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Abstract: Consumer demand for vegetables of fortified mineral and bioactive content is on the rise,
driven by the growing interest of society in fresh products of premium nutritional and functional
quality. Biofortification of leafy vegetables with essential micronutrients such as iron (Fe) is an efficient
means to address the human micronutrient deficiency known as hidden hunger. Morphometric analysis,
lipophilic and hydrophilic antioxidant capacities of green and red butterhead lettuce cultivars in
response to Fe concentration in the nutrient solution (0.015 control, 0.5, 1.0 or 2.0 mM Fe) were assessed.
The experiment was carried out in a controlled-environment growth chamber using a closed soilless
system (nutrient film technique). The percentage of yield reduction in comparison to the control
treatment was 5.7%, 13.5% and 25.3% at 0.5, 1.0 and 2.0 mM Fe, respectively. Irrespective of the cultivar,
the addition of 1.0 mM or 2.0 mM Fe in the nutrient solution induced an increase in the Fe concentration
of lettuce leaves by 20.5% and 53.7%, respectively. No significant effects of Fe application on phenolic
acids and carotenoid profiles were observed in green Salanova. Increasing Fe concentration in the
nutrient solution to 0.5 mM triggered a spike in chlorogenic acid and total phenolics in red Salanova
lettuce by 110.1% and 29.1% compared with the control treatment, respectively; moreover, higher
accumulation of caffeoyl meso tartaric phenolic acid by 31.4% at 1.0 mM Fe and of carotenoids
violaxanthin, neoxanthin and -carotene by 37.0% at 2.0 mM Fe were also observed in red Salanova
compared with the control (0.015 mM Fe) treatment. Red Salanova exhibited higher yield, P and K
contents, ascorbic acid, phenolic acids and carotenoid compounds than green Salanova. The wok
shows how nutrient solution management in soilless culture could serve as effective cultural practices
for producing Fe-enriched lettuce of premium quality, notwithstanding cultivar selection being a
critical underlying factor for obtaining high quality products.

Keywords: Ascorbic acid; carotenoids profile; hydroponics; Lactuca sativa L.; mineral composition;
nutrient solution management; phenolic acids
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1. Introduction

Food obligations and unbalanced diets lead to malnutrition that causes up to 3 million children
deaths each year [1]. This phenomenon, known as hidden hunger, is affecting both industrial and
developing countries. In fact, the cultivation in poor soils or where nutrients are not phytoavailable,
negatively affect human health, causing deficiencies in vitamins and in essential and/or beneficial
micronutrients [1-3]. Iron (Fe) is one of the indispensable microelements for life and, although the earth
crust is rich in it, Fe forms insoluble compounds [2], and its phytoavailable concentration (10~ M)
does not reach the optimal range for plant growth (107-10~* M) [4].

Fe is involved in very important processes, in both plants and humans, such as respiration,
photosynthesis, and oxygen transport [4,5]. In the human body;, it exists in two different forms of heme
complexes, such as hemoglobin and myoglobin, or in non-heme forms, such as iron—sulfur clusters
and other prosthetic groups. Two billion people are anemic worldwide and according to the World
Health Organization (WHO) the main cause is Fe deficient human diet [6]. Fe deficiency is also among
the most responsible factors for illnesses worldwide [7]. Fe absorption in the human intestine can
be inhibited by various factors such as phytic acid (2-10 mg per meal) and polyphenols (i.e. tannic
acid from 12 to 55 mg) while it is promoted by molecules such as ascorbic acid (50 mg per meal) and
[-carotene that can reduce or chelate Fe, leading to more bioavailable complexes [8,9].

Biofortification is a way to address hidden hunger by increasing the nutritional content of plants
edible parts. Recently, Finklestein et al. [10] have shown that biofortification with Fe in staple food
crops (beans, cassava, maize, pearl millet, rice, sweet potatoes and wheat) can increase Fe status (serum
ferritin concentrations and total body Fe), zinc and provitamin A carotenoids in populations at risk,
as in the Philippines, India, and Rwanda. According to their work, the beneficial effect has been
demonstrated not only in Fe deficient youngsters or baseline adults, but also among individuals who
are not at risk [11].

Biofortification can be achieved through mineral fertilization, breeding or biotechnological
approaches [1,5]. However, each of these solutions have limitations. For instance, the excessive
use of fertilizers contributes to soil pollution or turns minerals into insoluble forms. Fertilization
also requires a frequent supply of the element and consequently raises production cost. Moreover,
high mineral concentrations can turn into stress conditions for plants. Excessive amounts of Fe can
lead to phytotoxicity and growth inhibition, as demonstrated in many cultures such as rice [12-14],
potato [15], wheat [16,17] and tea [18]. On the other hand, the spread of biofortified transgenic
crops in many countries must undergo procrastinated procedures before its legal distribution to the
public [1]. Hydroponic cultivation systems eliminate or reduce problems of nutrient phyto-availability.
They have long been seen as an answer to the urgent need to produce food for an increasing global
population [19,20], since they allow the management of plant nutritional status during growth through
effective control of water and nutrient supply. In fact, manipulating the nutrient solution in terms of
concentration or composition demonstrably improved the yield or quality of zucchini squash [21],
cucumber [22], lettuce [23,24], artichoke [25], cardoon [26], and tomato [27].

Lettuce (Lactuca sativa L.) is one of the most cultivated and consumed leafy vegetables in the world,
appreciated for its organoleptic properties and it is a good source of minerals, vitamins, terpenoids,
as well as carotenoids, phenolic acids and flavonoids [28-30]. Among the different pre-harvest factors
(i.e., agricultural practices, developmental stages, climatic control) the genetic factor is considered
the major determinant of variation in nutraceutical properties [31-36]. The response of lettuce to Fe
biofortification was investigated only in terms of yield and Fe status, under soil cultivation [37,38].
Essentially nothing is known about Fe biofortification under closed soilless cultivation (i.e., nutrient
film technique, NFT) where the constant exposure of the root system to Fe fortified nutrient solution
could maximize Fe uptake, translocation and accumulation in edible parts. In addition, the efficiency
of biofortification may depend upon several interacting parameters such as cultivar and application
rate [19,20,39,40]. To our knowledge, no information is available on how biofortification with an
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essential micronutrient such as Fe could differentially modulate the nutritional and functional quality
of lettuce, accounting for potential interaction with tested cultivars.

In view of this background, our aim was to assess the effect of different Fe application rates within
the nutrient solution on growth parameters, fresh yield, mineral composition, antioxidant activities,
nitrate and ascorbic acid contents as well as on phenolics and carotenoids profiles of green and red
pigmented butterhead lettuce grown in NFT system under controlled environment. The obtained
information will assist the scientific community as well as growers of leafy vegetables in identifying
optimum cultivar-application rate combinations for achieving high nutritional and functional value,
and in understanding the boundary between biofortification and Fe toxicity in lettuce.

2. Materials and Methods

2.1. Growth Chamber Conditions, Lettuce Cultivars and Experimental Design

The experiment was carried out in a 28 m? controlled-environment growth chamber (7.0 X 2.1 m
x 4.0 m; W x H x D), located at the experimental station of the Department of Agricultural Sciences,
University of Naples Federico 11, Italy. Artificial light was provided by high pressure sodium lamps,
with an intensity of 420 + 5 umol m~2 s~! (165 cm from the top of the canopy) according to a light/dark
regime of 12/12h. Temperature was set at 24/18 °C (light/dark) and relative humidity was 60-80%,
the latter being maintained by a fog system. The experiment was carried out at ambient carbon dioxide
concentration (370-410 ppm), and air exchange was performed by means of an air extractor.

Two cultivars of lettuce (Lactuca sativa L. var. capitata) green Salanova® and red Salanova®
(Rijk Zwaan, Der Lier, The Netherlands) were grown in a closed soilless system based on the nutrient
film technique (NFT). The nutrient solution being collected in polypropylene reservoir tanks of 25 L
and recirculated with a constant flow of 1.5 L min~! by submerged pumps. The troughs were 200 cm
long, 14.5 cm wide and 8 cm deep, with a 1% slope. Seeds of lettuce were germinated in vermiculite.
The lettuce seedlings were transplanted 15 days after sowing, at the two-true leaf stage in rockwool
cubes (7 X 7 x 7 cm) (Delta, Grodan, Roermond, The Netherlands). Lettuce seedlings were spaced
15 cm apart between rockwool cubes and 30 cm apart between troughs, giving a plant density of
22 plants per square meter. Each trough was covered with propylene taps to avoid evaporation of the
nutrient solution.

The growth chamber experiment was designed as a factorial combination of two butterhead
lettuce cultivars (red and green pigmented) and four concentrations of Fe in the nutrient solution
(0.015 mM control treatment and three concentrations of 0.5, 1.0 and 2.0 mM Fe). The basic nutrient
solution nutrient was a modified Hoagland and Arnon formulation. The composition of the basic
nutrient solution was: 8.0 mM N-NO;3~, 1.5 mM S, 1.0 mM P, 3.0 mM K, 3.0 mM Ca, 1.0 mM Mg,
1.0 mM NH,4*, 15 uM Fe, 9 uM Mn, 0.3 uM Cu, 1.6 uM Zn, 20 uM B, and 0.3 uM Mo, with an electrical
conductivity (EC) of 1.4 dS m~! and a pH of 5.8 + 0.2. The biofortified Fe nutrient solution had the
same basic nutrient composition plus an additional 0.5, 1.0 and 2.0 mM Fe. Fe biofortification was
initiated three days after transplanting (DAT). Fe was added as Fe chelate EDDHA 6% ortho-ortho
(Revive Total, Italpollina S.p.a., Rivoli Veronese, Italy).

Eight treatments derived from the factorial combinations of two butterhead lettuce cultivars
(red and green Salanova) and four Fe concentrations in the nutrient solution (0.015-control, 0.5, 1.0 or
2.0 mM). Treatments were arranged in a randomized complete-block design amounting to a total of
24 experimental units with twelve plants each (288 green and red Salanova plants in total).

2.2. Growth Analysis, Biomass Determination and Radiation Use Efficiency

19 DAT, all green and red Salanova lettuce plants were harvested. The number of leaves per plant
was determined and the total area was measured by a LI-COR 3100C area meter (Biosciences, Lincoln,
NE, USA). Leaf tissues were dried at 80 °C for 72 h until they reached a constant weight and weighed
again to determine the corresponding shoot dry biomass. The leaf dry matter percentage was also
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calculated. Finally, radiation use efficiency (RUE) was expressed as the shoot dry biomass divided by
cumulative daily intercepted photosynthetically active radiation (PAR).

2.3. Collection of Samples for Mineral and Nutritional Quality Analyses

Part of the dried leaf tissue of green and red Salanova plants was used for macro-mineral and
Fe analyses. For the identification and quantification of total ascorbic acid, lipophilic antioxidant
activity (LAA), phenolic acids and carotenoid compounds by spectophotometry and HPLC-DAD,
fresh samples of three plants per experimental unit were instantly frozen in liquid nitrogen and stored
at =80 °C before lyophilizing them in a Christ, Alpha 1-4 (Osterode, Germany) freeze drier.

2.4. Mineral Analysis by Ion Chromatography and ICP-OES

For mineral analysis, 250 mg of dried green and red butterhead lettuce leaves were ground at
0.5 mm in a Wiley Mill, and then suspended in 50 mL of ultrapure water (Milli-Q, Merck Millipore,
Darmstadt, Germany) and shaken in water bath (ShakeTemp SW22, Julabo, Seelbach, Germany) at
80 °C for 10 min. The solution was centrifuged at 6000 rpm for 10 min (R-10 M, Remi Elektrotechnik
Limited, India), then filtered through a 0.45 pum nylon syringe filter (Phenomenex, Torrance, CA,
USA) and analyzed by ion chromatography (ICS-3000, Dionex, Sunnyvale, CA, USA) coupled to a
conductivity detector. AnIonPac CG12A (4 x 250 mm, Dionex, Corporation) guard column and IonPac
CS12A (4 x 250 mm, Dionex, Corporation) analytical column were used for the K, Ca and Mg analysis,
while for nitrate and P determination, an IonPac AG11-HC guard (4 X 50 mm) column and IonPac
AS11-HC analytical column (4 x 250 mm) were adopted, as detailed in Rouphael et al. [41]. Nitrate
was expressed as mg kg ™! fresh weight (fw) on the basis of each sample’s original dry weight (dw),
while P, K, Ca and Mg were expressed as g kg~ dw.

In addition to macro-minerals analysis, the Fe content was also measured in green and red Salanova
leaf tissue. Each sample was subjected to a first phase of acid digestion performed using a commercial
high-pressure laboratory microwave oven (Mars plus CEM, Italy) operating at an energy output of
1800 W. Approximately 300 mg of each dry sample was inserted directly into a microwave-closed vessel.
Two mL of 30% (m/m) H,O,, 0.5 mL of 37% HCI and 7.5 mL of HNOj3; 69% solution were added to
each vessel. The heating program was performed in one step: Temperature was ramped linearly from
25 to 180 °C in 37 min, then held at 180 °C for 15 min. After the digestion procedure and subsequent
cooling, samples were transferred into a Teflon beaker and total volume was made up to 25 mL with
Milli-Q water. The digest solution was then filtered (DISMIC 25HP PTFE syringe filter, pore size
0.45 pm, Toyo Roshi Kaisha, Ltd., Japan) and stored in a screw cap plastic tube (Nalgene, New York,
NY, USA). Blanks were prepared in each lot of samples. The reagents of super-pure grade, used for
the microwave-assisted digestions, were: Hydrochloric acid (36% HCI), nitric acid (69% HNOs3) and
hydrogen peroxide (30% H0,) (Merck, Darmstadt, Germany). High-purity water (18 MQ cm™!)
from a Milli-Q water purification system (Millipore, Bedford, MA, USA) was used for the dilution
of the standards, for preparing samples throughout the chemical process, and for final rinsing of the
acid-cleaned vessels, glasses, and plastic utensils. For this work, tomato leaves (SRM 1573a) were used
as external certified reference material. The calculated concentration for Fe was very close (within ca.
2%) to the expected one: 368 ug g~! certified value versus 371.75 ug g~ determined value.

Fe quantification was performed using an inductively coupled plasma optical emission
spectrometer (ICP-OES) with an axially viewed configuration (8000 DV, PerkinElmer, Shelton, CT,
USA) equipped with an ultrasonic nebulizer. To assess Fe concentration, calibration standards were
prepared, treated equally to samples before dilution. For detection we have chosen the frequency with
the lowest interferences, high analytical signal and background ratio, line at 259.9 nm.
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2.5. Total Ascorbic Acid Analysis

The total ascorbic acid defined as dehydroascorbic (DHA) and ascorbic acid (AA) was determined
by UV-Vis spectrophotometry (Hach DR 2000; Hach Co., Loveland, CO, USA) as described by
Kampfenkel et al. [42]. Briefly, 400 mg of sample fresh plant tissues were extracted with trichloroacetic
acid (TCA) 6%. 200 uL of the extract was solubilized with 2,2-dipyridyl (14454, Sigma-Aldrich, St.
Louis, MO, USA). The assay is based on the reduction of Fe3* to Fe?t by total ascorbic acid and
the spectrophotometric detection of Fe?* complexes with 2,2-dipyridyl. DHA is reduced to ASA by
pre-incubation of the sample with dithiothreitol (DTT). The absorbance of the solution was measured
at 525 nm, and data were expressed as mg AA per 100 g fw.

2.6. Lipophilic Antioxidant Activity Analysis

The lipophilic antioxidant activity (LAA) was extracted from freeze-dried butterhead lettuce
leaves (200 mg) with methanol and the antioxidant activity of this extract was measured with the
2,2’-azinobis 3-ethylbenzothiazoline-6-sulfonic acid ABTS method [43]. Similarly, to the total ascorbic
acid, LAA was determined by UV-Vis spectrophotometry. The absorbance of the solutions was
measured at 734 nm. LAA fraction was expressed as mmol Trolox (6-hydroxy-2,5,7,8-tetramethylchro
man-2-carboxylic acid) per 100 g dw.

2.7. Phenolic Acids and Anthocyanins ldentification and Quantification

400 mg of lyophilized samples was solubilized in a solution of methanol/water/formic acid
(50:45:5, v/v/v, 12 mL) as described by Llorach et al. [28] to determine phenolic acids as hydroxycinnamic
derivatives. The suspensions were sonicated for 30 min and then centrifuged (2500 g for 30 min at
4 °C). After a second centrifugation of supernatants at 21,100 g for 15 min at 4 °C, samples were filtered
through 0.22 pm cellulose filters (Phenomenex). A reversed phase C18 column (Prodigy, 250 X 4.6 mm,
5 um, Phenomenex, Torrance, CA) equipped with a C18 security guard (4.0 x 3.0 mm, Phenomenex)
was used for the separation of hydroxycinnamic derivatives and anthocyanins. 20 uL of each extract was
injected and the following mobile phases was used: (A) water formic acid (95:5, v/v) and (B) methanol
through the following gradient of solvent B, (t in [min]/[%B]): (0/5), (25/40), (32/40). The flow rate
was 1 mL min~!. LC column was installed onto a binary system (LC-10AD, Shimadzu, Kyoto, Japan),
equipped with a DAD (SPD-M10A, Shimadzu, Kyoto, Japan) and a Series 200 autosampler (Perkin
Elmer, Waltham, MA). Chlorogenic and chicoric acids at 330 nm were used for the calibration curves of
hydroxycinnamic derivatives. Identification of caffeoyl-meso-tartaric acid and caffeoyl-tartaric acid
was performed by LC-MS/MS experiments.

The chromatographic profiles of reference curves and samples were recorded in multiple reaction
monitoring mode (MRM) by using an API 3000 triple quadrupole (ABSciex, Carlsbad, CA). Negative
electrospray ionization was used for detection and source parameters were selected as follows: spray
voltage —4.2 kV; capillary temperature: 400 °C, dwell time 100 ms, nebulizer gas and cad gas were set to
10 and 12 respectively (arbitrary units). Target compounds [M-H] were analyzed using mass transitions
given in parentheses: Chicoric acid (m/z 473—311, 293), chlorogenic acid (m/z 353—191), caffeoyl
tartaric acid (m/z 311—179, 149, retention time 15.8 min), caffeoyl-meso-tartaric acid (m/z 311—179, 149,
retention time 17.8 min). The concentration of phenolic acids was reported as mg 100 g~! of dw.

Anthocyanins were also measured within the same LC-DAD chromatographic runs, at 520 nm
and the concentration calculated by using cyanidin as reference standard to calculate the concentration.
The results were reported as pg of cyanidin equivalent per g of samples.

2.8. Carotenoids Identification and Quantification

One gram of lyophilized samples was used to determine carotenoids content following the method
of Vallverdu-Queralt et al. [44] with slight modifications. Samples were solubilized in ethanol/hexane
(4:3, v/v, 2.5 mL) with 1% BHT, vortexed at 22 °C for 30 s and sonicated for 5 min in the dark. Then,
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the solution was centrifuged (2500 g, 4 °C, 10 min) and filtered through 0.45 um nylon syringe filters
(Phenomenex, Torrance, CA, USA). The extracts were dried in N and the dried extracts were dissolved
in 1% BHT in chloroform. 20 pL of each sample was injected onto a C18 column (Prodigy, 250 x 4.6
mm, 5 um, Phenomenex, Torrance, C A, USA) with a C18 security guard (4.0 X 3.0 mm, Phenomenex).
Two mobile phases were used: (A) acetonitrile, hexane, methanol, and dichloromethane (4:2:2:2,
v/v/v/v) and (B) acetonitrile. Carotenoids were eluted at 0.8 mL min~! through the following gradient
of solvent B (t in [min]/[%B]): (0/70), (20/60), (30/30), (40/2). Carotenoids were quantified by a binary
LC-10AD system connected to a DAD (SPD-M10A, Shimadzu, Kyoto, Japan) equipped with a Series
200 auto-sampler (Perkin Elmer, Waltham, MA, USA). Violaxanthin, neoxanthin, 3-cryptoxanthin,
lutein and (-carotene were used as reference standards. Identification of the peaks was achieved by
comparison of UV-vis spectra and retention times of eluted compounds with pure standards at 450 nm.
Three separate sets of calibration curves were built, each set was injected three times in the same day
(intraday assay) and three times in three different days (interday assay). The accuracy was reported as
the discrepancies between the calibration curves performed intraday and interday and the results were
expressed as relative standard deviation RSD (%). A recovery test was performed spiking two samples
with two known amounts of carotenoids (50 and 100 pug mL~! final concentration) and taking into
account the overestimation due to the target analytes already present in the samples. The concentration
of the target carotenoids was expressed as ug g~ ! dw.

2.9. Statistics

The Shapiro-Wilk and Kolmororov-Smirnov procedures were performed to verify that the
data had a normal distribution, and the Levene, O’Brien and Bartlet tests were conducted to verify
the homogeneity of variances. Then, all morphometric, nutritional and functional quality data
were subjected to analysis of variance (two-way ANOVA) using IBM SPSS 20 software package
(www.ibm.com/software/analytics/spss). The means were separated by Tukey’s honestly significant
difference (HSD) test (significance level 0.05). Butterhead lettuce cultivar main effects were compared
by t-Test.

3. Results and Discussion

3.1. Growth Response, Fresh Yield, Dry Matter and Radiation Use Efficiency

Inter and intra-specific genetic variability is among the most important preharvest factors which
influence lettuce’s phenotypic and biochemical traits. Lettuce presents, within the same species,
a variety of colors, sizes, textures and shapes [45-47]. In our study, two cultivars of green and red
Salanova were evaluated from a productive and nutritional point of view in response to different Fe
concentrations in the nutrient solution.

For leaf number per plant, marketable fresh yield and leaf dry matter percentage no significant
interaction between cultivar (C) and Fe nutrient solution concentration (I) was observed, whereas leaf
area, dry biomass and radiation use efficiency (RUE) were significantly affected by the interaction of
these two factors (Table 1). Irrespective of the Fe concentration in the nutrient solution, the red Salanova
had higher marketable yield and percentage dry matter than those recorded in green Salanova plants
by 9.3% and 7.0%, respectively (Table 1). Analogous genotypic variation in marketable fresh yield
and leaf dry matter content has been previously demonstrated over seven iceberg cultivars (‘Equinos’,
‘Ice Castle’, ‘Metalia’, ‘Num 189’, ‘Silvinas’, ‘Ombrinas’ and ‘Vanguardia’; [36]).
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Table 1. Analysis of variance and mean comparisons for leaf area, leaf number, fresh yield, shoot dry biomass, leaf dry matter percentage and radiation use efficiency
(RUE) for green and red Salanova butterhead lettuce grown under increasing Fe concentration in the nutrient solution.

. Leaf Area Leaf Number Fresh Biomass Dry Biomass Dry Matter RUE
Source of Variance (cm? Plant-1) (no. Plant1) (g Plant™) (g Plant™") %) (g mol™)
Cultivar (C)
Green Salanova 1070 + 64 4594 £3.11 60.73 £ 7.22 3.21+0.19 5.32+0.38 0.14 £ 0.01
Red Salanova 1211 + 74 54.46 +2.33 66.37 +7.85 3.76 + 0.30 5.69 + 0.31 0.17 £ 0.01
t-value 0.000 0.000 0.081 0.000 0.016 0.000
Iron (mM Fe) (I)
0.015 1196 + 125 a 50.10 £ 5.13 71.50 £4.70 a 372 +049 a 519+0.39¢ 017 £0.02a
0.5 1185 + 63 a 49.68 + 4.26 67.40 £ 2.67 a 3.59 +0.21 ab 5.32 +0.19 bc 0.16 £ 0.01 ab
1 1091 +64b 48.66 + 6.48 61.85+5.52b 3.43+£0.33b 555+0.16b 0.15+0.01b
2 1090 + 96 b 52.36 + 4.98 5344 +291c 319+025¢ 596 +0.27 a 0.14+0.01c
*%% ns *%% *%% *%4% *%4%
CxI
Green Salanova x 0.015 mM Fe 1089 + 48 cde 45.57 + 0.86 67.67 £ 1.35 3.29 + 0.07 de 4.86 +0.18 0.15 + 0.00 cd
Green Salanova x 0.5 mM Fe 1135 + 33 bed 46.80 + 3.45 66.13 + 0.90 3.41 +0.10 bed 5.16 = 0.08 0.15 + 0.00 bc
Green Salanova x 1 mM Fe 1052 + 72 de 42.96 +2.34 57.51 +4.27 3.15+0.14de 549 +0.22 0.14 +0.01 cd
Green Salanova X 2 mM Fe 1004 + 18 e 48.45 +3.32 51.61 +3.02 297 £0.09e 5.77 +0.16 0.13+0.00d
Red Salanova x 0.015 mM Fe 1302 + 50 a 54.62 +1.90 75.34 £ 3.05 415+022a 5.51 £0.19 0.19+0.01a
Red Salanova x 0.5 mM Fe 1236 + 31 ab 52.57 +2.92 68.66 + 3.49 3.76 £0.12b 548 £0.10 0.17+0.01b
Red Salanova x 1 mM Fe 1130 =+ 25 bed 54.35 + 1.48 66.20 £ 1.16 3.72 + 0.07 bc 5.62 + 0.07 0.17 £ 0.00 b
Red Salanova x 2 mM Fe 1177+ 23 bc 56.28 + 2.26 55.26 + 1.43 3.40 £0.11 cd 6.16 = 0.20 0.15 + 0.01 bc
* ns ns * ns *

ns,*, *** Nonsignificant or significant at P < 0.05, and 0.001, respectively. Different letters within each column indicate significant differences according to Tukey’s HSD test

(P = 0.05). Cultivars main effects were compared by Student’s t-test. All data are expressed as mean =+ standard deviation, n = 3.
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When averaged over both Salanova cultivars, the percentage of yield reduction in comparison to
the control treatment (0.015 mM Fe) was 5.7%, 13.5% and 25.3% at 0.5, 1.0 and 2.0 mM Fe concentration
in the nutrient solution, respectively, whereas an opposite trend was observed for the leaf dry matter
percentage (Table 1). Furthermore, the highest total leaf area was recorded in red Salanova treated
with both 0.015 and 0.5 mM Fe. Although the highest shoot dry biomass was recorded in red Salanova
treated with 0.015 mM Fe, increasing the Fe concentration in the nutrient solution from 0.015 to 2.0
decreased the dry biomass with more detrimental effect recorded in red-pigmented butterhead lettuce.
Specifically, the percentage of dry biomass reduction in comparison to control plants (0.015 mM Fe)
ranged from 4.3% to 9.7% in green Salanova and from 10.4% to 18.1% in red Salanova at 1.0 and
2.0 mM Fe concentration in the nutrient solution, respectively (Table 1). The high Fe-tolerance of
green-pigmented butterhead lettuce at both Fe concentrations (1.0 and 2.0 mM) may be due to the
lower accumulation of Fe in leaf tissue compared to red-pigmented Salanova (Figure 1). Similarly,
to the effects on shoot dry biomass, the RUE in red Salanova under control Fe treatment (0.015 mM)
exhibited the highest values (Table 1).

In the current study, diamino-di- (ortho-hydroxy phenyl acetic) acid (o, o-EDDHA) was used
as Fe chelate, because the final amount of dissolved Fe released in solution, is greater than other
forms of Fe chelates and it can be considered as a good supplement in nutrient solutions for soilless
cultivation [48-50]. Roosta et al. [49] have reported increases in the number of leaves and total leaf
area of Capsicum annuum L, after the application of 10 uM of EDDHA to the nutrient solution. Similar
results have been also observed by the same authors for four lettuce varieties grown with 20 pM Fe in
an NFT hydroponic system [50].

The results on growth parameters, yield and shoot dry biomass of this study are in agreement
with those reported by Filho et al. [51], who cultivated Cichorium intybus in an NFT using increased
Fe concentrations in the nutrient solution (0.9, 2.7, 8.3, and 25 mg L), where plant height, leaf number
per plant, as well as plant fresh and dry weight were reduced as Fe concentration increased. The same
authors were able to identify the optimal Fe range (2.7 to 8.3 mg L™!), while the 25 mg L~! application
rate had the most harmful effects on plant growth and productivity. While in fact Fe is essential for
plant growth, it is also involved in the Fenton reaction that leads to the formation of reactive oxygen
species (ROS), which in turn, can lead to cell destruction, because they react with polyunsaturated fatty
acids, proteins and nucleic acids [3,52,53]. In the De Dorlodot et al. [52] study, three concentrations
of Fe?* (0, 125 and 250 mg L~!) were used for greenhouse cultivation of rice plants in hydroponic
system. The intermediate dose of 125 mg L™! produced the maximum fresh and dry weights, whereas
at the higher dose of 250 mg L™! a significant reduction in both fresh and dry plant weights was
incurred, as well as in water content. A putative mechanism involved in reduced fresh and dry biomass
accumulation might be the excessive exposure to Fe (especially at 2.0 mM), which increases peroxide
hydrogen generation, causing the overproduction of ROS, which irreversibly leads to membrane lipid
oxidation, impairs cellular structure and damages DNA and proteins [54,55].

3.2. Nitrate Content, Mineral Composition and Iron Biofortification

The nitrate content recorded among the eight treatments was within the maximum nitrate content
allowable for the commercialization of fresh lettuce (4000-5000 mg NO;~ kg™! fw; depending on
harvest period and/or growing conditions) according to Commission regulation (EU) No 1258/2011 [56].
The nitrate content varied considerably across the eight treatments (C X I interaction) with the highest
nitrate concentration found in green Salanova treated with 2 mM Fe (Table 2). In the current experiment,
increasing the Fe concentration in the nutrient solution from 0.015 to 2.0 mM increased the nitrate
content in red Salanova (by 8.8%) but especially in green Salanova (by 27.3%) plants (Table 2). Similar
results have been reported by Liu et al. [57] who also suggested a positive correlation between Fe
supplementation and nitrate content in hydroponically grown lettuce leaves. The high nitrate uptake
and accumulation under high Fe availability has been attributed to a molecular mechanism involved
in the up-regulation of LATS gene (coding for a low-affinity NO3 ™~ transporter) observed in corn salad
grown in a floating raft system [58].
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It has been demonstrated that a number of dietary macro-minerals such as P, K, Ca and Mg
are crucial components of the human diet due to their multifaceted nutraceutical properties such as,
lowering blood pressure and hypertension (K), promoting bone health and reducing osteoporosis
(P, Ca and Mg) [29]. Our results on the mineral profile of green and red-pigmented butterhead lettuce
were proximate to those reported by the National Nutrient Database for Standard References [59]
and by several authors [29,60,61] on green and red leaf lettuce including the butterhead type:
K (48-72 mg g~! dw), P (4-6 mg g~! dw), Mg (1.4-2.8 mg g~! dw) and Ca (4-10 mg g~ dw).

In our study, a significant interaction between the tested factors was observed in the case of Ca
and Mg, whereas P and K were affected only by cultivar and Fe concentration in the nutrient solution
with no C x I interaction (Table 2). The P and K concentrations in red Salanova were higher (P <
0.001) by 7.7% and 10.1%, respectively than those observed in green Salanova, whereas an opposite
trend was recorded for Ca. Moreover, Ca and Mg concentrations were the highest in red Salanova
treated with 0.015 mM Fe, whereas the lowest values of Ca were also observed in the red-pigmented
cultivar treated with 2.0 mM Fe (Table 2). In fact, Fe can cause alteration of mineral composition status
due to the competition between Mg and Fe ions for occupying the chlorophyll ring. Moreover, as
shown by De Dorlodot et al. [52], the contents of rice plants grown under soilless conditions in P, Ca,
and Mg were reduced by Fe application rates of 125 and especially 250 mg L=}, as compared to the
control. Furthermore, K, Ca and Mg reductions had been observed in radish, broccoli, alfalfa, and
mung bean after the nutrient solution was enriched with Fe [3]. The decreased leaf mineral status
especially at 1.0 and 2.0 mM Fe may be attributed to several mechanisms, such as: i) root injury
(i.e., formation of root coat) caused by excessive Fe stress impairing nutrient absorption [62], ii) the
increasing competition between Fe and other cations, in particular Mg, for absorption sites owing to
ion transporters” lack of specificity [63], and iii) lipid peroxidation and oxidation of enzyme sulfhydryl
groups causing the irreversible inhibition of plasma membrane H*-ATPases [64].

The importance of Fe for human health is linked to the synthesis of hemoglobin and oxygen
transport. Plants contain Fe only in trace amounts, hence particular attention is given to this mineral
from a human diet perspective, especially for vegans who place vegetables at the core of their diet.
Moreover, plants partly contain Fe in non-heme (non-chelated) forms which are less bioavailable than
the heme Fe found in animal-based foods [29]. However, Fe biofortification can be achieved in leafy
vegetables including lettuce [20], though its effectiveness can vary between species/cultivars [3,65].
Based on the review of Kim and co-workers [29], 100 g of fresh lettuce, in particular butterhead that was
used in the current experiment, can provide 2 to 15% (without biofortification) of the recommended
daily Fe intake of 8-18 mg day~! according to age, gender and body weight, indicating that Fe
biofortification of lettuce leaves can potentially improve the nutritional status of humans. In our
study, the Fe accumulation in green and red butterhead lettuce ranged from 40.6 to 75.5 mg kg~ dw
and from 66.0 to 93.0 mg kg™ dw, respectively (Figure 1). Moreover, the red leaf lettuce cultivar
(avg. 77.1 mg kg~! dw) accumulated 45.5% more Fe than the green one (avg. 52.9 mg kg™! dw)
(Figure 1), which is in agreement with previous results on red and green-pigmented lettuce [29,32,61].
Inversely to macro-minerals, the Fe content recorded in the current experiment differed from the
values reported in butterhead lettuce by Kawashima and Soares [61] (100 pg g~! dw) and Baslam
and co-workers [61] (75.8-112 mg kg~ dw). Such differences in Fe content reported in the scientific
literature could be associated to different farming practices, environmental conditions as well as
to the cultivars tested [34]. Regardless of cultivar, the addition of 1.0 mM and especially 2.0 mM
Fe in the nutrient solution lettuce leaves incurred a significant increase of Fe content by 20.5% and
53.7% (avg. 66.1 and 84.3 mg kg~! dw, respectively) (Figure 1), demonstrating that the production
of Fe-enriched lettuce with absence of defects and decay using closed soilless cultivation is feasible.
However, elucidating the physiological and especially the molecular mechanisms facilitating Fe uptake
in interaction with genotype pose the future challenge confronting the horticultural industry before
achieving the production of leafy vegetables of superior functional quality.
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Table 2. Analysis of variance and mean comparisons leaf mineral composition in green and red Salanova butterhead lettuce grown under increasing Fe concentration

in the nutrient solution.

. Nitrate P K Ca Mg
Source of Variance (mg kg~ FW) (g kg1 DW) (g kg™ DW) (g kg~ DW) (g kg~ DW)
Cultivar (C)
Green Salanova 2277 + 224 4.81 +0.28 62.67 +2.39 6.47 + 0.72 2.01 +0.16
Red Salanova 2105 +93 5.17 +£0.16 69.01 + 3.18 5.73 + 1.05 2.06 +£0.32
t-value 0.023 0.001 0.000 0.056 0.615
Iron (mM Fe) (I)

0.015 1991 +41 ¢ 4.84 +030b 67.32 +4.16 ab 7.08+041a 230+0.18a

0.5 2228 +115b 5.10 = 0.29 ab 68.57 +4.05 a 6.50 = 0.63 b 2.14 £ 0.05 ab

1 2192 + 136 b 4.85+0.28b 65.42 +3.65b 5.69 + 0.59 ¢ 197 £0.16 b

2 2351 + 226 a 515+0.19a 62.05 +2.65¢ 512 +0.76 ¢ 1.74 £ 0.13 ¢

CxI

Green Salanova x 0.015 mM Fe 1999 + 27 ¢ 4.58 + 0.05 63.71 = 1.88 7.01 £ 0.62 abc 217 £0.18 ab
Green Salanova x 0.5 mM Fe 2267 + 163 b 4.88 +0.17 65.12 +1.72 7.05 + 0.30 ab 2.09+ 0.01 bc
Green Salanova X 1 mM Fe 2295 +109b 4.67 +0.32 62.18 + 0.54 6.03 = 0.62 bcd 1.93 + 0.06 bed
Green Salanova x 2 mM Fe 2545 £ 110 a 5.09 = 0.26 59.67 +0.33 579 £0.26d 1.84 £ 0.05cd

Red Salanova x 0.015 mM Fe 1983 + 57 ¢ 5.10+0.16 70.93 + 0.82 716 £0.17 a 243 +0.05a
Red Salanova x 0.5 mM Fe 2190 + 42 be 5.33 +£0.16 72.02 + 1.50 5.95 + 0.07 cd 2.19 £ 0.02 ab
Red Salanova x 1 mM Fe 2089 + 50 be 5.03 + 0.06 68.66 + 1.21 5.35+0.38d 2.00 + 0.23 bc
Red Salanova x 2 mM Fe 2157 + 53 bc 5.21 +0.12 64.43 + 0.64 445+020e 1.63 +0.07d

*3% ns ns * *

ns,***, *** Nonsignificant or significant at P < 0.05, 0.01 and 0.001, respectively. Different letters within each column indicate significant differences according to Tukey’s
HSD test (P = 0.05). Cultivars main effects were compared by Student’s t-test. All data are expressed as mean =+ standard deviation, 7 = 3.
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Figure 1. Effects of cultivar and iron concentration in the nutrient solution on Fe accumulation in
lettuce leaves. Different letters indicate significant differences according to Tukey’s HSD test (P = 0.05).
The values are means of three replicates. Vertical bars indicate + standard deviation of means.

3.3. Hydrophilic Antioxidants: Ascorbic Acid and Phenolics Profile

Many leafy vegetables including lettuce are regarded as a good sources of vitamin C. The most
important role played by ascorbic acid is its radical scavenging power derived from its oxidation
to the dehydroascorbate form [66]. Ascorbate plays an important role in Fe uptake, due to its
ability to reduce Fe®*. It has been shown that the presence of ascorbate in the apoplast reduces
extracellular Fe3*, facilitating Fe-uptake [66]. In the current study, the total ascorbic acid including
ascorbic and dehydroascorbic acid varied considerably across treatments, with the highest values
(19.4 mg 100 g~! fw) found in red Salanova treated with 0.5 mM Fe and to a lesser extent under 1.0
and 2.0 mM Fe (avg. 13.4 mg 100 g~! fw (Figure 2). On the other hand, the application of Fe at 0.5 and
1.0 mM in the nutrient solution did not improve significantly the ascorbic acid in green-pigmented
lettuce but at 2.0 mM Fe the concentration of this important antioxidant molecule increased by 62.7%
(Figure 2). Our findings are in agreement with other previous works, where the concentration and
activity of enzymatic and non-enzymatic antioxidant systems increases with the Fe content of plants [3].
For instance, ascorbic acid rose by 150% and 80% in alfalfa and broccoli, respectively when the Fe
concentration in the nutrient solution increased [3].

Phenolic compounds including mainly phenolic acids and flavonoids refer to an important
group of secondary metabolites having great antioxidant activity and beneficial effects against chronic
diseases, such as inflammation, diabetes and some types of cancer [29]. The HPLC-DAD analysis of
the lettuce extracts provides a quantitative—qualitative evaluation of the phenolic compounds profile
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(Table 3). Across treatments, the most abundant compound was chicoric acid, followed by chlorogenic
acid, while caffeoyl-meso-tartaric and caffeoyl-tartaric acid were detected in lower concentrations.
Moreover, significant differences in the cultivars’ response to Fe solution enrichment were found for the
target and total phenolic acids, as reflected by the C x I interaction (Table 3). Except for caffeoyl tartaric
acid, the greatest accumulation of chlorogenic, chicoric, caffeoyl meso tartaric acids as well as total
phenolic acids were observed in red Salanova leaves in comparison to green-pigmented lettuce, which
is in agreement with the previous findings of Llorach et al. [28], Colonna et al. [34] and Kim et al. [29].
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Figure 2. Effects of cultivar and Fe concentration in the nutrient solution on total ascorbic acid in
lettuce leaves. Different letters indicate significant differences according to Tukey’s HSD test (P = 0.05).
The values are means of three replicates. Vertical bars indicate + standard deviation of means.

Concerning the Fe nutrient solution management, no significant effects on target and total phenolic
acids were observed in green Salanova with the increasing Fe application rate. Contrarily to the
green-pigmented butterhead lettuce, increasing the Fe concentration in the nutrient solution to 0.5 mM
induced a significant increase in the chlorogenic acid and total phenolics contents of red-pigmented
lettuce by 110.1% and 29.1%, respectively compared to the control treatment (0.015 mM); and a higher
accumulation (+31.4%) of caffeoyl meso tartaric acid was also observed in red Salanova at 1.0 mM
in comparison to the control treatment (Table 3). Contrarily to caffeoyl meso tartaric acid, the two
main phenolic acids (chlorogenic and chicoric) decreased in response to increasing Fe concentration
in the nutrient solution to 1.0 mM (Table 3). Since phenolic compounds are considered inhibitors of
Fe bioavailability, their increase could be linked to Fe-excess stress [3]. The same type of correlation
between the increased Fe (i.e., Fe-EDDHA) and phenolic concentrations has been demonstrated on
several horticultural species such as broccoli, mung beans, grape berries and radish [3,67].
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Anthocyanins, which constitute a subgroup of flavonoids responsible for red-purple pigmentation
in different Lactuca sativa L. types [29], were expectedly detected only in red-pigmented Salanova
(Figure 3), as previously demonstrated by Llorach et al. [28]. The application of 2.0 mM Fe in the
nutrient solution elicited significant increase in the anthocyanin contents of plants compared to those
treated with 0.015 and 1.0 mM Fe, whereas treatment with 0.5 mM exhibited intermediate values
(Figure 3). Our results are in agreement with those of Mohammadi et al. [68] where anthocyanin
concentration in peppermint increased by 11.5% with 0.5g L~! Fe,O3 treatment in comparison to the
control treatment (0 g L~! Fe,03). The non-linear dose response recorded in our experiment was in
line with the findings of Shi et al. [69], who found that total anthocyanin concentration of Cabernet
Sauvignon grapes under Fe deficient and excess treatments (0, 23, 92 and 184 uM Fe) were lower
than that of the 42 uM Fe treated grapes. The improvement of anthocyanin synthesis at 42 uM Fe has
been associated to several mechanisms including the accumulation of sugar and the expression of
several structural genes in the flavonoid pathway. Considering the significant influence of the genetic
material (red vs. green pigmented cultivar) and Fe application rate on phenolic acids and flavonoids
(i.e., anthocyanins), mild to high (0.5-2.0 mM) Fe application in nutrient solution can be used as a cost
effective tool to increase the phytochemicals content of hydroponically grown lettuce, especially for
red-pigmented cultivars, although such practice is likely to precipitate anti-nutritive effects that may
counteract Fe bioavailability in human subjects.
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Figure 3. Effects of cultivar and iron concentration in the nutrient solution on anthocyanins content
in red Salanova lettuce leaves. Anthocyanins in green Salanova were not detected. Different letters
indicate significant differences according to Tukey’s HSD test (P = 0.05). The values are means of three
replicates. Vertical bars indicate + standard deviation of means.
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Table 3. Analysis of variance and mean comparisons for target phenolic acids, total phenolic acids and anthocyanins in green and red Salanova butterhead lettuce

grown under increasing Fe concentration in the nutrient solution.

Chicoric Acid
(mg 100 g~1 DW)

Caffeoyl Meso Tartaric Acid
(mg 100 g~1 DW)

Y. Phenolic Acids
(mg 100g~1 DW)

Caffeoyl Tartaric Acid
(mg 100 g~1 DW)

Chlorogenic Acid

Source of Variance (mg 100 g-1 DW)

Cultivar (C)
Green Salanova 1592 + 6.6 730+24 72.62+224 226+1.4 98.1 + 30
Red Salanova 6.62 £3.2 58.74 +29.4 114.89 + 52.7 2892 +7.8 209.2 + 75
t-value 0.000 0.000 0.018 0.000 0.000
Iron (mM Fe) (I)
0.015 10.81 + 8.8 ab 26.77 +18.8b 11718 +31.3 a 16.29 +13.1a 1711 +55a
0.5 881+1.7b 4890+475a 106.7 £539a1 17.09 £+ 16.5a 1815+ 114 a
1 879 +45b 13.04 £9.1 ¢ 4547 +11.8b 19.16 £20.1a 86.5+21b
2 16.68 = 8.5 a 43.37 105.66 + 38.7 a 9.81 +94b 1755+ 74 a
CxI
Green Salanova x 0.015 mM Fe 18.28 +4.9 9.66 +1.0e 89.92 + 12.2 bed 439+05d 1223 £ 15¢
Green Salanova x 0.5 mM Fe 10.00 £ 0.3 559 +05e 61.41 +25.2cd 211+0.6d 79.1+26¢
Green Salanova x 1 mM Fe 12.65+24 470+ 08e 52.85+95d 127 +0.1d 715+ 13 ¢
Green Salanova x 2 mM Fe 22.74 + 8.1 9.25+0.3e 86.32 + 19.4 bed 1.25+0.2d 119.6 £ 28 ¢
Red Salanova x 0.015 mM Fe 3.33+0.2 43.88 +2.0c 144.44 + 8.5 ab 28.19+1.0b 219.8+10b
Red Salanova x 0.5 mM Fe 7.61 £1.8 9221 +35a 152.01 +215a 3207 +19ab 2839+ 18a
Red Salanova x 1 mM Fe 493+09 21.37 £0.3d 38.10 +9.8d 37.05+69a 101.5+18¢
Red Salanova x 2 mM Fe 10.62 = 2.6 7748 +9.8Db 125.00 + 47.3 abc 1837 +19c¢ 231.5+59b
ns R *% EEx s

ns,*, **, ** Nonsignificant or significant at P < 0.05, 0.01 and 0.001, respectively. Different letters within each column indicate significant differences according to Tukey’s HSD test (P = 0.05).
Cultivars main effects were compared by Student’s ¢-test. All data are expressed as mean + standard deviation, n = 3.
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3.4. Lipophilic Antioxidant Activity and Target Carotenoids Profile

The LAA was significantly affected by C x Iinteraction. In the current experiment, the LAA ranged
from 2.6 to 7.1 mmol Trolox 100 g~! dw, with the highest values recorded in green lettuce at 2.0 mM and
red lettuce treated with 1.0 and 2.0 mM Fe (Figure 4). The LAA derives mainly from lipophilic pigments
which constitute an important quality trait in fresh vegetables, since these antioxidant molecules
prevent the formation of free radicals in both plants and humans [70]. A putative mechanism involved
in the accumulation of LAA under moderate to high Fe concentrations (1.0 and 2.0 mM) could be
associated to the absorption of excess Fe by ferritin, preventing the formation of ROS and increasing
plants antioxidant capacity [65].
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Figure 4. Effects of cultivar and iron concentration in the nutrient solution lipophilic antioxidant
activity (LAA) in lettuce leaves. Different letters indicate significant differences according to Tukey’s
HSD test (P = 0.05). The values are means of three replicates. Vertical bars indicate + standard deviation
of means.

Carotenoids, being lipid-soluble pigments, contribute to the yellow-orange color of fruits and
vegetables and constitute important antioxidant components of lettuce [29]. In the current study,
the carotenoid composition as a function of cultivars and Fe concentration in the nutrient solution
are displayed in Table 4, where in red Salanova plants contained higher amounts of all the detected
compounds compared to green Salanova, verifying that the content in lipophilic pigments of butterhead
lettuce is readily reflected in leaf pigmentation.
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Table 4. Analysis of variance and mean comparisons for target carotenoids in green and red Salanova butterhead lettuce grown under increasing Fe concentration in

the nutrient solution.

. Violaxanthin + Neoxanthin Lutein B-Cryptoxanthin 3-Carotene

Source of Variance (ug Violaxanthin eq. g~1 DW) (ug g1 DW) (ug g1 DW) (ug g1 DW)
Cultivar (C)
Green Salanova 612.4 + 52 256.3 + 39 426.8 + 61 230.8 + 27
Red Salanova 1273.7 + 170 604.7 + 65 1072.8 £ 87 416.2 + 48
t-value 0.000 0.000 0.000 0.000
Iron (mM Fe) (I)

0.015 827.7 + 267 ¢ 3942 +188b 720.6 + 332 bc 290.7 +90 ¢
0.5 901.6 + 383 bc 4219 +217b 701.5 = 360 ¢ 298.7 + 106 ¢

1 963.0 + 361 b 4262 +161Db 7754 + 352 a 3349 +84b
2 1080.0 + 453 a 479.8 + 213 a 801.7 + 393 a 369.5+129 a

CxI

Green Salanova x 0.015 mM Fe 587.7 +18d 228.5 + 29 4252 + 42 208.8 +3e

Green Salanova x 0.5 mM Fe 5524 +9d 226.0 + 26 380.4 +92 2030+1e
Green Salanova X 1 mM Fe 6353 +42d 283.5 + 37 458.2 + 68 2594 +14d
Green Salanova x 2 mM Fe 674.0 +13d 287.3 £ 23 4435 + 26 251.8 +6d
Red Salanova x 0.015 mM Fe 1067.7 £ 73 ¢ 559.8 + 75 10159 + 110 3726 +10 ¢
Red Salanova x 0.5 mM Fe 1250.8 + 36 b 617.8 + 42 1022.7 + 74 394.4+20b
Red Salanova x 1 mM Fe 1290.6 +42Db 568.8 + 46 1092.6 + 57 4105 +22b
Red Salanova x 2 mM Fe 14859 + 132 a 672.3 +43 1159.8 + 16 4872+ 17 a

*% ns ns s

ns,*, **, *** Nonsignificant or significant at P < 0.05, and 0.001, respectively. Different letters within each column indicate significant differences according to Tukey’s HSD
test (P = 0.05). Cultivars main effects were compared by Student’s t-test. All data are expressed as mean + standard deviation, n = 3.
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The most abundant carotenoid compounds were violaxanthin + neoxanthin, and (3-cryptoxanthin,
followed by lutein, while (3-carotene was detected in lower levels (Table 4). For lutein and 3-cryptoxanthin
no significant interaction between cultivar and Fe nutrient solution concentration was observed,
whereas violaxanthin + neoxanthin and (-carotene were significantly affected by the interaction
of these two factors (Table 4). Irrespective of the Fe concentration in the nutrient solution, the red
Salanova had higher lutein and -cryptoxanthin than those recorded in green Salanova plants by
135.9% and 151.3%, respectively (Table 4). Moreover, when averaged over both lettuce cultivars the
highest lutein and p-cryptoxanthin concentrations were recorded at 2.0 mM and at both 1.0 and
2.0 mM Fe, respectively (Table 4). Similarly, to the Fe effects observed on target phenolic acids, limited
and nonsignificant variation on violaxanthin + neoxanthin and (3-carotene concentrations in response
to increasing Fe concentration in the nutrient solution was observed in green Salanova. On the other
hand, our results also demonstrated that the addition of 2.0 mM Fe to the nutrient solution elicited
significant increase (39.2% and 30.8%) of violaxanthin + neoxanthin and {3-carotene compared to the
control treatment in red Salanova, whereas treatments with 0.5 and 1.0 mM exhibited intermediate
values (Table 4). An explanation to the premium quality of red Salanova in terms of carotenoids could
be associated with the activation of molecular and physiological mechanisms necessary for adaptation
to suboptimal conditions (excess of Fe), such as the biosynthesis and accumulation of secondary
metabolites, for instance, carotenoids [20]. These antioxidant compounds are known to contribute
to ROS scavenging and cellular water homeostasis [71] and, more interestingly, these secondary
metabolites are also important owing to their health-promoting effects.

4. Conclusions

Nowadays, consumers, scientists, nutritionists and vegetable growers are looking for functional
foods with beneficial effects on human health and longevity. Our findings highlighted that
biofortification of butterhead lettuce with an essential micronutrient such as Fe could be facilitated
by closed soilless cultivation due to the constant exposure of root apparatus to the fortified nutrient
solution. Our results indicate that fresh yield, shoot dry biomass, mineral composition (P and K) as
well as hydrophilic (ascorbic acid, chlorogenic, chicoric, caffeoyl meso tartaric acids, total phenolics
and anthocyanins) and lipophilic (violaxanthin + neoxanthin, lutein, 3-cryptoxanthin and 3-carotene)
antioxidant molecules were strongly affected by genotype, with higher nutritional and functional
quality traits recorded in the red-pigmented cultivar. Since product quality enhancement is sometimes
associated with reduction of crop productivity, a compromise is needed to find the sectio divina.
Our findings demonstrated the possibility of producing lettuce Fe-enriched by 21% while incurring
an acceptable reduction in fresh marketable yield (13%) by supplying 1.0 mM Fe. The addition of Fe
in the nutrient solution differentially modulated the functional quality in green and red pigmented
lettuce. The application of 0.5 and 1.0 mM Fe in the nutrient solution improved target phenolic
acids (chlorogenic and chicoric acids at 0.5 mM and caffeoyl tartaric acid at 1.0 mM Fe) as well as
total phenolics (at 0.5 mM Fe), and the application of 2.0 mM Fe enhanced the carotenoids profile
(violaxanthin + neoxanthin and (3-carotene) of red Salanova, whereas no significant improvements in
functional quality traits were observed in green Salanova. Overall, Fe biofortification facilitated by
closed soilless cultivation could be used as an effective and sustainable tool for producing functional
food, especially in urban farms triggered by the rising food demand and the malnutrition owing to
unbalanced diets.
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