important crop species. Therefore, miRNA-directed responses to drought or salt
stress need to be experimentally validated in the crop species under assessment prior to the researcher
undertaking molecular modification of a specific miRNA/miRNA target gene expression module.
Such an approach will ensure that a similar biological response is elicited in the modified species,
while also ensuring that other agronomically important parameters, such as yield, are not adversely
affected by this modification.

Many researchers now regard plant phenotyping as the bottleneck when attempting to link
genotype to phenotype for crop improvement [135,136]. Implementation of a high throughput
phenotyping platform is therefore ideal to overcome this bottleneck as such an approach allows for a
highly controlled environment, including; watering capabilities in combination with non-destructive
imagery techniques that can monitor a plants response to stress at regular intervals across the course of
plant development. Further, the parallel application of high throughput sRNA sequencing technologies
to complement the high throughput phenotyping platform will allow researchers to identify abiotic
stress-responsive, and potentially species-specific miRNAs, that underpin a specific crop plant’s ability
to mount an effective response against the imposed stress; miRNAs that would otherwise remain
elusive if the same miRNA sRNA exploration study was conducted in the long-standing genetic model
species, Arabidopsis.
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