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Abstract: This study assessed the genetic distance (GD) between parental genotypes using single
nucleotide polymorphism (SNP) DNA markers and evaluated the correlation between GD and
heterosis in common wheat. We examined the performance of parents and hybrids in a field
experiment conducted in a randomized block design at a Shihezi location with three replications.
Different traits such as the height of the parents and the F1 generation, number of harvested ears,
number of grains per panicle, grain weight per panicle, 1000-grain weight, and grain yield were
examined. Genotyping using a wheat 90K SNP chip determined the GD between the parents and
analyzed the relationship between GD and heterotic performance of hybrids in wheat. Cluster
analysis based on GD estimated using SNP chips divided the 20 elite parents into five groups
which were almost consistent with the parental pedigree. Correlation analysis showed a significant
association between GD and mid-parent heterosis (MPH) of 1000-grain weight. However, GD and
high-parent heterosis (HPH) of 1000-grain weight showed no significant correlation. There was a
weak correlation between GD and with spikelet number, harvested spikes, and yield at MPH or
HPH. Hence, SNP analysis may be utilized in allocating wheat parents to heterotic groups. However,
the correlation between SNP-based GD and hybrid performance still remains unclear.
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1. Introduction

Wheat (Triticum aestivum L.) is the second largest food crop in China. The annual planting area
is over 26.66 million hectares, accounting for 27% of the area of food crops; and the total output is
more than 100 million tons, accounting for 22% of the output of food crops. Therefore, the continuous
increases in the production of wheat and its stable production is a food security concern for China.
However, pests and diseases are increasing with the warming of the global climate posing a threat to
the safe production of wheat. Heterosis is a common phenomenon in nature. Plant breeders exploit
heterosis as an effective genetic strategy to increase yield and stress resistance in wheat [1]. Freeman
reported heterosis in wheat for the first time in 1919, where the F1 generation showed increased plant
height when compared with their parents [2]. Wilson and Rose first discovered cytoplasmic male
sterility and restoration in Triticum timopheevi, and utilized the three lines (male sterile line, maintainer
line, and restorer line) to develop a wheat hybrid in 1962. Hybrid wheat research has made significant
progress in understanding infertility mechanisms [3], the cloning of sterility genes [4], and research on
reproduction technology [5] over the last three decades. However, wheat hybrids were not widely
promoted and used around the world. The major constraint is to select elite parents to create a strong
heterosis combination [6–8].
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Traditionally, breeders estimated heterosis in wheat by observing progeny traits. These are
often influenced by factors such as genetic relation of the parents and environmental conditions.
Morphological observations also waste a lot of labor force and money. Therefore, some breeders have
used the analysis of combining ability [9–12], and the heterosis group division [13,14] to improve the
breeding efficiency of strong heterosis combination.

Molecular markers have been rapidly developed and widely used because they can accurately
identify crop varieties and carry out marker-assisted breeding. A few studies have used molecular
markers such as restriction fragment length polymorphism (RFLP), randomly amplified polymorphic
DNA (RAPD), or simple sequence repeat (SSR) to estimate genetic diversity of wheat cultivars and
lines [15–17]. However, the wheat genome is tremendous with many repeat sequences, and the
assessment of wheat GD requires high-density molecular markers. SNP refers to a single-nucleotide
mutation in the genome. The SNP marker was widely used due to cost effectiveness to assay a uniform
distribution on chromosomes [18–20]. Presently, the rapid and high-throughput SNP genotyping
platform offers opportunities to analyze genetic diversity [21], divided parents heterotic group [22],
QTL mapping and heterosis prediction [23–25].

Studies have shown that statistically significant but low correlations exist between the different
estimates of genetic diversity and F1 performance or MPH for grain yield and other related traits [26].
Many scientists have accurately predicted the hybrid performance in maize using GD based on SSR
and the SNP molecular marker [27]. However, fewer studies have analyzed the relationship between
GD and wheat heterosis. The present study used 20 elite wheat cultivars and lines to construct
incomplete double-crossing populations, and investigated yield and heterosis of five yield-related
traits. It involved genotyping using wheat 90K SNP array (Illumina) to estimate the GD between
parents. We further analyzed the relationship between GD and heterosis, and discussed the application
potential of wheat 90K SNP array in selecting strong crosses of hybrid wheat.

2. Materials and Methods

2.1. Experimental Material

A set of 20 winter wheat cultivars and lines were selected for this study from different ecological
regions, representing a wide range of genetic backgrounds. This included 15 elite varieties (lines)
from Huanghuai area and Xinjiang local, China. The five AL-type restorer lines were produced by the
Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Science (XAARS), China.

2.2. Field Trial

The test was conducted at Xinjiang Academy of Agri-Reclamation Sciences during 2016–2017
growing season. The 20 elite parents were crossed in a half-diallel mating design to produce 100 hybrids
and a total of 120 entries were grown. The field trials used a randomized complete block design with
three replications. Plots consisted of five rows each, 1.5 m long with a row spacing of 0.25 m. Plant
density was approximately 2.7 × 106 plants ha−1.

2.3. Character Investigation and Data Collection

Ten plant heights were measured from the ground level to the tip of the spikes at maturity in each
plot. After harvesting, other agronomic traits including grain yield, number of spikelets per hectare,
number of kernels per spike, weight of kernels per spike, and 1000-grain weights were determined.
Grain yield data were collected from the middle row of each plot to reduce the effects of competition
among parents, checks, and crosses.

Formulas for calculating the mid-parent heterosis (MPH) and the high-parent heterosis (HPH)
were as follows:

MPH% = (F1 value − parent mean)/parent mean × 100;
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HPH % = (F1 value − high parent)/high parent × 100, where F1 is hybrid performance, and high
parent was the higher yielding. MPH and HPH were tested for significance with an ordinary t-test.
Combining ability analysis was estimated according to Kalhoro et al. [10].

2.4. DNA Extraction and SNP Genotyping

The parental DNA was extracted from plant tissue following the standard extraction protocol
for genomic DNA using the Tiangen kit (Tiangen Biotech, Beijing, China). Quality and quantity
of the extracted DNA were analyzed according to the whole genome sample delivery request.
The specific requirements were as follows: (1) DNA concentration greater than 50 ng µL−1; (2) total
DNA greater than 1 µg; and (3) 260/280 absorbance ratio between 1.7 and 2.1. DNA samples
were sent to Beijing Compass Biotechnology Co., Ltd. for SNP genotyping. The chip test
procedure was performed on an Infinium HD SNP chip (Illumina Inc.). The steps were as
follows: (1) DNA quantification; (2) DNA amplification; (3) DNA fragmentation; (4) fragmented DNA
precipitation and resuspension; (5) DNA and chip hybridization; (6) single base extension and staining;
(7) chip scanning; and (8) data analysis.

2.5. Quality Control of SNP Data

The SNP array showed a detection rate between 0.975 and 0.985 (average of 0.98) with SNP
markers with deletion rates between 0 and 1 (average of 0.042). We excluded and used the remaining
(4799) SNPs based on removal rate and minor allele frequency, with removal rate greater than 10% and
a minor allele frequency (MAF) less than 0.01.

2.6. Statistical Analysis

Yield and yield-related data were analyzed using SPSS version 22.0. SNP array data were
processed using the genotyping module within GenomeStudio version 2.0 (Illumina). This included
standardization, clustering, and genotyping of the raw data. Genetic distance was analyzed using
MEGA version 5.05. The correlation analysis among the genetic distance and heterosis was analyzed
using SPSS version 22.0.

3. Results and Analysis

3.1. Estimation of Genetic Distance and Clustering of Parents

Among the 20 parents, the GD between Xiaoyan 54 and Xindong 36 was the smallest (0.008),
the GD between Yannong 19 and Xindong 41 was the largest (0.276), and the GD between all parents
consisted of a range from 0.008 to 0.276, with an average of 0.212. The GD between restorer lines
consisted of range from 0.078 to 0.189 (Table 1). Based on cluster analysis, the 20 parents were divided
into five main groups as follows: group I was the four restorer lines, Xinjiang local varieties (lines)
were divided into group II and III according to cultivars (lines) origin, group IV was the new variety
in the North China winter wheat region, and group V was the new variety (line) in the Huanghuai
wheat region. The results showed that the grouping was almost consistent with the actual pedigree
(Figure 1).
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Table 1. Genetic distance estimation between parents using SNP molecular markers.

GD XD33 XD36 KD002 XD41 BM38 KM1 GY8901 XY54 XD51 08(153) XD52 AR144-1AR2-4 09AR2 12AR2 AR20-2 05(65) XY22 PB717

XD36 0.061
KD002 0.059 0.047
XD41 0.019 0.059 0.062
BM38 0.066 0.074 0.067 0.069
KM1 0.073 0.058 0.064 0.071 0.067

GY8901 0.070 0.070 0.067 0.072 0.065 0.069
XY54 0.060 0.002 0.046 0.059 0.073 0.057 0.069
XD51 0.067 0.052 0.055 0.063 0.067 0.063 0.064 0.051

08(153) 0.058 0.057 0.038 0.058 0.063 0.068 0.067 0.056 0.060
XD52 0.069 0.055 0.049 0.067 0.072 0.050 0.077 0.054 0.058 0.059

AR144-1 0.064 0.070 0.060 0.068 0.073 0.076 0.070 0.069 0.074 0.067 0.076
AR2-4 0.064 0.053 0.035 0.067 0.072 0.066 0.068 0.052 0.059 0.056 0.053 0.030
09AR2 0.064 0.056 0.043 0.067 0.071 0.070 0.068 0.055 0.063 0.059 0.058 0.025 0.013
12AR2 0.066 0.061 0.048 0.065 0.070 0.072 0.070 0.059 0.064 0.060 0.056 0.053 0.042 0.047
AR20-2 0.073 0.075 0.075 0.075 0.076 0.071 0.079 0.074 0.080 0.078 0.070 0.036 0.060 0.053 0.066
05(65) 0.029 0.064 0.061 0.043 0.068 0.071 0.071 0.064 0.066 0.058 0.071 0.068 0.064 0.067 0.065 0.080
XY22 0.079 0.084 0.082 0.079 0.079 0.065 0.078 0.083 0.083 0.077 0.070 0.072 0.074 0.073 0.075 0.065 0.079
PB717 0.071 0.073 0.068 0.071 0.061 0.055 0.080 0.072 0.074 0.062 0.056 0.075 0.068 0.071 0.074 0.066 0.073 0.067
YN19 0.075 0.072 0.069 0.076 0.074 0.080 0.080 0.071 0.071 0.067 0.074 0.073 0.070 0.071 0.071 0.059 0.076 0.074 0.070

Note: GD = Genetic distance; XD33 = Xindong33; XD36 = Xindong36; KD002 = Kendong002; XD41 = Xindong41; BM38 = Baomai38; KM1 = Kemai1; GY8901 = Gaoyou8901;
XY54 = Xiaoyan54; XD51 = Xindong51; 08(153) = 2008(153); XD52 = Xindong52; AR144-1 = 99AR144-1; AR2-4 = 09AR2-4; 09AR2 = 09AR2; 12AR2 = 2012AR2; AR20-2 = 09AR20-2;
05(65) = 2005(65); XY22 = Xiaoyan22; PB717 = Pubing717; YN19 = Yannong19.
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Figure 1. Cluster analysis of 20 elite parents.

3.2. Yield Performance of Parents and F1 Hybrids

The yield performance and general combining ability of the parents and their F1 hybrids are
shown in Table 2. The results showed that the grain yield of F1 generation ranged from 468.0 g
to 1279.5 g, and the average yield of 100 hybrid combinations was 909.0 g. Among all hybrid
combinations, 10 combinations showed 20% greater yield than the all hybrids combined average and
18 combinations showed 10%–20% greater yield than all the combination average. The combination
Pubing 717 × Xindong 41 produced a grain yield of 1279.5 g, which was 40.76% above average and the
combination 09AR2 × 09AR20-2 produced a grain yield of 468.0 g, which was 48.51% below average.

Table 2. Yield performance and general combining ability of F1 hybrid combinations.

Yield XD52 XD41 AR144-1 08(153) GY8901 05(65) AR20-2 YN19 BM38 XY22 Female
GCA

PB717 981.00 1279.50 1030.00 953.30 1142.00 1069.50 1147.00 1073.70 900.00 1000.50 148.69
KD002 1184.00 1161.00 1163.50 953.00 882.00 1120.00 985.00 785.00 1005.50 1079.30 122.87
KM1 1220.00 1066.00 866.30 1019.30 958.00 933.00 1152.70 880.00 981.30 1048.50 103.55
XY54 1036.00 874.00 875.00 872.00 995.70 911.00 927.00 946.30 988.70 1035.00 37.11
XD36 1020.70 887.30 913.30 968.70 892.30 898.70 1097.00 884.00 776.30 1003.00 25.17
XD33 948.00 1029.00 974.50 1068.00 931.00 1002.70 696.00 1113.50 899.00 652.00 22.41
XD51 837.00 878.00 1026.50 894.50 984.00 782.50 729.00 866.50 977.00 977.00 −13.76

12AR2 978.70 967.70 895.30 861.30 766.00 777.70 934.00 890.50 835.70 483.70 −69.90
AR2-4 860.70 812.50 849.50 638.00 830.00 870.70 687.00 787.00 689.30 471.70 −159.32
09AR2 911.70 854.70 746.30 773.30 565.30 530.00 468.00 574.70 635.00 862.00 −216.86
Male
GCA 89.23 72.42 25.47 −8.41 −17.96 −18.97 −26.28 −28.43 −39.77 −47.28

Note: GCA = general combining ability.

3.3. Correlation of Yield-Related Traits between Parents and F1 Hybrids

Correlation analysis of yield and five yield-related traits of parents and F1 generation showed a
significant positive association between grain number per spike and grain weight per ear and plot
yield (p > 0.05, r = 0.78, 0.63) (Table 3). Grain weight per spike and plot yield was positively correlated
(p < 0.05, r = 0.63). However, 1000-grain weight was negatively correlated with grain number per spike
and plot yield (p < 0.05, r = −0.50, −0.15). We also analyzed the correlation of yield and yield-related
traits for the selected 28 strong heterosis combinations. The results showed a significant positive
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correlation between number of harvested spikes and yield of the plot (p > 0.05, r = 0.65), between
number of grains per spike and grain weight per ear (p > 0.05, r = 0.63), and between grain weight
per spike and 1000-grain weight (p > 0.05, r = 0.54). The number of harvested spikes was negatively
correlated with grain weight per panicle (p < 0.05, r = −0.74).

Table 3. Heterosis of yield-related traits and yield in F1 hybrids.

Harvest of
Spikelets

Grain Number
per Spike

Grain Weight
per Spike

1000-Grain
Weight Yield

Harvest of spikelets 1.00 −0.16 −0.43 −0.36 0.42
Grain number per spike 1.00 0.78 −0.50 0.63
Grain weight per spike 1.00 0.14 0.63

1000-grain weight 1.00 −0.15
Yield 1.00

3.4. Analysis of Mid-Parent and High-Parent Heterosis of Yield in F1 Generation

MPH of the 10 female parents ranged from −18.67 to 20.42 and HPH ranged from −24.18 to
12.82. MPH of the 10 male parents ranged from −11.07 to 13.30 and HPH ranged from −21.17 to 5.06.
For the 100 combinations, MPH ranged from −47.47 to 45.43. Meanwhile, 19 combinations showed
a MPH of more than 20%, of which 16 showed more than 10% to 20%. HPH ranged from −50.84 to
32.54. Here, nine combinations showed a HPH of more than 20%, accounting for 9% of the hybrid
combinations; 14 combinations showed more than 10% to 20%, accounting for 14% of the hybrid
combinations. The combination Kendong 002 × Xiaoyan 22 showed the largest heterosis of 45.43% and
a HPH of 27.73%. The combination Kendong 002 × 2005(65) showed the highest HPH of 32.54 and a
MPH of 36.81% (Table 4). Both mid-parent and high-parent heterosis of eight hybrid combinations
exceeded 20%.

Table 4. Mid and high-parental heterosis in F1 hybrid yield.

Cultivars (Lines) XD52 XD41 AR144-1 08(153) GY8901 05(65) AR20-2 YN19 BM38 XY22

PB717 MPH −5.00 30.36 7.14 −12.35 25.24 17.16 15.55 19.34 −0.89 19.63
HPH −9.72 23.82 −0.30 −16.52 10.52 3.50 11.00 3.87 −12.90 −3.18

KD002 MPH 22.59 30.84 34.17 −4.07 7.87 36.81 9.63 −2.54 23.52 45.43
HPH 8.96 24.88 30.83 −16.50 4.38 32.54 3.47 −7.10 18.99 27.73

KM1 MPH 22.26 15.98 −1.43 −0.60 12.75 9.68 23.88 5.07 15.94 35.44
HPH 12.27 14.66 −4.69 −10.74 5.39 2.64 21.34 −3.20 7.95 15.35

XY54 MPH 7.89 −0.87 1.57 −11.72 22.62 12.05 3.83 18.31 22.31 40.53
HPH −4.67 −0.59 −1.61 −23.64 19.43 9.27 −2.60 13.51 18.59 24.15

XD36 MPH 4.29 −1.43 3.78 −3.74 7.44 8.08 20.37 8.02 −6.11 32.84
HPH −6.07 −4.56 2.69 −15.17 2.48 3.22 15.23 1.53 −10.83 15.19

XD33 MPH −3.20 14.23 10.65 6.06 12.01 20.49 −23.68 35.96 8.64 −13.72
HPH −12.76 10.68 9.52 −6.48 6.77 14.98 −26.89 27.69 3.09 −25.23

XD51 MPH −15.32 −3.51 15.36 −11.97 8.13 −6.99 −20.86 4.63 16.77 27.74
HPH −22.97 −1.38 15.29 −21.67 5.84 −12.11 −23.42 −2.67 15.29 9.73

12AR2 MPH −3.05 3.94 −1.70 −16.95 −11.07 −9.91 −0.87 4.87 −2.56 −38.45
HPH −9.93 3.79 −3.97 −24.58 −17.84 −16.58 −1.89 −4.48 −10.36 −0.48

AR 2-4 MPH −8.01 −5.21 1.49 −33.77 5.39 10.42 −20.88 1.51 −12.06 −33.75
HPH −20.79 −12.60 −4.47 −44.13 5.02 9.89 −27.84 −5.18 −12.15 −39.88

09AR2 MPH −4.86 −2.85 −13.15 −21.57 −30.22 −34.66 −47.47 −27.98 −21.26 17.33
HPH −16.10 −8.06 −16.08 −32.28 −31.89 −36.14 −50.84 −30.76 −23.49 3.85

3.5. Correlation between Genetic Distance and Hybrid Performance

We selected 10 hybrid combinations with yield heterosis of 20% over the average for the correlation
analysis. The results showed that the plot yield variation ranged from 1113.5 g to 1279.5 g, the MPH
variation ranged from 20.69 to 36.81, the female general combining ability ranged from 22.41 to 148.69,
and the male general combining ability ranged from −28.43 to 89.23. The special combining ability
of the 10 strong heterosis combinations ranged from 56.75 to 210.52. According to the results of the
cluster, we found that among strong heterosis combinations that cross type was mostly IV × II (V) and
I × III (II) (Table 5). Therefore, we infer that group I and IV (as the female parent crosses with other
groups of parents) tend to produce some strong heterosis combinations.
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Table 5. Relationship between group division and strong combination yield, MPH, GCA and SCA.

Plot Yield
(g)

MPH
(%)

GCA
(♀), (♂) SCA

SNP
Clustering

Combination Type

Pubing717 × Xindong41 1279.5 30.36 148.69, 72.42 149.66 IV × III
Pubing717 × Gaoyou8901 1142.0 25.24 148.69, −17.96 102.26 IV ×V

Pubing717 × 09AR20-2 1149.0 20.69 148.69, −26.28 115.58 IV × II
Kemai1 × Xindong52 1220.0 22.26 103.55, 89.23 118.26 IV × I
Kemai1 × 09AR20-2 1152.7 23.88 103.55, −26.28 166.47 IV × II

Kendong002 × 99AR144-1 1163.5 34.17 122.87, 25.47 106.20 I × II
Kendong002 × Xindong41 1161.0 30.84 122.87, 72.42 56.75 I × III
Kendong002 × 2005 (65) 1120.0 36.81 122.87, −18.97 107.14 I × III

Kendong002 × Xindong52 1184.0 22.59 122.87, 89.23 62.94 I × I
Xindong33 × Yannong19 1113.5 35.96 22.41, −28.43 210.52 III × V

Note: MPH = Mid-parent heterosis; GCA = general combining ability; SCA = special combining ability

Correlation analysis proved a significant association (p > 0.05) between GD based on SNP and
MPH of 1000-grain weight. However, HPH of 1000-grain weight did not show a significant correlation
(p < 0.05) (Table 6). Additionally, analysis showed weak correlations (p < 0.05) with mid-parent and
high-parent heterosis of grain number per spike, harvested spikes, and plot yield.

Table 6. Correlation between GD and MPH and HPH of yield and yield related traits.

Trait Correlation Coefficient Trait Correlation Coefficient

Kernels per spike MPH −0.012 Spike number per acreage MPH −0.257
Kernels per spike HPH −0.198 Spike number per acreage HPH −0.203

Thousand seed weight MPH 0.399 * Yield per acreage MPH 0.371
Thousand seed weight HPH 0.365 Yield per acreage HPH 0.208

Note: GD = genetic distance; * Indicates significance at 0.05 levels. MPH: Mid-parent heterosis; HPH:
High-parent heterosis.

4. Discussion

The main target of hybrid crop breeding is to identify parents with high genetic diversity [28] that
have a high proportion of selected strong heterosis cross in F1 generation. Previous studies have
shown that genetic diversity for 26 microsatellite loci varied from 0.43 to 0.94 with an average of
0.77 in 998 bread wheat cultivars [16]. The average genetic diversity based on AFLP (0.502) and SSR
(0.503) markers were similar in Iranian bread wheat [15]. In this study, we estimated the GD from
0.008 to 0.276 with an average distance of 0.212. This agrees well with published results that found
average polymorphism information content of 0.18 among 20 US elite wheat cultivars using SNP
marker [29]. Compared to the previous studies on common wheat, this level of GD is low. Generally,
polymorphism information content for SNPs ranged from 0.04 to 0.50 in wheat [30]. Because SNP
markers are mainly bi-allelic, the GD cannot exceed 0.50 [31]. Furthermore, SNP density ranges from
one per 370 bp to one per 540 bp in the wheat genome [30]. Therefore, SNP markers have good
genome-wide coverage compared to traditional molecular markers and are more efficient in GD
analysis in wheat cultivars [32]. In this study, cluster analysis results showed the elite 20 parents were
divided into five groups. The grouping generated by SNP data showed a certain agreement with
the pedigree. Amongst them, Xiaoyan 54 and Xindong 36, Xindong 51, 2008 (153), and Dongdong
002 were classified into one group, of which Xindong 36, Xindong 51, 2008 (153) and Kendong 002
were all from the same origin of breeding, the Xinjiang Academy of Agricultural Sciences. Looking
at the pedigree of Xiaoyan 54, we see that they have no same parents with the other four varieties
(lines). 09AR20-2 and the other four restorer lines were not assigned in the group, but get together
with the wheat varieties in the northern wheat region. Looking at the pedigree, one of the parents of
09AR20-2 was a Jimai 26 from Hebei province, North China. Therefore, carrying out wheat groupings
by pedigrees has certain limitations. For this reason, SNP markers are not only more accurate, but also
improve efficiency in terms of wheat genetic distance analysis.
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The major aim in hybrid breeding is the exploitation of heterosis. Few studies have used GD
to estimated F1 hybrid yield for improving the breeding efficiency on wheat heterosis utilization.
However, the correlation between GD and heterosis was still unclear. Previous studies have shown
significant correlation between GD and heterosis for the quality character such as water absorption,
dough development [33] and grain weight in wheat [34]. However, in our study, the results
demonstrated that GDs were not significantly correlated with heterosis effects for all the analyzed traits.
However, a positive significant correlation was found between MPH and GD for 1000-grain weight.
A similar analysis was reported by Liu et al. [14]. Therefore, we inferred that the relationship between
GD and hybrid performance is variable. The first reason depends on the genetic materials used in the
study. The second reason is that the relative amount of heterosis also depends on environmental factors.
These inference results are consistent with the results of Zhang et al. [35] and Dreisigacker et al. [36].

5. Conclusions

In the current study, we concluded that the SNP chip was an effective tool for the evaluation of
wheat GD, and GD between all parents was in the range from 0.008 to 0.276. A SNP chip can also be
used as a potential tool grouping the parents. The relationship between GD and hybrid performance
showed no significant correlation. To accurately predict heterosis of wheat based on GD, further
research is required.
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