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Abstract: The presence of pests is one of the main problems in crop production, and obtaining reliable
statistics of pest infestation is essential for pest management. Detection of pests should be automated
because human monitoring of pests is time-consuming and error-prone. Aphids are among the most
destructive pests in greenhouses and they reproduce quickly. Automatic detection of aphid nymphs
on leaves (especially on the lower surface) using image analysis is a challenging problem due to color
similarity and complicated background. In this study, we propose a method for segmentation and
counting of aphid nymphs on leaves using convolutional neural networks. Digital images of pakchoi
leaves at different aphid infestation stages were obtained, and corresponding pixel-level binary mask
annotated. In the test, segmentation results by the proposed method achieved high overlap with
annotation by human experts (Dice coefficient of 0.8207). Automatic counting based on segmentation
showed high precision (0.9563) and recall (0.9650). The correlation between aphid nymph count by
the proposed method and manual counting was high (R2 = 0.99). The proposed method is generic
and can be applied for other species of pests.

Keywords: aphid nymphs; automatic pest counting; image segmentation; deep learning; convolutional
neural networks

1. Introduction

Aphids are among the most destructive pests causing damage in greenhouse crops [1]. They can
reproduce in days, with the nymphs hiding on the lower surface of leaves. Quantitative measurement
of pests is time-consuming and error-prone [2] for humans. Although strategies such as counting a
subset of pests to estimate the total population [3,4] have been proposed to improve, manual counting is
still expensive to be applied in large-scale practice. Therefore, automatic methods should be developed
to support fast decision making.

Imaged based automated segmentation and instance counting of pests has been extensively
studied. Some researchers used sticky traps to collect pests before counting. Sticky traps have fixed
color, so color model transformations (e.g., Lab [5], HSV [5], YCbCr [6] and YUV [7]) and thresholding
methods were applied in segmentation. For pest nymphs on leaves, however, color thresholding
methods could misclassify leaf veins or lesions as pests. Researchers applied carefully designed post
processing procedures to remove non-pest regions. Barbedo [8] regarded areas in specific eccentricity
range as aphid nymphs. Maharlooei and colleagues [9] utilized size filtering to remove non-aphid
objects in their segmentation results. These strategies achieved low misclassification rate, but manual

Agronomy 2018, 8, 129; doi:10.3390/agronomy8080129 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0001-6760-3154
https://orcid.org/0000-0001-6752-1757
http://www.mdpi.com/2073-4395/8/8/129?type=check_update&version=1
http://dx.doi.org/10.3390/agronomy8080129
http://www.mdpi.com/journal/agronomy


Agronomy 2018, 8, 129 2 of 12

correction was involved in some cases. Similar approaches were taken by Solis-Sánchez et al. in
2009 [10] and 2011 [11]. As Barbedo [8] suggested, designing more effective features to describe and
detect the target could further improve segmentation performance.

While designing effective features is challenging, researchers took a different approach, which is
learning features from data. Convolutional neural networks (CNNs) are one of the most effective
models to learn image features from data. High representation power has made CNNs state-of-the-art
in various image analysis tasks (e.g., classification [12], segmentation [13] and object detection [14]),
outperforming traditional methods using hand-crafted features [15]. Common CNN architectures
for image segmentation, such as fully convolutional network [13], SegNet [16], and U-Net [17], have
achieved high performance in segmentation of medical images [17–19], road scenes [16], and satellite
images [16–18,20]. One main concern of applying CNNs in agricultural applications is the limited data
available for training. Since CNN architectures could contain millions of parameters, lack of training
data may lead to unsatisfactory model generalization. Similar to medical applications, we could not
afford manually annotating large amounts of images for CNN training in pest segmentation. To address
this problem, data augmentation and transfer learning [21] could be used. Ronneberger et al. [17] and
Chen et al. [19] have reported their success in training CNNs for medical image segmentation with
limited training data (less than 100 images).

In this paper, we propose a CNN-based method to segment and count aphid nymphs on leaves.
We adopted the U-Net architecture for segmentation and made some modifications to fit our task.
After segmentation, we simply count the number of connected components as the quantity of aphid
nymphs. The performance of this method was demonstrated on images with different densities
of aphid nymphs. Moreover, we explore the influence of network capacity on its performance by
adjusting two main parameters of this architecture. The results show that the proposed method
outperforms existing methods by a large margin. The contributions of this work can be summarized
as follows:

• We took a CNN-based approach to segment aphid nymphs on leaves. This method achieved
significant performance improvement compared to traditional methods using hand-crafted
features. Moreover, the proposed CNN were trained from scratch with limited training data
(68 images).

• We measured the quantity of aphid nymphs using segmentation results. The results show low
error, and the correlation between automatic counting and manual counting is high (R2 = 0.99).

• We evaluated the CNN architecture with different capacities and show that satisfying performance
can be achieved by a relatively small network.

2. Materials and Methods

2.1. Dataset

2.1.1. Aphids Preparation and Image Acquisition

Pakchoi were prepared by hydroponics in January 2017. Green peach aphids were propagated
in an insect rearing cage, feeding on pakchoi. Images of leaves were taken every 2–3 days to cover
different densities of aphid nymphs. As a result, 102 images were obtained, and the number of aphid
nymphs on each image ranges from 1 to 96. Before each image was taken, the leaf was randomly
selected, carefully removed from its host plant and taken into the laboratory. The images were captured
by a USB camera with resolution of 1600 × 1200 pixels. Figure 1a shows an example. Note that the
image was cropped to focus on the leaf, so the image size is smaller than its original resolution.
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Figure 1. An example image of aphid nymphs on a leaf (a) and its corresponding annotation image 
(b). 

2.1.2. Image Annotation 

Ground truth segmentations are required for training and evaluation of CNNs. Thus, a pixel-
level annotation was created for each image manually. Figure 1b shows an annotated image, in which 
pixels of aphid nymphs are marked as foreground (white) and other pixels are marked background 
(black). After annotation, the number of aphid nymphs in each image was counted and recorded. A 
total of 102 pairs (original images and corresponding annotations) of images were obtained and 
randomly split into a training set of 51 pairs, a validation set of 17 pairs, and a testing set of 34 pairs. 

2.2. Proposed CNN for Segmentation 

2.2.1. The CNN Architecture 

The proposed CNN architecture (Figure 2) is based on U-Net. U-Net is a deep U-shaped 
convolutional neural network that consists of a contracting path and an expanding path. The 
contracting path follows design patterns of typical CNNs [22]. 3 × 3 convolution filters and rectified 
linear units (i.e., ReLU) [23] are the main functional components. Deeper image features could be 
extracted with the decrease of the spatial dimension and the increase of convolution filters. On the 
other side, a symmetric expanding path is designed to restore image resolution. The skip connections 
from blocks in the contracting path and their counterparts are used to transfer precise localization, 
which is critical in segmentation tasks. 

 
Figure 2. Proposed convolutional neural network (CNN) for segmentation. Different functional 
blocks are marked in different colors. For each block, its spatial dimension is labeled at the bottom 
and the number of convolution filters is labeled at the top. 

Figure 1. An example image of aphid nymphs on a leaf (a) and its corresponding annotation image (b).

2.1.2. Image Annotation

Ground truth segmentations are required for training and evaluation of CNNs. Thus, a pixel-level
annotation was created for each image manually. Figure 1b shows an annotated image, in which pixels
of aphid nymphs are marked as foreground (white) and other pixels are marked background (black).
After annotation, the number of aphid nymphs in each image was counted and recorded. A total of
102 pairs (original images and corresponding annotations) of images were obtained and randomly
split into a training set of 51 pairs, a validation set of 17 pairs, and a testing set of 34 pairs.

2.2. Proposed CNN for Segmentation

2.2.1. The CNN Architecture

The proposed CNN architecture (Figure 2) is based on U-Net. U-Net is a deep U-shaped
convolutional neural network that consists of a contracting path and an expanding path.
The contracting path follows design patterns of typical CNNs [22]. 3 × 3 convolution filters and
rectified linear units (i.e., ReLU) [23] are the main functional components. Deeper image features could
be extracted with the decrease of the spatial dimension and the increase of convolution filters. On the
other side, a symmetric expanding path is designed to restore image resolution. The skip connections
from blocks in the contracting path and their counterparts are used to transfer precise localization,
which is critical in segmentation tasks.
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number of convolution filters is labeled at the top.
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We adopted core idea of U-Net and constructed a CNN for aphid nymphs segmentation. The most
critical modification is that we used a different loss function. In our segmentation task, foreground
(aphid nymphs) and background are strongly unbalanced. In this case, model optimization would
be hard if common loss functions (e.g., cross-entropy loss) is used. Inspired by Milletari et al. [24],
a loss function (Equation (2)) based on Dice score (Equation (1)) was proposed to avoid sample
re-weighting during training. In Equation (1), i denotes the sample number; Pi

gc denotes the number of
pixels that are marked foreground by both the ground truth and the CNN output; Pi

g and Pi
c denote

the number of pixels marked foreground by the ground truth and the CNN output, respectively;
s is a small positive number used to avoid zero division during computation. Thus, the Dice score
measures segmentation performance from 0 (an absolutely wrong segmentation) to 1 (a perfect
segmentation). A few more modifications were made to simplify implementation: size of an input
image was set to 256× 256 pixels due to GPU memory limitation; single-channel output was generated
by a sigmoid function rather than multi-channel output from a cross-entropy function; zero-padding
was applied before convolution to preserve spatial size so that no cropping was required in skip
connections; batch normalization [16,25,26] layers were added after convolutions to accelerate training
and improve performance.

Dice(i) =
2
∣∣∣Pi

gc

∣∣∣+ s∣∣∣Pi
g

∣∣∣+ ∣∣Pi
c
∣∣+ s

(1)

Loss(i) = 1− Dice(i) (2)

We defined two parameters to control the size of proposed CNN: m as the number of convolution
filters in the first convolution layer and n as the depth of contracting path. We simply note a specific
CNN as CNN-m-n. Figure 2 shows an example of CNN-4-4.

2.2.2. Transfer Learning with Pretrained Contracting Path

Due to the complicated acquisition procedure, training data with manual annotations is limited.
Insufficiency of data is one of the main challenges in training deep neural networks. Vladimir Iglovikov
and Alexey Shvets [27] has shown that transfer learning can significantly improve performance of
U-Net. They took a pretrained VGG network [22] for image classification as contracting path of U-Net.
The learned parameters in lower layers of CNNs are considered generic, while those in higher layers
are more specific to different tasks. Thus, the convolution layers of a pretrained VGG could work as
an efficient image feature extractor, which could help training deep neural networks on tasks with
limited data.

By limiting the max number of convolution filters to 512, the contracting path of our CNN-64-4
would be the same as the convolution layers of VGG-13 network with batch normalization. Therefore,
we took the modified CNN-64-4 (named CNN-64-4-mod) for transfer learning. We initialized weights
of contracting path with weights of a pretrained VGG-13 network, and then fine-tuned the whole
network for aphid nymphs segmentation.

2.2.3. CNN Training

256 × 256 regions (Figure 2) were randomly cropped from training images. Then, five image
transformations (horizontal flipping, vertical flipping, 90◦ rotation, 180◦ rotation and 270◦ rotation)
were randomly applied on the cropped regions as data augmentation. The same operations were
performed on the corresponding output image to form pairs of training examples. The procedures
above were conducted on the fly during training. We took a fixed random seed in all experiments so
that the same inputs were fed to the CNNs.

All networks were trained using the Adam [28] algorithm. We adopt the weight initialization
strategy described in [29]. The initial learning rate was set to 0.005 and was reduced by a factor of 2
when Dice score on validation set did not improve for 10 consecutive epochs. We trained models with
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batch size 64 for 120 epochs. Due to GPU memory constraints, the CNN-16-4 was trained with batch
size 32 for 240 epochs. The CNN-64-4-mod for transfer learning has much more parameters than other
models. Thus, we used a smaller learning rate (0.001) and trained the model with batch size 8 for
1000 epochs.

2.2.4. CNN Prediction

The designed CNN accepts input of 256× 256 pixels. To predict a test image, we first pad its width
and height to integer multiples of 256 with zeros, then make predictions of every 256 × 256 region,
and at last drop the padded parts. To transform the CNN output (values between 0 and 1) into a binary
mask, a threshold θ should be defined (Figure 2). We chose a conservative threshold of 0.999 so that
closely located aphid nymphs have high chance to be separated.

2.2.5. CNN Implementation and Experimental Setup

The software platform was Ubuntu 16.04 Linux system and Python 3.6. The CNN models for
segmentation were implemented in Keras 2.0.8 [30] with TensorFlow [31] backend. Image processing
functions including color transformation, cropping, rotation and flipping were implemented using
OpenCV and NumPy [32] library for Python. The pretrained weights of VGG-13 network for transfer
learning was from PyTorch [33]. All experiments were run on a personal computer equipped with an
Intel Core i5-7500, 16 GB of RAM, and an NVIDIA GTX 1070 GPU.

2.3. Performance Evaluation

2.3.1. Evaluation on Annotated Test Dataset

CNN-4-4 was used for performance evaluation. Segmentation performance was measured by the
average Dice score of test examples. s in Dice score (Equation (1)) is set to 0. Counting performance was
reported in five different aspects. The overall counting performance was given by mean count error and
the correlation (R2) between manual counting and the proposed automatic counting method (on 34 leaf
images). Detailed statistics including precision, recall and F1 score were evaluated. The definitions of
these metrics are in Equation (3). TP, FP, TN denote the number of true positives, false positives and
true negatives respectively. An object in segmentation that intersects ground truth is considered a true
positive, otherwise it’s considered a false positive. An object that has no corresponding ground truth
object is considered a false negative.

We implemented two existing methods for pest segmentation as comparisons. The first method
(referenced as method 1 in following text) is a color thresholding method. We tried different color
transformations in previous works [5–7] and chose the best (Cr channel of YCbCr color space) for
our test images. This straightforward method gives a performance baseline of our segmentation task.
The second method (referenced as method 2 in following text) is a 2017 research [9] on segmentation of
aphids. This method achieved high performance counting aphids on upper surface of soybean leaves.
No tests have been carried out on lower surface of leaves, and the authors supposed that it would
be challenging.

2.3.2. In Field Evaluation

To evaluate performance in practical use, we captured images of aphid nymphs on oilseed rape
leaves in the field in June 2018. A total 20 images were taken from different angles and distances to the
leaves. Then the CNN-4-4 (trained with images captured in laboratory) was applied for segmentation.
Contours of segmented aphid nymphs were drawn on input images for qualitative evaluation.

2.4. CNN Architecture Optimization

As mentioned in Section 2.2.1, the proposed CNN architecture could be adjusted by two main
parameters, namely width (m) and depth (n). By increasing depth, CNNs could learn features of more
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abstraction levels. On the other side, by increasing width, CNNs could learn more features at each
abstraction level. We compared different parameter combinations in capacity (number of parameters),
speed (prediction time of a 1024× 768 image on a CPU), training performance, and testing performance.
In speed evaluation, we used 1024 × 768 images to eliminate the influence of padding operations.
n was set to 4 as default following U-Net. We started the test with m = 2 (CNN-2-4) and doubled m
until no performance boost was observed. Then, we tried CNN-4-3 and CNN-4-5 to show the influence
of n on model performance, and to compare CNNs with different architecture but similar capacity
(e.g., CNN-2-4 and CNN-4-3).

3. Results

3.1. Performance of CNN-4-4

3.1.1. Overall Performance

First, we compare the overall performance of our proposed method to existing approaches in
Table 1. Dice score measures segmentation performance and other statistics measures counting
performance. In every aspect, the proposed method outperforms existing methods by a large
margin. Segmentation result matches manual annotation with a Dice score of 0.8207, count error
is 1.2 on average, and the correlation with manual counting is high (R2 = 0.99). The most significant
improvement over existing methods is on recall (0.9650), which implies low misclassification rate of
our method.

Table 1. Segmentation and counting performance of method 1, method 2 and the proposed method
(CNN-4-4) on 34 test images.

Dice Score Mean Count Error R2 Precision Recall F1 Score

Method 1 0.3683 61.5 0.50 0.8723 0.2529 0.3969
Method 2 0.3271 29.4 0.56 0.5980 0.2899 0.3905

Proposed method 0.8207 1.2 0.99 0.9563 0.9650 0.9606

Figure 3 gives a detailed comparison of the segmentation results. We draw together foreground
pixels of CNN segmentation and ground truth segmentation, in green and red respectively. As a result,
overlapped foreground pixels are in yellow. Method 1 misclassifies areas with color similar to aphid
nymphs as foreground (Figure 3c). Method 2 removes some non-aphid areas by size, but the filtering
strategy fails for thin and long areas of leaf veins (Figure 3d). The proposed method gives result close
to manual annotation. There are misclassified areas and ignored aphid nymphs, and we give more
details in Section 3.1.2.
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3.1.2. Typical Failure Cases of CNN Segmentation

Figure 4 shows three typical failures of CNN segmentation in detail. The colors give a clear view
of true positives (areas with yellow pixels), false positives (standalone green areas), and false negatives
(standalone red areas). Lesions (Figure 4a) and old aphid exoskeletons (Figure 4c) are the main reasons
of false positives. On the other side, regions where lighting is complex can result in false negatives
(Figure 4b).
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Figure 5 shows two images of leaf background with aphid. Manual segmentation and CNN-4-4 
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most of the aphid nymphs but tend to also recognize other small white regions as targets. Complex 
lighting could cause small white spots around shadows thus lead to false positives (Figure 5a right). 
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Figure 5. Images captured in field and corresponding segmentation results. (a) A leaf image taken 
under complex lighting conditions. Segmentations of two regions with different lighting are shown 
in detail. (b) An image of an injured leaf. Segmentation of a region around lesions is shown in detail. 

Figure 4. Typical failures of CNN segmentation. The first row shows CNN inputs. The second row
shows the difference between corresponding CNN outputs and ground truth. The three cases are:
(a) lesions on a leaf segmented as aphid nymphs; (b) aphid nymphs not segmented due to complicated
lighting condition; (c) an exoskeleton segmented as an aphid nymph.

3.1.3. Performance on In-Field Images

Figure 5 shows two images of leaf background with aphid. Manual segmentation and CNN-4-4
segmentation were colored using the same scheme in Figures 3 and 4. These two images were captured
under different lighting conditions. It could be observed that our model could recognize most of the
aphid nymphs but tend to also recognize other small white regions as targets. Complex lighting could
cause small white spots around shadows thus lead to false positives (Figure 5a right). As same as
our evaluation in laboratory, leaf veins (Figure 5a left) and lesions (Figure 5b) might be recognized as
aphid nymphs.
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3.1.4. Visualization of CNN Feature Maps

To give some insight into our model, we ran the model with an input and saved output of all
contracting/expanding blocks into images. To be specific, each channel of outputs was rescaled to
range [0, 255] and resized to 256 × 256 pixels using nearest-neighbor interpolation. The input image
and some representative feature maps were shown in Figure 6. In the contracting path the network
learned edges of different directions at lower layers (Figure 6b), and these features were further
combined to locate leaf veins and aphid nymphs (Figure 6c). In the expanding path, locations of
aphid nymphs were reconstructed with higher accuracy (Figure 6d). Besides, we observed two feature
maps containing only zeros in the output of first expanding block, which indicates possible parameter
redundancy or inefficient training.
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3.2. Performance of Transfer Learning

Table 2 shows the performance improvement by using the transfer learning described in Section 2.
The model utilizing pretrained weights of VGG-13 achieved the best performance (Testing Dice score
of 0.8453) in our experiment. Compared to the same model without transfer of weights, the testing
dice score is around 0.02 higher.
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Table 2. Comparison of CNN-64-4-mod initialized with random weights and pretrained weights.

Weight Initialization Training Dice Score Testing Dice Score

[29] 0.8620 0.8265
VGG-13 with batch normalization 0.8659 0.8453

3.3. Performance of CNNs with Different Sizes

Table 3 summarizes our comparison of the proposed CNN architecture with different parameter
choices. Note here the Dice scores were calculated by the network outputs rather than the binary
masks after thresholding. So, the Dice score of CNN-4-4 is slightly different from Table 1. We believe
that this enables more accurate comparison of CNN segmentation performance. Overall, increasing
network capacity (number of parameters) improves training performance, but testing performance
plateaus at some point (CNN-16-4 vs. CNN-8-4). We also compared different networks with similar
capacity (CNN-4-3 vs. CNN-2-4, and CNN-4-5 vs. CNN-8-4). CNN-4-3 performs better than CNN-2-4,
but more computation power is required. CNN-8-4 is slightly better than CNN-4-5 in both performance
and speed.

Table 3. Comparison of different sized CNNs.

Architecture # Parameters
(million)

Prediction Time
on CPU (seconds)

Training Dice
Score

Testing Dice
Score

CNN-2-4 0.026 1.05 (±0.128) 0.8447 0.7952
CNN-4-4 0.10 1.35 (±0.069) 0.8681 0.8242
CNN-8-4 0.40 1.43 (±0.077) 0.8759 0.8278

CNN-16-4 1.60 2.77 (±0.371) 0.8832 0.8247
CNN-4-3 0.025 1.35 (±0.143) 0.8618 0.8185
CNN-4-5 0.40 1.50 (±0.166) 0.8702 0.8270

4. Discussion and Conclusions

In this paper, we presented an image processing method using CNN to segment and count aphid
nymphs on leaves. Our approach eliminates the necessity of designing effective features to describe
and detect targets. Experimental results demonstrate that the proposed method significantly improves
segmentation and counting performance compared to existing methods. While other methods suffered
from heavy misclassification, the proposed method achieved high performance in both precision and
recall. Moreover, we explored the influence of network capacity on CNN performance and found
that a relatively small network can produce accurate segmentation result in seconds. One main
concern about CNNs is the amount of training example required for training. In this study, our
training set (51 images) and validation set (17 images) are small compared to the number of CNN
parameters. However, the proposed CNN was designed to accept input of 256 × 256 pixels, so that
could generate multiple samples from one training image (1600 × 1200 pixels) by random cropping.
Data augmentation was applied to further randomize data. As a result, CNNs successfully converged
during 120 epochs in our experiment. Transfer learning is a widely used technique for training deep
neural networks. We adopted a pretrained VGG-13 network as contracting path and fine-tuned a
segmentation network. The model achieved the best performance in our experiment. However,
the model utilizing transfer learning contains more than 20 million parameters, which is 200 times
than CNN-4-4′s. The model efficiency remains a problem. In future research, we might train CNN-4-4
on large datasets and fine-tune on our dataset to further explore the power of transfer learning.

The proposed method failed in some cases: lesions on leaves, old aphid exoskeletons, and areas
of complex lighting conditions. In the in-field test, lighting was the main cause of false positives.
We believe these issues could be overcome by adding more training examples under these situations.
Another limitation of this method is the tedious annotation procedure before training. We may
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further adopt more data augmentation techniques to reduce the demand of training examples, or use
semi-automatic segmentation tools (e.g., GrabCut [34]) to improve annotation efficiency.

Currently, the proposed method has been evaluated only on images of aphid nymphs. We suppose
this method is generic since CNN-based segmentation has been applied in other applications. In the
future, we shall assess it on more species of pests under in-field conditions.
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