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Abstract: This paper investigates the influences of several limiting factors on the performance of
ground penetrating radar (GPR) in accurately detecting huanglongbing (HLB)-infected citrus roots
and determining their main structural characteristics. First, single-factor experiments were conducted
to evaluate GPR performance. The factors that were evaluated were (i) root diameter; (ii) root moisture
level; (iii) root depth; (iv) root spacing; (v) survey angle; and, (vi) soil moisture level. Second, two
multi-factor field experiments were conducted to evaluate the performance of the GPR in complex
orchard environments. The GPR generated a hyperbola in the radar profile upon root detection; the
diameter of the root was successfully determined according to the width of the hyperbola when
the roots were larger than 6 mm in diameter. The GPR also distinguished live from dead roots, a
capability that is indispensable for studying the effects of soil-borne and other diseases on the citrus
tree root system. The GPR can distinguish the roots only if their horizontal distance is greater than
10 cm and their vertical distance is greater than 5 cm if two or more roots are in proximity. GPR
technology can be applied to determine the efficacy of advanced crop production strategies, especially
under the pressures of disease and environmental stresses.
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1. Introduction

The demand for new and superior rootstocks has tremendously increased since the arrival of
the devastating citrus disease huanglongbing (HLB or citrus greening) in Florida in 2005. HLB is
a bacterial disease of the phloem and an insect vector spreads it (Asian citrus psyllid). HLB leads
to tree decline several years after infection and it has decimated citrus industries worldwide [1–3].
In Florida, the economic impact of HLB has been estimated to have caused a loss of more than $4
billion in cumulative industry output, or an annual average of $1 million during the production
seasons from 2012 to 2016 [4]. Methods of mitigating the disease impacts include vector management,
nutritional therapies, and other horticultural practices [5]. Field trials have demonstrated that the use of
specific rootstocks can increase the productivity of commercially grown citrus trees in an HLB-endemic
environment [6]. The root architectural system determines much of the influence of rootstock on tree
performance, and knowledge of the anatomy of the root system is essential for deciphering rootstock
traits and maximizing production. Root architectural differences also play a major role in tolerance
to wind-induced uprooting, an effect that is particularly important in Florida, which is vulnerable to
frequent tropical storms and hurricanes.
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Thermotherapy is another technique to treat the canopy (and potentially the roots) of the
HLB-infected citrus trees. It involves the application of heat for a specific period of time to kill the
disease-causing pathogenic bacteria while minimizing host damage [7–9]. However, the tree root
system must also be considered when attempting to eradicate the HLB bacteria. One study [10] has
found that the HLB bacteria spread to the tree roots before the shoots, which thus resulted in root
decline before disease symptoms appear in the tree canopy. The root morphology, root distribution,
root density, and other root system parameters must be known to enable accurate targeted treatment
and avoid any damage to the roots.

The study and visualization of a tree root system is very challenging [11]. Several
agricultural, horticultural, ecological, forestry, and environmental studies on root systems have
been conducted [12–15], and various methods have been utilized to evaluate tree root systems, which
include (i) minirhizotrons; (ii) ingrowth cores; (iii) high-pressure air shovels; and, (iv) traditional
excavation. These methods are time-consuming, labor-intensive, and potentially damaging to the tree
root structure, as well as the root-soil environment. Additionally, these methods are not suited for
continuous monitoring of roots over long periods of time [16,17].

Several non-destructive tree root detection techniques have been developed, such as X-ray
micro-computed tomography, nuclear magnetic resonance imaging, the fluid flow method, and
electrical resistivity tomography [17–20]. However, these techniques are expensive and not suited
for the large-scale field study of root system differences. A more environmentally friendly, rapid,
low-cost, and effective technology for detecting tree roots is ground-penetrating radar (GPR) [21–23].
GPR is a technology that is used to detect various subterranean objects through radar pulsations [23].
It operates by mostly transmitting polarized high-frequency radio waves (UHF and VHF) into the
ground. Subterranean objects with different dielectric constants are hit with the radio waves and they
reflect different signals that can be detected with a receiving antenna [8].

The GPR can be used to map tree roots, because it is relatively easy to use in the field and it is
non-destructive to trees, roots, and the root-soil environment [21–23]. Numerous tree root scans can
be performed and replicated in a short time without interfering with root growth. One study [24]
has analyzed several key factors that affect root biomass estimation, including scanning directions,
root crossover, and soil moisture content in a sand-hill mixed oak stand. Other studies [25,26] have
demonstrated that root orientation dramatically affects root detection and that the waveform that is
produced by the GPR can be used to measure root diameter. In addition, several signal processing
methodologies have been developed to decrease the signal noise that is produced by these factors.
One study [27] has proposed a method to minimize the effect of root orientation on three-dimensional
(3D) root map generation. Furthermore, another study [28] has developed a mathematical model to
analyze the formation of a hyperbolic signal (produced by the GPR) on the basis of the root orientation
and using the principles of electromagnetic wave propagation. Two studies [29,30] have proposed a
novel pattern-recognition system that utilizes a genetic algorithm to categorize and evaluate buried
objects with high accuracy. One study [31] has used neural networks for the automatic classification of
hyperbolas produced by a GPR to correctly identify objects. Another study [32] has applied randomized
Hough transform algorithms to evaluate root object recognition by utilizing several GPR frequencies
(400 MHz, 900 MHz, and 2000 MHz).

Although GPR has been used to detect the roots of different plant species, most of the studies
have been conducted in controlled environments or in simulations to evaluate signal processing
algorithms [22]. However, few evaluations of GPR for the detection of HLB-infected citrus roots have
been conducted. Additionally, many questions remain regarding the suitability of the technology for
studying the impacts of diseases on tree root structure and distribution. Two studies [33,34] have
found that a 2600-MHz antenna can effectively detect lateral citrus roots at 40 cm depth. Most of the
citrus root systems are located in the upper 50 cm of the soil, especially when micro-irrigation systems
are used [35,36]. However, a lower-frequency antenna is required to effectively detect roots beyond
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40 cm, because orange tree roots in Florida can reach 90 cm or deeper [37]. The position, size, structure,
and distribution of the roots should be known to accurately treat HLB-infected citrus roots.

The objective of this study was to evaluate the performance of a ground penetrating radar to
accurately detect citrus tree roots and generate 3D morphology root maps of citrus trees that are
grown in a complex field environment in southwest Florida. Several single-factor and multi-factor
experiments, including root diameter, root moisture content, root depth, root spacing, survey angle,
and soil moisture content, were carried out to achieve this goal. This study improves understanding of
the effects of these factors on the detection accuracy of tree roots by GPR in a sandy soil and subtropical
environment. Root maps that are generated with this technology can be used to study rootstock
varietal differences and their influence on tree growth as well as the effects of diseases, such as HLB
and Phytophthora, on root systems.

2. Materials and Methods

2.1. Experimental Site

The experiments were conducted at the citrus research grove of the University of Florida Southwest
Florida Research and Education Center (SWFREC) in Immokalee, FL, USA. The climate is humid
subtropical, with a mean annual temperature of approximately 23 ◦C, and a mean annual precipitation
of 1265 mm [38,39]. The site has very deep and poorly drained soils, which were formed in sandy
marine sediments (Immokalee series).

2.2. Equipment

A GPR (TRU™Model, Tree Radar, Inc., Silver Spring, MA, USA) that was mounted to a mobile
scanning cart (Figure 1) and equipped with a 1600 MHz antenna was utilized to generate a 3D map of
the root system. The GPR antenna transmits electromagnetic waves (pulses) and the receiver collects
the reflectance when an object is detected beneath the soil surface (Figure 2). The relative distance
from the starting point was measured with a wheel recorder. Commercial software TreeWin Roots and
TRU Tree Radar Unit V1.2.5) was used to generate the root morphology maps. 3D images were created
to present the root layout by location and depth.
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Figure 2. A GPR generates a hyperbola when an object is detected.

The GPR principle is based on the phenomenon in which electromagnetic waves differently reflect
when they interfere with materials of different dielectric constants. The GPR sends a small pulse of
energy and it analyzes the strength as well as the time that is required for the reflected signal to return.
The size and the distance of the detected material are calculated on the basis of the strength and time.
Figure 2 presents a “scan” (series of detected reflected signals) during the detection of a tree root.
The dielectric constant(s) and conductivity of the material(s) determines the strength of the reflected
signal. For example, when a pulse moves from an area of sandy soil (e.g., with a dielectric constant of
4) to a fresh root (e.g., with a dielectric constant of 13.8), it produces a very strong reflection. As the
antenna moves over an object, the vertical distance (time of the reflected signal to arrive at the antenna)
decreases until the antenna is above the object, and it increases as the antenna moves past the object;
therefore, a single object will appear in the GPR output data as a hyperbola (Figure 2). The target is
located at the peak of the hyperbola (Figure 2).

2.3. Experimental Design

The roots that were removed from excavated citrus trees were used for one subset of experiments.
Tree branches were used as root proxies for another subset of experiments. The roots and root proxies
had diameters of 0.5 to 3 cm.

2.3.1. Experimental Factors

According to the GPR work principle, three subsystems must be investigated at the outset for
accurate root detection: (I) the tree root system; (II) the soil system; and, (III) the GPR system [22]
(Figure 3). In this study, three types of limiting factors were studied: (1) root properties (root diameter
and root water content); (2) root position (root depth, horizontal, and vertical distance between roots)
and scan direction; and, (3) soil properties (soil type and moisture). Four “output” parameters were
evaluated (Figure 3): (i) the shape of the hyperbola; (ii) the signal strength; (iii) the signal overlap and
interference; and, (iv) the signal noise.
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2.3.2. Experiments

Different single-factor experiments (I–VII) and multi-factor experiments (VIII and IX) were
conducted (Table S1). The single-factor experiments studied the effects of an individual factor on GPR
performance, while controlling for all other factors. The two multi-factor experiments (validation
experiments) were designed to analyze the detection accuracy of the GPR by comparing the produced
maps with the actual tree root structure (by excavating the roots).

Experiments I–VII: Single-Factor Experiments

For experiments I–VII, a modified protocol that was based on the methods in references [25]
and [40] was used; citrus tree branches were used as root proxies. The experimental site was scanned
with the 1600 MHz GPR before experimentation to ensure that no interfering objects were present
in the soil. Narrow ditches were dug instead of the holes that were described in reference [40].
In each experiment, the start line, end line, and survey lines were traced on the ground (Figure 4); the
experiments were repeated three times each.

In experiment I, the effect of root diameter on the GPR detection accuracy was investigated, and
eight root diameters were studied (Table S1). Live and dead root proxies were used to evaluate the
effect of root water content on the GPR root detection accuracy in experiment II. The GPR detects
objects through reflection; it sends electromagnetic waves and receives the reflection from the interface
of two materials with different dielectric constants (e.g., soil and root). Larger differences between the
dielectric constants of objects, such as between roots and soil, result in stronger reflected signals. The
dielectric constant increases as the water content increases. The reflective intensity depends on the
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reflective coefficient, which can be obtained by calculating the relative dielectric constants of the two
mediums at the interface (Equation (1)):

R =

√
ε1 −

√
ε2

√
ε1 +

√
ε2

(1)

where R is the reflection coefficient, ε1 is the dielectric constant of medium 1, and ε2 is the relative
dielectric constant of medium 2. In this study, ε1 and ε2 are the relative dielectric constants of the soil
and the root, respectively. In experiment II, the soil type was sandy; the average soil moisture was 6%.
The dielectric constant was 4 for soil, 13.8 for fresh roots, and 5 for dead roots [39].

In experiment III, the effect of the scan angle (survey scan direction), relative to root orientation,
on detection accuracy was investigated. The survey angles that were assessed were 0◦, 15◦, 30◦, 45◦,
60◦, 75◦, and 90◦ (Figure 4).
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The horizontal and vertical resolutions of the GPR were evaluated for experiments IV and V. The
horizontal resolution is defined as the size of the smallest target that can be horizontally detected. The
horizontal resolution of a GPR depends on the first Fresnel radius (rf). When the spacing between the
transmitting and receiving antennas is much smaller than the distance of the antennas from the target,
the first Fresnel radius (rf) can be calculated from Equation (2) [40]:

r f =

√
(h + λ/4)2

− h2 =
√
λh/2 (2)

where h is the depth of the target and λ is the length of the radar subwave. The GPR can only
distinguish two targets when the distance between them is greater than the first Fresnel radius. The
horizontal resolution decreases with the depth of an object and it depends on the wavelength of an
electromagnetic wave.

In experiment IV, two root proxies were buried at the same depth (25 cm), with different distances
between them (3, 5, 10, 15, and 20 cm). The minimum theoretical horizontal distance (horizontal
resolution) at which roots could be detected and distinguished as separate objects at a depth of 25 cm
with the 1600 MHz antennas was calculated to be 10.2 cm with Equation (2). Therefore, two roots at
25 cm depth with a lateral distance of less than 10 cm should appear as one object.

In experiment V, two root proxies were buried in the same horizontal position but at different
depths (1, 3, 5, 10, and 15 cm). Five vertical distances (Table S1) between the two roots were studied
to evaluate the GPR detection accuracy and the vertical resolution. The vertical resolution of a GPR
depends on the ability to distinguish two signals that were emitted at different time intervals. The
vertical interval is expressed by Equation (3) [40]:



Agronomy 2019, 9, 354 7 of 21

∆h =
v∆t

2
v

2Be f f
(3)

where ∆h is the vertical resolution, ∆t is the time interval between two adjacent signals, v is the
propagation speed of the electromagnetic wave in the medium, and Beff is the effective radar bandwidth.
Generally, the vertical resolution of a GPR can be approximated to half the wavelength of an
electromagnetic wave in the medium. The minimum theoretical vertical spacing resolution for the
1600 MHz antennas was calculated as 4 cm with Equation (3).

In experiment VI, a root proxy was buried at different depths that ranged from 10 to 70 cm
(Table S1) to evaluate the accuracy of the GPR to detect roots and their locations in the ground.

In experiment VII, different soil moisture levels and their effects on the root detection accuracy
were evaluated in a 1 m2 area at the SWFREC citrus grove. The HydroSense II (model CS658) with
20 cm rods was used for measuring the volumetric water content of the soil. A 25 cm deep narrow
ditch was dug to bury a root proxy of 41 cm length and 23 mm diameter. The start line, end line,
and survey lines were traced on the ground, and the soil was irrigated to the desired moisture level
(Table S1) and monitored in 20-minute intervals. The root was scanned three times and the experiment
was repeated twice on consecutive days.

Experiment VIII: Simulated Tree Root Experiment

This experiment evaluated the overall effectiveness and accuracy of the GPR for root detection.
A flat area (2 × 2 m) at the SWFREC citrus grove was selected. Ten freshly harvested roots with different
diameters were arranged in a pattern that simulated a tree root system (Figure 5). Roots 1–5 were
buried at a flat surface parallel to the ground and at a depth of 25 cm, and roots 6–10 were buried
at a slope with an angle of 15◦ to the ground surface, and at a depth of 25 cm (Table S2). Six circles
with radii of 15, 30, 45, 60, 75, and 90 cm from the center of the arrangement were traced, and the area
was scanned three times along each radius with 900 MHz GPR and 1600 MHz GPR. Table S2 lists the
length and depth of each root. Table S3 presents the actual relative distances between the roots. The
TreeWin Roots and the TRU Tree Radar Unit software programs were used to process data and create
the 3D figures.
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Experiment IX: Tree Root Field Experiment

We conducted field experiments with a five-year old Hamlin sweet orange (C. sinensis) tree on
X-639 (C. reticulata × P. trifoliata) rootstock located in the SWFREC grove and affected by HLB (Figure 6)
to further study and evaluate the performance of the GPR technology. The tree was 178 cm tall, with a
canopy width of 205 cm and a distance of 30 cm between the soil surface and canopy base. Weeds and
other objects were removed from the experimental area before the experiment, and three circles with
radii of 30, 60, and 90 cm were traced. The roots were scanned three times with the 1600 MHz GPR.
After the assessment, the tree was excavated, and the location and diameter of roots were measured.
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the TRU Tree Radar Unit software programs for Windows. A background removal filter was applied 
to eliminate the parallel bands that were observed in the scans. The roots were detected by the GPR 
on the basis of a higher amplitude reflection waveform as compared with the surrounding area in the 
radar profiles and the appearance of a hyperbola. The positions of the roots were analyzed by 
combining software automatic identification with manual observations. 

3. Results 

3.1 Effects of Root Properties on Detection Accuracy 

Experiments I and II were conducted with branches as root proxies that were buried in a narrow 
ditch at a depth of 25 cm. Table 1 shows the radar profiles that were measured with the 1600 MHz 
GPR. The shape of the hyperbola of the dead root proxy (30 mm diameter) was not well defined and 
its signals were weak. However, all live roots generated a well-defined hyperbola and were therefore 
clearly detected. From the radar profiles, the root diameters were determined by measuring the width 
of the hyperbolas and the strength of the signals. The hyperbolas became wider as root diameters 
became larger, and a greater contrast between the white and the black areas (signals) was visible; 
therefore, the reflected signals became stronger. The hyperbola had apparent upper and lower 
boundaries. The relationship between the measured diameter and the width of the hyperbola was 
linear (Figure 7a). The location of each root (with different diameters), which included horizontal 
distance and depth, was accurately assessed with an error of 1.5 cm (±2.2 cm standard deviation) for 
horizontal distance and an error of 0.8 cm (±1.5 cm standard deviation) for depth (Table 1). The 
relative error ranged from -4 to 12% (Figure 7b).  
  

Figure 6. Hamlin/X-639 tree and its root system: (a) Front view of tree; (b) Front view of tree roots; and,
(c) Back view of tree roots.

2.4. Data Processing

Radar profile normalization and filtration routines were performed with the TreeWin Roots and
the TRU Tree Radar Unit software programs for Windows. A background removal filter was applied
to eliminate the parallel bands that were observed in the scans. The roots were detected by the GPR
on the basis of a higher amplitude reflection waveform as compared with the surrounding area in
the radar profiles and the appearance of a hyperbola. The positions of the roots were analyzed by
combining software automatic identification with manual observations.

3. Results

3.1. Effects of Root Properties on Detection Accuracy

Experiments I and II were conducted with branches as root proxies that were buried in a narrow
ditch at a depth of 25 cm. Table 1 shows the radar profiles that were measured with the 1600 MHz
GPR. The shape of the hyperbola of the dead root proxy (30 mm diameter) was not well defined
and its signals were weak. However, all live roots generated a well-defined hyperbola and were
therefore clearly detected. From the radar profiles, the root diameters were determined by measuring
the width of the hyperbolas and the strength of the signals. The hyperbolas became wider as root
diameters became larger, and a greater contrast between the white and the black areas (signals) was
visible; therefore, the reflected signals became stronger. The hyperbola had apparent upper and lower
boundaries. The relationship between the measured diameter and the width of the hyperbola was
linear (Figure 7a). The location of each root (with different diameters), which included horizontal
distance and depth, was accurately assessed with an error of 1.5 cm (±2.2 cm standard deviation) for
horizontal distance and an error of 0.8 cm (±1.5 cm standard deviation) for depth (Table 1). The relative
error ranged from −4 to 12% (Figure 7b).
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Table 1. Radar profiles of roots with different diameters and water content.

Root
No.

Live or
Dead

Diameter
(mm)

Radar
Profile

Width of
Hyperbola

(mm)

Actual
Distance

(cm)

Distance
Generated

by GPR
(cm)

Relative
Error of
Distance

(%)

Actual
Depth
(cm)

Depth
Generated

by GPR
(cm)

Relative
Error of

Depth (%)

Root
1

Live 6
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3.2. Effect of Survey Line Direction on Root Detection 

In experiment III, one live root with a diameter of 29 mm was buried in a narrow ditch at the 
depth of 25 cm. In this experiment, the effect of the direction of the survey lines relative to the 
direction of the root was evaluated. The survey angles assessed were 0°, 15°, 30°, 45°, 60°, 75°, and 
90°. Table 2 shows radar profiles. 
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The survey angle had a large influence on the shape of the hyperbola. At a survey angle of 0° to 
15°, it was difficult to detect roots; with an increase in the scan angle to 30° and 45°, hyperbolas 
appeared but they were not well-defined or were incomplete. At a scan angle of 75°, the hyperbola 
appeared, but it was asymmetrical and deformed. At a scan angle of 90°, a well-defined and complete 
hyperbola was detected. Thus, the clearest hyperbolic reflection of the buried root was observed 
when the GPR survey angle was 90°, whereas it was difficult to identify the hyperbola when the angle 
was less than 45°.  

3.3. Effect of Horizontal Distance between Roots on Detection Accuracy 
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3.2. Effect of Survey Line Direction on Root Detection

In experiment III, one live root with a diameter of 29 mm was buried in a narrow ditch at the
depth of 25 cm. In this experiment, the effect of the direction of the survey lines relative to the direction
of the root was evaluated. The survey angles assessed were 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. Table 2
shows radar profiles.

Table 2. Radar profiles of different survey line directions.

Scan
Angle 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Radar
profile
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appeared but they were not well-defined or were incomplete. At a scan angle of 75°, the hyperbola 
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15°, it was difficult to detect roots; with an increase in the scan angle to 30° and 45°, hyperbolas 
appeared but they were not well-defined or were incomplete. At a scan angle of 75°, the hyperbola 
appeared, but it was asymmetrical and deformed. At a scan angle of 90°, a well-defined and complete 
hyperbola was detected. Thus, the clearest hyperbolic reflection of the buried root was observed 
when the GPR survey angle was 90°, whereas it was difficult to identify the hyperbola when the angle 
was less than 45°.  

3.3. Effect of Horizontal Distance between Roots on Detection Accuracy 

Agronomy 2019, 9, x FOR PEER REVIEW 10 of 21 

 

 

 
Standard 

deviation 
2.2   1.5  

 

(a)                                           (b) 

Figure 7. Evaluation of root diameter and root position. (a) Relationship between measured root 
diameter and width of the hyperbola. (b) Root locations measured by the GPR (the actual root position 
is indicated by the red triangle). 

3.2. Effect of Survey Line Direction on Root Detection 

In experiment III, one live root with a diameter of 29 mm was buried in a narrow ditch at the 
depth of 25 cm. In this experiment, the effect of the direction of the survey lines relative to the 
direction of the root was evaluated. The survey angles assessed were 0°, 15°, 30°, 45°, 60°, 75°, and 
90°. Table 2 shows radar profiles. 

Table 2. Radar profiles of different survey line directions. 

Scan angle 0° 15° 30° 45° 60° 75° 90° 

Radar 
profile 

       

Detection 
effect 

No hyperbola No hyperbola 
Not well-
defined 

hyperbola 

Not well-
defined 

hyperbola 

Incomplete 
hyperbola 

Incomplete 
hyperbola 

Well-defined 
hyperbola 

The survey angle had a large influence on the shape of the hyperbola. At a survey angle of 0° to 
15°, it was difficult to detect roots; with an increase in the scan angle to 30° and 45°, hyperbolas 
appeared but they were not well-defined or were incomplete. At a scan angle of 75°, the hyperbola 
appeared, but it was asymmetrical and deformed. At a scan angle of 90°, a well-defined and complete 
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when the GPR survey angle was 90°, whereas it was difficult to identify the hyperbola when the angle 
was less than 45°.  

3.3. Effect of Horizontal Distance between Roots on Detection Accuracy 

Agronomy 2019, 9, x FOR PEER REVIEW 10 of 21 

 

 

 
Standard 

deviation 
2.2   1.5  

 

(a)                                           (b) 

Figure 7. Evaluation of root diameter and root position. (a) Relationship between measured root 
diameter and width of the hyperbola. (b) Root locations measured by the GPR (the actual root position 
is indicated by the red triangle). 

3.2. Effect of Survey Line Direction on Root Detection 
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The survey angle had a large influence on the shape of the hyperbola. At a survey angle of 0° to 
15°, it was difficult to detect roots; with an increase in the scan angle to 30° and 45°, hyperbolas 
appeared but they were not well-defined or were incomplete. At a scan angle of 75°, the hyperbola 
appeared, but it was asymmetrical and deformed. At a scan angle of 90°, a well-defined and complete 
hyperbola was detected. Thus, the clearest hyperbolic reflection of the buried root was observed 
when the GPR survey angle was 90°, whereas it was difficult to identify the hyperbola when the angle 
was less than 45°.  

3.3. Effect of Horizontal Distance between Roots on Detection Accuracy 

Agronomy 2019, 9, x FOR PEER REVIEW 10 of 21 

 

 

 
Standard 

deviation 
2.2   1.5  

 

(a)                                           (b) 

Figure 7. Evaluation of root diameter and root position. (a) Relationship between measured root 
diameter and width of the hyperbola. (b) Root locations measured by the GPR (the actual root position 
is indicated by the red triangle). 

3.2. Effect of Survey Line Direction on Root Detection 
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The survey angle had a large influence on the shape of the hyperbola. At a survey angle of 0° to 
15°, it was difficult to detect roots; with an increase in the scan angle to 30° and 45°, hyperbolas 
appeared but they were not well-defined or were incomplete. At a scan angle of 75°, the hyperbola 
appeared, but it was asymmetrical and deformed. At a scan angle of 90°, a well-defined and complete 
hyperbola was detected. Thus, the clearest hyperbolic reflection of the buried root was observed 
when the GPR survey angle was 90°, whereas it was difficult to identify the hyperbola when the angle 
was less than 45°.  
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The survey angle had a large influence on the shape of the hyperbola. At a survey angle of 0° to 
15°, it was difficult to detect roots; with an increase in the scan angle to 30° and 45°, hyperbolas 
appeared but they were not well-defined or were incomplete. At a scan angle of 75°, the hyperbola 
appeared, but it was asymmetrical and deformed. At a scan angle of 90°, a well-defined and complete 
hyperbola was detected. Thus, the clearest hyperbolic reflection of the buried root was observed 
when the GPR survey angle was 90°, whereas it was difficult to identify the hyperbola when the angle 
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The survey angle had a large influence on the shape of the hyperbola. At a survey angle of 0◦

to 15◦, it was difficult to detect roots; with an increase in the scan angle to 30◦ and 45◦, hyperbolas
appeared but they were not well-defined or were incomplete. At a scan angle of 75◦, the hyperbola
appeared, but it was asymmetrical and deformed. At a scan angle of 90◦, a well-defined and complete
hyperbola was detected. Thus, the clearest hyperbolic reflection of the buried root was observed when
the GPR survey angle was 90◦, whereas it was difficult to identify the hyperbola when the angle was
less than 45◦.

3.3. Effect of Horizontal Distance between Roots on Detection Accuracy

The results from experiment IV demonstrated that it is difficult to distinguish two roots that were
located at a horizontal distance of less than 10 cm from each other with the 1600 MHz GPR (Table 3).
The hyperbolas of the two roots overlapped and created a stronger signal than that of a single root.
The overlapped hyperbola widened as the distance between roots increased. The two roots were easily
detected when the distance was larger than 10 cm.
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Table 3. Radar profiles of two roots buried at different horizontal distances from one another.

Actual
Horizontal
Distance

3 cm 5 cm 10 cm 15 cm 20 cm

Radar profile
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3.4. Effect of Vertical Distance between Roots on Detection Accuracy

In experiment V, two roots were buried at different vertical distances from each other. The 1600 MHz
GPR was used for root detection. Hyperbolas overlapped when the vertical distance of the roots was
less than 5 cm, and the roots were not discernible (Table 4), but the strength of the overlapped signals
was stronger than that of a single root. When the vertical distance between the two roots was greater
than 5 cm, both roots could be distinguished on the basis of their individual hyperbolas. The signal of
the root positioned at a shallower depth was stronger than the signal of the root that was positioned at
a greater depth.

Table 4. Radar profiles of roots buried at different vertical distances from one another.

Actual Vertical
Distance 1 cm 3 cm 5 cm 10 cm 15 cm

Radar profile
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3.5. Effect of Root Depth on Root Detection Accuracy

In experiment VI, a root with a diameter of 24 mm was buried at different depths. When the
depth was less than 40 cm, the upper and lower edges of the hyperbola were well-defined (Table 5).
The signal began to weaken at a depth of more than 40 cm, thus resulting in the poor definition of
the lower edge of the hyperbola. The reflection became even weaker at a depth of more than 60 cm,
and the upper and lower edges of the hyperbola were poorly defined. The width of the hyperbola
also increased with depth. The depths were measured with the radar profiles. The error of accurately
determining root depth increased at increasing depths (Figure 8).
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Table 5. Radar profiles of a root buried at different depths.

Actual
Depth 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm

Radar
profile
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3.6. Effect of Soil Moisture on Root Detection Accuracy

Experiment VII showed that water quickly infiltrated the soil after rainfall or irrigation, and this
was followed by a rapid decrease in soil moisture content from 16% to 10%. The soil moisture content
remained at 10% for one hour before decreasing to 8% within the following two hours. Table 6 presents
the radar profiles of root proxies buried at a depth of 25 cm and measured at different soil moisture
levels. Root reflections were clear, regardless of the GPR settings and soil moisture content.

Table 6. Radar profiles of root proxies at different soil moisture levels. GPR settings were adjusted on
the basis of soil type and dielectric constant.

Actual Soil Moisture (%)
Radar Profile Using Different Soil Type and Dielectric Constant

Soil Moisture Content 20% Soil Moisture Content 13% Soil Moisture Content 9%

16
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3.7. Simulated Tree Root Experiment

In experiment VIII, the live tree branches were buried as root proxies and were scanned by a
900 MHz and a 1600 MHz GPR. The TreeWin Roots and the TRU Tree Radar Unit software programs
were used to create the radar profiles (Table 7). In Table 7, the vertical lines represent the actual
locations of the roots (as measured in the field), and the number in the last row represents the number
of the roots that are labeled before burial. The red arrow represents the detection of an actual root
(true positive), the yellow arrow represents the detection of a false root (false positive), and the blue
arrow represents the missed (undetected) root (false negative). Three performance metrics—accuracy,
precision, and recall—were calculated (Table 8) on the basis of the signals that were generated by the
GPR and described in Table 7. Precision indicates how many roots were detected correctly, and the
recall measures how many roots were correctly detected.

Table 7. Radar profiles of the simulated tree root experiment.

Survey Circles
Radar profile

900 MHz 1600 MHz

Circle 1
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Table 8. Detection accuracy, precision, and recall of the simulated experiment.

900 MHz

Survey
circles TO TP FN FP Accuracy Precision Recall

Circle 1 9 9 0 3 75% 75% 100%
Circle 2 9 9 0 2 82% 82% 100%
Circle 3 8 7 1 2 70% 78% 88%
Circle 4 8 8 0 1 89% 89% 100%
Circle 5 8 8 0 1 89% 89% 100%
Circle 6 3 3 0 2 60% 60% 100%
SUM 45 44 1 11 79% 81% 98%

1600 MHz

Survey
circles TO TP FN FP Accuracy Precision Recall

Circle 1 9 9 0 2 82% 82% 100%
Circle 2 9 9 0 1 90% 90% 100%
Circle 3 8 7 1 1 78% 88% 88%
Circle 4 8 8 0 1 89% 89% 100%
Circle 5 8 8 0 1 89% 89% 100%
Circle 6 3 3 0 0 100% 100% 100%
SUM 45 44 1 6 86% 88% 98%

TO, number of total actual points; TP, number of target points detected (true positives); FN, number of target points
missed (false negatives); FP, number of non-targets points detected (false positives). Accuracy was calculated as
TP/(TP+FP+FN); precision was calculated as TP/(TP+FP); recall was calculated as TP/(TP+FN).

The radar profiles that were generated by the 900 MHz GPR were less well-defined than those
that were generated by the 1600 MHz GPR, thus resulting in more false positive signals (noise). The
accuracy, precision, and recall averaged over the six circles was 79%, 81%, and 98% for the 900 MHz
GPR and 86%, 88%, and 98% for the 1600 MHz GPR, respectively. The high recall rate indicated that
our target points (roots) were accurately detected. However, other objects in the soil (e.g., stones or
debris) or soil clutter can produce similar reflections and create hyperbolas, resulting in noise; therefore,
lower accuracy and precision were calculated.

Figure 9 presents 3D morphology maps that were generated from TreeWin Roots and the TRU
Tree Radar Unit software programs. Numbers 1–10 represent the actual buried roots (Figure 5 presents
the actual locations of these roots), the black line represents the start/end line, the brown labeled lines
represent the actual roots and their number, the brown non-labeled lines represent the fault roots that
are created (detected) by the software, and the green dash line represents the missed root (Root #2).
Both of the antennas correcly detected all roots, except root #2 (Figure 9). The 900 MHz GPR falsely
detected ten more roots, in contrast to the 1600 MHz GPR, which only falsely detected four small
roots. Table 9 presents the number of correcly detected roots, numbers of false positive root, accuracy,
precision, and recall of the generated 3D maps. The accuracy, precision, and recall were 45%, 47%,
and 90% for 900 MHz GPR and 64%, 69%, and 90% for the 1600 MHz GPR, respectively. The higher
accuracy, precision, and recall of the 1600 MHz GPR than the 900 MHz indicated that the 1600 MHz
GPR is more suitable for detecting citrus roots in shallow soil layers.

The angle between root #2 and the survey lines, which was less than 60◦ (53◦ in the third and
about 60◦ in the fourth circle), may be the reason why root #2 was not detected by both of the antennas.
As can be seen from Table 2, when the angle between a root and the survey line was less than 60◦,
the radar profile and hyperbola are not well defined. When the angle was 60◦, the radar profile and
hyperbola were better defined but not symmetrical. In this simulated experiment, the other nine roots
were arranged in a radial direction and the survey line was nearly perpendicular to the roots, which
represented the optimal situation.
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Figure 9. Three-dimensional (3D) root morphology maps generated by: (a) 900 MHz; and, (b) 1600 MHz
GPR (experiment VIII). The black line represents the start/end line; the brown labeled lines represent
the actual roots and their number; the brown non-labeled lines represent the fault roots created by the
software; and, the green dash line represents the missed root (Root #2).

Table 9. Accuracy, precision, and recall of the generated 3D maps for experiment IX.

Frequency RTO RTP RFN RFP Accuracy Precision Recall

900 MHz 10 9 1 10 45% 47% 90%
1600 MHz 10 9 1 4 64% 69% 90%

RTO, number of total actual roots; RTP, number of target roots created (true positive); RFN, number of target
roots missed (false negative); RFP, number of non-target roots created (false positive). Accuracy was calculated as
RTP/(RTP+ RFP+ RFN); precision was calculated as RTP/(RTP+ RFP); and recall was calculated as RTP/(RTP+ RFN).

3.8. Tree Root Field Experiment with an HLB-Infected Citrus Tree

In experiment IX, the maps of the roots of an HLB-infected citrus tree were developed by using the
1600 MHz GPR (Figure 10). We measured seven long and thick roots after uprooting the tree. Most of
the roots that were excavated from the site were parallel to the ground and they were located at depths
of 15–25 cm. In total, we counted 46 roots, of which seven were larger than 1 cm in diameter and 39
had a diameter of less than 1 cm. In addition, numerous fibrous roots (less than 1 mm in diameter)
were observed. The number and orientation of the roots that were detected by the GPR with diameter
of more than 1 cm corresponded well with the actual tree root system, but roots with a diameter of less
than 1 cm were not detected.

Comparison of Figure 10a,b and Figure 6b,c indicated that the 1600 MHz GPR in combination
with the TreeWin Roots software program detected seven roots with a diameter lager than 1 cm with
87.5% accuracy, 87.5% precision, and 100% recall (Table 10).



Agronomy 2019, 9, 354 16 of 21

Agronomy 2019, 9, x FOR PEER REVIEW 16 of 21 

 

3.8. Tree Root Field Experiment with an HLB-Infected Citrus Tree 

In experiment IX, the maps of the roots of an HLB-infected citrus tree were developed by using 
the 1,600 MHz GPR (Figure 10). We measured seven long and thick roots after uprooting the tree. 
Most of the roots that were excavated from the site were parallel to the ground and they were located 
at depths of 15–25 cm. In total, we counted 46 roots, of which seven were larger than 1 cm in diameter 
and 39 had a diameter of less than 1 cm. In addition, numerous fibrous roots (less than 1 mm in 
diameter) were observed. The number and orientation of the roots that were detected by the GPR 
with diameter of more than 1 cm corresponded well with the actual tree root system, but roots with 
a diameter of less than 1 cm were not detected.  

Comparison of Figures. 10a-b and Figures. 6b-c indicated that the 1600 MHz GPR in combination 
with the TreeWin Roots software program detected seven roots with a diameter lager than 1 cm with 
87.5% accuracy, 87.5% precision, and 100% recall (Table 10).  

  
(a)                                                     (b) 

Figure 10. Tree root field experiment X: (a) Front view of the 3D root morphology map. (b) Back view 
of the 3D root morphology map. The black line represents the start/end line; the brown lines represent 
the roots created by the TreeWin Roots software program; and, the pink lines represent markers in 
the field to calibrate distances during data collection. 

Table 10. Accuracy, precision, and recall of experiment X for roots more than 1 cm in diameter. 

Frequency RRTO RRTP RRFN RRFP Accuracy Precision Recall 
1600 MHz 7 7 0 1 87.5% 87.5% 100% 

RRTO, number of total actual roots (> 1 cm); RRTP, number of target roots created (> 1 cm) (true 
positive); RRFN, number of target roots missed (> 1 cm) (false negative); RRFP, number of non-target 
roots created (false positive); accuracy was calculated as RRTP/(RRTP+ RRFP+ RRFN); precision was 
calculated as RRTP/(RRTP+ RRFP); and recall was calculated as RRTP/(RRTP+ RRFN). 

4. Discussion 

4.1. Effect of Water Content on Root Detection 

In these experiments, the soil was sandy and the average soil moisture was 6%. The dielectric 
constant was 4 for the soil, 13.8 for the live roots, and 5 for the dead roots. The reflection coefficient 
of roots with a lower water content (representing dead roots) was less than that of roots with a higher 
water content (representing live roots), thus resulting in a non-well developed hyperbola of the dead 
roots when compared with the live roots. This method enabled the accurate determination of the 
water content of a root, and therefore an assessment of whether a root was alive or dead; it may be 
valuable for detecting the effects of diseases and new citrus management strategies on tree root 
architecture. 

When the influence of soil moisture on GPR detection was evaluated, the results indicated that 
the soil water content did not affect the root reflections, thus resulting in well-defined hyperbolas. 
The soil dielectric constant can lower the radar’s travel speed and influence the shape of the 

Figure 10. Tree root field experiment X: (a) Front view of the 3D root morphology map. (b) Back view
of the 3D root morphology map. The black line represents the start/end line; the brown lines represent
the roots created by the TreeWin Roots software program; and, the pink lines represent markers in the
field to calibrate distances during data collection.

Table 10. Accuracy, precision, and recall of experiment X for roots more than 1 cm in diameter.

Frequency RRTO RRTP RRFN RRFP Accuracy Precision Recall

1600 MHz 7 7 0 1 87.5% 87.5% 100%

RRTO, number of total actual roots (> 1 cm); RRTP, number of target roots created (> 1 cm) (true positive); RRFN,
number of target roots missed (> 1 cm) (false negative); RRFP, number of non-target roots created (false positive);
accuracy was calculated as RRTP/(RRTP+ RRFP+ RRFN); precision was calculated as RRTP/(RRTP+ RRFP); and
recall was calculated as RRTP/(RRTP+ RRFN).

4. Discussion

4.1. Effect of Water Content on Root Detection

In these experiments, the soil was sandy and the average soil moisture was 6%. The dielectric
constant was 4 for the soil, 13.8 for the live roots, and 5 for the dead roots. The reflection coefficient of
roots with a lower water content (representing dead roots) was less than that of roots with a higher
water content (representing live roots), thus resulting in a non-well developed hyperbola of the dead
roots when compared with the live roots. This method enabled the accurate determination of the water
content of a root, and therefore an assessment of whether a root was alive or dead; it may be valuable
for detecting the effects of diseases and new citrus management strategies on tree root architecture.

When the influence of soil moisture on GPR detection was evaluated, the results indicated that
the soil water content did not affect the root reflections, thus resulting in well-defined hyperbolas. The
soil dielectric constant can lower the radar’s travel speed and influence the shape of the hyperbola. As
the soil dielectric constant increases, the radar wave slowly moves through the soil and the width of
the hyperbola widens. The soil moisture levels at the experimental site ranged from 6% to 16%, and
the corresponding relative dielectric constant was 4 to 8, which had little effect on the radar profiles.

4.2. Effect of Root Diameter on Root Detection

Root diameter affected the GPR detection accuracy and it was determined by measuring the width
of the hyperbola. Previous studies have found that the accurate measurement of root diameters is
difficult, especially when the diameter is less than 5 cm [41–43]. In our experiments, when the root
diameters were less than 5 cm (but more than 0.5–1 cm), the hyperbolas had noticeable upper and
lower boundaries, but it was difficult to correlate the width of the hyperbola with the diameter of the
root. The signal density was higher when the tree root diameter was larger, and therefore the signal
intensity was larger. Additionally, roots with a larger diameter produced brighter reflections.
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Root diameter affected the relative dielectric constants of the roots. As the roots mature, they
have larger root diameters, and their root porosity significantly increases. Both root diameter and root
density affect the ability of the GPR to identify roots. Our results showed that the GPR with the 1600
MHz antenna detected citrus roots with diameters of more than 6 mm in sandy soil at a depth of 25 cm.

4.3. Effect of Survey Line Direction on Root Detection

Previous studies [25,26] have demonstrated that the direction of the survey line affects root
detection. We recorded the highest signal intensity when the radar wave orthogonally intersected
with the object. In contrast, the signal is weak if the wave front is radiated parallel to the object [28].
Under natural conditions, tree roots grow in different directions from the tree trunk center. Therefore,
it would be more effective to combine circular survey lines with a grid of straight lines to improve the
detection accuracy of the GPR technology. However, developing software to combine circular and
straight-line measurements is very challenging.

4.4. Effect of GPR Resolution on Root Detection

The minimum theoretical horizontal distances (horizontal resolutions) at which the 1600 MHz
antenna was able to distinguish roots at a depth of 25 cm was 10.2 cm (on the basis of Equation (1)).
The minimum theoretical vertical spacing resolutions at which the 1600 MHz antenna could accurately
detect roots was 4 cm (on the basis of Equation (2)).

The vertical resolution only depends on the wavelength of the radar and it is theoretically
independent of the depth of the target. However, as the depth increases, the radar signal intensity
is attenuated, so that the detection depth is limited, which thus results in a decrease in the vertical
resolution. Table 5 shows that root depth affects the width of the hyperbola. With increasing the root
depth, the hyperbolic width gradually increases, thus indicating that the electromagnetic wave velocity
of the GPR decreases. The reflected signal intensity of roots placed at a greater depth was weaker than
that of roots that were placed at a lower depth because of the weakening of the radar wave energy.
Blockage of the radar signal of roots that were located deep in the soil by roots located above may also
have contributed to the decreased signal intensity.

The results showed that it is difficult to detect and distinguish roots at a horizontal resolution of
less than 10 cm and a vertical resolution of less than 5 cm. Further interpretation and quantitative
analysis are required for overlapping or intersecting roots where the distance between roots is less
than the resolution of the GPR. The 1600 MHz GPR was more suitable for the detection of shallow
roots at depths less than 50 cm, and therefore provides a suitable technology for the analysis of citrus
tree root systems under Florida’s growing conditions, because most of the roots are located within the
upper soil horizon.

4.5. Field Tree Root Experiments

The results of the simulated tree root system experiments were consistent with the results from
single-factor experiments, although some noise was detected because of irregularities in the soil
environment. The angle between the location of one of the ten roots measured and the survey line was
less than 60◦, and the radar profile was not very clear for this root in the simulated tree root system
experiment; the commercial software did not generate a root signal (root #2 in Figure 9). All other
roots were mostly perpendicular to the survey line, and therefore were in the most optimal orientation
for accurate detection with the 1600 MHz GPR system.

Other considerations when using a GPR for the detection of tree roots in an agricultural setting
are soil moisture and soil homogeneity. Soil moisture varies depending on the rainfall and irrigation
program; therefore, the GPR measurements should be scheduled in a way that minimizes these
variations. In our experiments, burying root proxies resulted in mixing of different depth soils. It is
recommended to assess soil horizon formation before experimentation to avoid inconsistencies in
detection when using GPR for root system analysis in an agricultural setting.
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Finally, it is suggested to remove all weeds around the tree trunk before collecting the data.
The main challenges and limitations of the current “manual” GPR data collection procedure are:
(i) maneuvering around the trees is problematic due to the lack of adequate space in the scanning
area; (ii) the scanning procedure is time-consuming; (iii) often, the ground surfaces are uneven, which
causes measurement errors. Hence, an automated and mobile platform for the GPR is needed to collect
accurate data and reduce the operation time.

5. Conclusions

Single-factor and multi-factor field experiments were conducted to evaluate the suitability of a
GPR to analyze the citrus tree root systems in an agricultural field setting. Single-factor experiments
evaluated the effects of root diameter, root depth, horizontal and vertical spacing (resolution), scan
detection direction, root water content, and soil moisture levels on detection accuracy. Multi-factor
experiments, simulated tree root system experiments, and non-simulated (real) field experiments were
designed to evaluate GPR performance and to compare the results with those of the single-factor
experiments. The results demonstrated that GPR is useful for studying citrus tree root systems under
southwest Florida’s growing conditions. The specific conclusions and suggestions are as follows:

• In a controlled environment, GPR is suitable for monitoring the roots distributed in shallow soil
layers with a diameter that is larger than 6 mm. The diameter of the root influences the width
of the hyperbola and the intensity (strength) of the signal. As the root diameter increases, the
hyperbola widens, and consequently the reflected signal is strong. The relationship between
diameter and hyperbolic widths was linear under the conditions of this study for roots with a
diameter of 0.5 to 5 cm.

• The live and dead roots were clearly distinguished in the radar profiles. The ability of the GPR
system to distinguish between the live and dead roots is valuable for studying the effects of
diseases, such as HLB or soil-borne pests and pathogens, on tree root growth.

• The direction of the survey (scan) lines strongly affects detection accuracy; keeping the survey
lines perpendicular to the roots can significantly increase the GPR detection accuracy. It was
difficult to identify the hyperbolas when the angle between the survey line and the direction of
the root was less than 45◦. Combining concentric circles with orthogonal grids would greatly
improve the detection accuracy of the GPR because roots grow in various directions.

• Two roots that were located in proximity cannot be clearly detected by 1600 MHz GPR when their
horizontal distance is less than 10 cm and their vertical distance is less than 5 cm.

• Soil water content determines the dielectric constant, which affects GPR signal generation and
root detection accuracy. Sandy soil (typical of southwest Florida citrus groves) has a rapid and
high water infiltration rate, which may affect GPR performance.

• Artificial intelligence and machine learning have been utilized to correctly identify and classify
objects, such as crops [44], crop pests [45–47], and diseases [48–52]. A similar approach could be
adopted to automate the root detection procedure by analyzing and identify “root” hyperbolas
that are produced by GPR, by utilizing artificial intelligence and machine learning.
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