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Abstract: The determination of the water requirements and crop coefficient (Kc) of agricultural
crops helps to create an appropriate irrigation schedule, and with the effective management of
irrigation water. The aim of this research was to estimate the water requirement, Kc, and water-use
efficiency (WUE) of potato using non-weighing-type lysimeters in four regions of the Kingdom of
Saudi Arabia (Qassiem, Riyadh, Al-Jouf, and Eastern). Our results clearly show that the accumulated
values of the measured crop evapotranspiration of potato derived from the lysimeters were 573,
554, 592, and 570 mm, while the accumulated values of the predicted crop evapotranspiration from
Penman-Monteith equation based on FAO (Food and Agriculture Organization) were 651, 632, 672,
and 647 mm for the Qassiem, Riyadh, Al-Jouf, and Eastern regions, respectively. The Kc values of
potato obtained from the lysimeters were Kc initial (0.58, 0.54, 0.50, and 0.52), Kc middle (1.02, 1.05,
1.13, and 1.10), and Kc end (0.73, 0.74, 0.74, and 0.75) for the Qassiem, Riyadh, Al-Jouf, and Eastern
regions, respectively. Based on the amount of water used and the yield achieved, the highest WUE
(3.6 kg m−3) was observed in the Riyadh region, while the lowest WUE (1.5 kg m−3) was observed in
the Al-Jouf region.

Keywords: crop coefficient; crop evapotranspiration; lysimeter; reference evapotranspiration; water
use efficiency

1. Introduction

In agriculture, a precise estimate of both the crop evapotranspiration (ET) and reference
evapotranspiration (ETo) is indispensable for determining crop water requirements, irrigation scheduling,
irrigation system designs, and hydrological studies [1]. ET is defined as the sum of evaporation from
soil and transpiration from plants [2].

Micrometeorological approaches, like the Eddy covariance and Bowen ratio techniques, have been
widely used in recent times for indirectly measuring ET [3–7]. On the other hand, lysimeters are still
the standard method for directly measuring ET [8].

Based on the available resources and necessity, lysimeters in different sizes and types are designed
to study the water and solute transport [9], as well as ET rates [10–13]. The shapes of lysimeters
are varied, including a rectangular shape [14–18], circular shape [19–21], and square shape [22,23].
Furthermore, researchers use another type of lysimeter with a small area of 0.006 m2, usually known as
a microlysimeter, in order to measure the evaporation of soil water [24].

Another classification of lysimeters is dependent on how the soil is collected inside the lysimeters.
In other words, lysimeters can be repacked, monolithic, or a combination of repacked and monolithic [25].
In repacked lysimeters, the soil within the lysimeter is disturbed soil that is repacked to imitate the
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features of the intact soil [19,21]. In monolithic lysimeters, the soil inside the lysimeter is intact
soil [15,20,22,26].

Lysimeters can be weighing and non-weighing. Weighing lysimeters measure the crop ET directly
by estimating the change in mass of an isolated soil volume [25]. The non-weighing lysimeters, on the
other hand, measure the crop ET by estimating the soil water balance components, including water
inputs (irrigation), water outputs (drainage), and changes in soil water storage [27].

Potato production (Solanum tuberosum L.) takes an imperative place in the world’s agriculture,
with a global production of about 327 million t harvested, and an area of 18.6 million ha [28]. Potatoes are
highly sensitive to moisture stress, as 85% of their root system is settled in the upper 0.30 m of the soil
layer [29]. For potato irrigation, drip irrigation is one of the best methods for row crop production,
because of its effect on minimizing the evaporation from soil water, reducing the leaching of fertilizers,
and improving the yield [29,30].

Potatoes of 120 to 150 days consume 500 to 700 mm of irrigation water, depending on the climate [1].
For example, Kashyap and Panda [31] found that the average value of ET for potato was 509 mm
in a sub-humid area of India under furrow irrigation conditions. On the other hand, under hot dry
conditions and sprinkler irrigation system in northeastern Portugal, the water requirement for potato
reached 569 mm [32]. Another example of dry areas, such as Wadi Sirhan, Al-Jouf (Saudi Arabia),
Al-Rumkhani and Din [33] found that the water requirement for potato was 652 mm.

The crop coefficient, Kc, is the ratio of ET to ETo [1]. Kc represents the integration of the impacts
of three basic characteristics that recognize the crop from the reference ETo. These characteristics
are as follows: crop–soil surface resistance, crop height, and albedo of the crop–soil surface [1].
Several researchers have assigned different values of Kc for potato [34]. For example, Ferreira and
Carr [32] showed that the seasonal Kc values of potato ranged from 0.50 to 0.85. The Kc values of
potatoes based on the FAO (Food and Agriculture Organization) results during the initial stage,
mid stage, and end stage are 0.50, 1.15, and 0.75, respectively [1].

Water-use efficiency (WUE) is another essential factor in irrigation systems and water
management [35]. In most agricultural studies, the WUE is determined as the total production
of the aboveground biomass per amount of water used [36]. An example of the importance of WUE
in water management is what Pereira et al. [37] reported, where they developed a deficit irrigation
strategy based on the economic indicators for WUE and productivity, which takes into account the full
awareness of the crop water requirements. The goal of this work was, over a three-season period, (1) to
estimate the irrigation requirements, Kc, and WUE of potato crop in four regions of the Kingdom of
Saudi Arabia, and (2) to assess the potential economic returns of potato production.

2. Materials and Methods

2.1. Descriptions of the Study Sites

The field experiments were carried out at (Qassiem University, Qassiem, Saudi Arabia), (Ministry of
Agriculture, Riyadh, Saudi Arabia), (Alwatania Agricultural Company, Al-Jouf, Saudi Arabia),
and (King Faisal University, Eastern, Saudi Arabia) regions. The geographical coordinates and locations
of the four regions of the Kingdom of Saudi Arabia (KSA) are presented in Table 1. The average values
of the annual rainfall in the KSA ranges between 80 and 140 mm, except for in the southwestern
mountains [38]. The average values for the temperatures in the Qassiem, Riyadh, Al-Jouf, and Eastern
regions were 35, 36, 33, and 37 ◦C, respectively. The relative humidity was low, and the average values
for the relative humidity were 12%, 13%, 17%, and 24% in the Qassiem, Riyadh, Al-Jouf, and Eastern
regions, respectively. Other meteorological data for each area of the four regions are illustrated in
Figure 1.
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Table 1. The geographical coordinates of the experimental locations at the four regions of the Kingdom
of Saudi Arabia (KSA).

Location Longitude Latitude Altitude (m) Region

QU 43◦46′ E 26◦21′ N 648 Qassiem
MOA 46◦43′ E 24◦43′ N 600 Riyadh
AAC 39◦29′ E 29◦29′ N 724 Al-Jouf
KFU 49◦33′ E 25◦21′ N 179 Eastern

QU—Qassiem University; MOA—Ministry of Agriculture; AAC—Alwatania Agricultural Company; KFU—King
Faisal University.
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Figure 1. Average monthly climatic data for the: (a) Qassiem area, (b) Riyadh area, (c) Al-Jouf area,
and (d) Eastern area of the Kingdom of Saudi Arabia (KSA). T is the temperature (◦C), W is the wind
speed (km/h), and R is the rainfall (mm/month).

2.2. Lysimeters

Two non-weighing lysimeters were designed to grow alfalfa (Mcdicago sativa) and potatoes
(Solanum tuberosum L.) in four regions of KSA (Qassiem, Riyadh, Al-Jouf, and Eastern; Figure 2).
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The lysimeters were used to obtain the measured crop evapotranspiration (METc), measured reference
evapotranspiration (METr), and crop coefficient of potatoes. Lysimeters were filled with repacked soil,
which imitates the features of the native soil. A 15-cm-thick layer of graded gravel was placed at the
bottom of the lysimeters plots so as to facilitate the drainage process. An underground passageway
was constructed to easily collect the drained water. The alfalfa and potato crops in both lysimeters were
irrigated by sprinkler and drip irrigation systems, respectively, as were the crops in the surrounding
areas, so as to avoid any potential discrepancies in the estimation process.
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Figure 2. Constructing the lysimeter at the experimental field.

2.3. Prediction of the Reference Evapotranspiration

The lysimeters grown with alfalfa at the four regions were irrigated daily, with various amounts
of water according to the reference evapotranspiration (ETo) acquired from a nearby weather station
(Equation (1)). Similarly, the lysimeters cultivated with potatoes at the four regions were irrigated
on a daily basis, according to the ETo values and FAO (Food and Agriculture Organization) crop
coefficients [1]. The amounts of irrigation and drainage water were measured after each irrigation
event, where the lysimeters were fitted with suitable inlets for irrigation and outlets for drained water.

ETo =
0.408∆(Rn−G)+γ

[
(900U2)
T+237

]
(es−ea)

∆ + γ(1 + 0.34U2)
(1)

where ETo is the daily reference crop evapotranspiration rate (mm/day), Rn is the net radiation at the
canopy surface (MJ/m2/d), G is the soil heat flux at the soil surface (MJ/m2/d), T is the mean daily air
temperature (◦C), γ is the psychometric constant (kPa/◦C), U2 is the mean daily wind speed at a height
of 2.0 m (m/s), es is the mean saturation vapor pressure (kPa), ea is the mean actual vapor pressure
(kPa), (es − ea) is the saturated vapor pressure deficit (kPa), and ∆ is the slope of the saturated vapor
pressure temperature curve (kPa/◦C).

2.4. Crop Data

Alfalfa (Mcdicago sativa) and potato (Solanum tuberosum L.) were cultivated in the plots of the first
and second lysimeters, respectively, at the four regions of KSA over a three-season period (2012 to 2015).
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The conditions surrounding the alfalfa plots were similar to the standard conditions (height of 0.12 m,
surface resistance of 70 s m−1, and an albedo of 0.23) of the Penman-Monteith equation. Nutrients
N, P, and K were delivered to potatoes at rates of 200, 200, and 150 kg/ha, respectively, in accordance
with the recommendations set out by the Ministry of Agriculture. Pesticides were used whenever
needed so as to control insects and pathogens. The fungicide Penncozeb 75 DG and Imidor 200SL
(Astra Agricultural Co. Ltd., Riyadh, Saudi Arabia) were applied at a rate of 2.5 g/L and 0.5 mL/L,
respectively, for all of the treatments at the four regions. The potatoes were planted on 15 March in
the four regions, while 28 July was the date of harvesting in the four regions. The average yields of
the potatoes for the Qassiem, Riyadh, Al-Jouf, and Eastern regions were 24.40 t ha−1, 26.97 t ha−1,
17.69 t ha−1, and 18.25 t ha−1, respectively.

2.5. Crop Coefficient

Kc is the ratio of the well-watered crop evapotranspiration and reference evapotranspiration
(i.e., METc/METr) [1]. The Kc values reflect the relative water consumption capacity of a specific crop
during the different growing stages. The Kc curve is divided into four stages—the initial, development,
mid-season, and late season periods. Three values are required to generate the Kc curve, namely the
Kc during the initial period (Kc ini), the Kc during the mid-season (Kc mid), and the Kc at the late
season (Kc end).

2.6. Water-Use Efficiency

WUE is defined as the total production of the biomass aboveground per amount of water used [39],
as follows:

WUE =
n∑

i=1

[(y)/(wa)] (2)

where WUE is the water-use efficiency (kg/m3), n is the number of plots with each irrigation strategy,
y is the total yield (kg), and wa is the amount of seasonally applied water (m3).

2.7. Economic Analysis

The economic potential of the production of irrigated potatoes was investigated through the
following two perspectives:

1. The estimated net return;
2. The return from water use.

The economic analysis included the water requirements (m3 ha−1), area productivities (t ha−1),
water costs (US $ m−3), variable costs (US $ ha−1), market prices (US $ t−1), net return (US $ ha−1),
economic return (US $ ha−1), and water return (US $ m−3).

3. Results and Discussion

3.1. The Reference Evapotranspiration

Figure 3 shows the measured evapotranspiration of the alfalfa (METr) acquired from the lysimeters
for the studied locations (Qassiem, Riyadh, Al-Jouf, and Eastern) of KSA. As can be seen from Figure 3,
the values of METr were relatively low during the growth stage, then it increased gradually and peaked
over the flowering stage. For example, the average values of METr, which were derived from the
lysimeters, were 2.16, 2.10, 2.64, and 2.4 mm/day in the initial stage; 5.46, 5.10, 5.11, and 5.22 mm/day
in the mid-season stage, and 5.28, 4.98, 4.87, and 4.85 mm/day in the late stage for the Qassiem, Riyadh,
Al-Jouf, and Eastern regions, respectively.
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3.2. The Crop Evapotranspiration

Figure 4 illustrates the measured crop evapotranspiration (METc) gained from the lysimeters on
the one hand, and the predicted crop evapotranspiration (PETc) acquired from a nearby weather station
for potato crop, on the other hand, in the four regions of KSA. The values of METc and PETc varied
from a low of 1.92 and 1.95 mm/day in the Riyadh, respectively, during the germination stage, to a high
of 12.1 and 15.2 mm/day in Al-Jouf region over the flowering stage. The average values of the METc

for the Qassiem, Riyadh, Al-Jouf, and Eastern regions were 1.26, 1.14, 1.32, and 1.26 mm/day; 5.58,
5.40, 5.76, and 5.74 mm/day; and 3.90, 3.72, 3.60, and 3.66 mm/day in the initial stage, the mid-season
stage, and the late season periods, respectively. Similarly, the values of PETc were 1.38, 1.26, 1.50,
and 1.38 mm/day in the initial stage; 8.46, 8.40, 9, and 8.82 mm/day in the mid-season stage; and 4.56,
4.38, 4.20, and 4.26 mm/day in the late season stage for the Qassiem, Riyadh, Al-Jouf, and Eastern
regions, respectively. Overall, the measured values, METc, were somewhat close to the predicted
values, PETc. However, the values of PETc were slightly higher than the values of METc. These results
are in agreement with the literature [40,41].

3.3. Crop Coefficient of Potato

Figure 5 shows the Kc values of the potato crop obtained from lysimeters (i.e., METc and METr) at
the four regions of KSA. The values measured from the lysimeters were Kc ini 0.58, 0.54, 0.50, and 0.52;
Kc mid 1.02, 1.05, 1.13, and 1.10; and Kc end: 0.73, 0.74, 0.74, and 0.75 for the Qassiem, Riyadh, Al-Jouf,
and Eastern regions, respectively. It can be noted that the Kc values were relatively low at the initial
stage, mainly because the evapotranspiration at this stage depended on the evaporation from the soil,
as the crop had no ground cover. On the other hand, the highest values of Kc were found within the
mid-season stage, as the evapotranspiration was significantly high. At the late stage period, the Kc

values decreased steadily because of the maturity and senescence of the leaves. Compared to the FAO
(Food and Agriculture Organization) results, the obtained Kc values were similar to what the FAO
recommends [1].
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Figure 4. The left-hand panel (a,c,i,g) shows the crop evapotranspiration (crop ET) associated with
days after planting at the: (a) Qassiem area, (c) Riyadh area, (i) Al-Jouf area, and (g) Eastern area
of the Kingdom of Saudi Arabia (KSA). The right-hand panel (b,d,f,h) shows the measured crop
evapotranspiration (METc) and predicted crop evapotranspiration (PETc) of potato at the: (b) Qassiem
area, (d) Riyadh area, (f) Al-Jouf area, and (h) Eastern area of the KSA.

3.4. Water-Use Efficiency (WUE)

Figure 6 shows the WUE, which represents the relationship between the crop yield and quantity of
water used at the four regions of KSA. The spatial patterns of the WUE were generally consistent with
those of the yield and evapotranspiration (i.e., a high-yield was accompanied by a high WUE, and vice
versa). For example, the drip-irrigated treatments in the Riyadh and Qassiem regions produced a
higher WUE in comparison with those treatments irrigated in the Eastern and Al-Jouf regions. In other
words, the highest WUE (3.6 kg m−3) was observed in the Riyadh region, while the lowest WUE
(1.5 kg m−3) was observed in the Al-Jouf region. This was mainly because of the climatic conditions
and different soil characteristics in each region.
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Figure 5. Crop coefficient, Kc, of the potato crop at the: (a) Qassiem area, (b) Riyadh area, (c) Al-Jouf
area, and (d) Eastern area of the Kingdom of Saudi Arabia (KSA).
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3.5. Economic Analysis

The economic analysis for the irrigated potatoes in the Qassiem, Riyadh, Al-Jouf, and Eastern
regions are given in Table 2. As is clear from Table 2, the economic potential of the irrigated potato
production is greatest in the Riyadh region, followed, in descending order, by the Qassiem, Eastern,
and Al-Jouf regions. Also, the maximum value of the average water return was observed in the Riyadh
region, while the minimum average value was noted in the Al-Jouf region. Furthermore, the average
net return values for the irrigated potatoes were estimated as 7426.90 US $ ha−1, 4601.30 US $ ha−1,
2202.70 US $ ha−1, and 865.30 US $ ha−1 for the Qassiem, Riyadh, Al-Jouf, and Eastern regions,
respectively. This could be attributed to the changes in both the market prices and average variable
costs at the study regions.
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Table 2. Economic potential of irrigated potato production at four regions of KSA.

Parameter
Region

Qassiem Riyadh Al-Jouf Eastern

Average production (t ha−1) 24.40 26.97 17.69 18.25
Average water cost ($ m−3) 0.06 0.06 0.07 0.06

Average market price ($ t−1) 466.7 409.3 186.7 266.7
Water requirement (m3 ha−1) 11843 6712 8564 7130
Average variable cost ($ ha−1) 1089.6 5387.5 2831.3 3852.3

Average return ($ ha−1) 8516.8 9989.1 5033.8 4717.6
Average net return ($ ha−1) 7426.9 4601.3 2202.7 865.3

Average water return ($ m−3) 0.72 1.49 0.59 0.67

4. Conclusions

Two non-weighing lysimeters were designed to grow alfalfa (Mcdicago sativa) and potatoes
(Solanum tuberosum L.) in four regions of the Kingdom of Saudi Arabia (Qassiem, Riyadh, Al-Jouf,
and Eastern). The experiments were aimed at determining the irrigation requirements, Kc, and the
economic returns of the potato crop. The results show that the accumulated values of the measured
crop evapotranspiration obtained from the potato lysimeters were 573, 554, 592, and 570 mm for the
Qassiem, Riyadh, Al-Jouf, and Eastern regions, respectively. The Kc values were Kc ini 0.58, 0.54, 0.50,
and 0.52; Kc mid 1.02, 1.05, 1.13, and 1.10; and Kc end 0.73, 0.74, 0.74, and 0.75 for the Qassiem, Riyadh,
Al-Jouf, and Eastern regions, respectively. The average values of the water return for the irrigated
potatoes at the Qassiem, Riyadh, Al-Jouf, and Eastern regions were estimated to be approximately
0.72 $ m−3, 1.49 $ m−3, 0.59 $ m−3, and 0.67 $ m−3, respectively.
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