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Abstract: Rice blast is a serious fungal disease of rice (Oryza sativa L.) that is threatening global food
security. It has been extensively studied due to the importance of rice production and consumption,
and because of its vast distribution and destructiveness across the world. Rice blast, caused by
Pyricularia oryzae Cavara 1892 (A), can infect aboveground tissues of rice plants at any growth stage
and cause total crop failure. The pathogen produces lesions on leaves (leaf blast), leaf collars (collar
blast), culms, culm nodes, panicle neck nodes (neck rot), and panicles (panicle blast), which vary in
color and shape depending on varietal resistance, environmental conditions, and age. Understanding
how rice blast is affected by environmental conditions at the cellular and genetic level will provide
critical insight into incidence of the disease in future climates for effective decision-making and
management. Integrative strategies are required for successful control of rice blast, including chemical
use, biocontrol, selection of advanced breeding lines and cultivars with resistance genes, investigating
genetic diversity and virulence of the pathogen, forecasting and mapping distribution of the disease
and pathogen races, and examining the role of wild rice and weeds in rice blast epidemics. These
tactics should be integrated with agronomic practices including the removal of crop residues to
decrease pathogen survival, crop and land rotations, avoiding broadcast planting and double cropping,
water management, and removal of yield-limiting factors for rice production. Such an approach,
where chemical use is based on crop injury and estimated yield and economic losses, is fundamental
for the sustainable control of rice blast to improve rice production for global food security.
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1. Impact of Population Growth on Land and Water Resources

Climate change is increasing air temperature and the frequency and intensity of extreme weather
events [1]. Meanwhile, the global human population is rapidly increasing and the availability of land
and water resources for crop production continues to decline, escalating the challenge of global food
security. The world’s human population is anticipated to reach 9 billion by 2050 [2]. According to the
Food and Agriculture Organization [3], food security is “when all people, at all times, have physical
and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food
preferences for an active and healthy life”. For food insecurity to recede, agricultural production on
currently cultivated land will need to increase by 70% globally and 100% in the developing countries
by 2050, relative to 2009 levels [4]. This is challenged by a shrinking amount of prime land for rice
(Oryza sativa L.) production, which is expected to decline by 18% to 51% in the tropics during the next
century due to global warming [5]. Water scarcity, salinization, and pollution of water bodies is also
increasing [6], intensifying the challenge of global food security.
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2. Rice Production in Food Security

Rice production is the main source of income and employment for more than 200 million
households across the world [7,8]. Rice is the primary food for 2.5 to 3.5 billion people who are
largely located in rapidly growing low-income countries [9–13]. In 2002, rice provided more than
500 calories person−1 d−1 for over three billion people, and a substantial amount of protein for 520
million people [13,14]. It is one of the most important cereals produced for food security and income
by subsistence farmers [15–17]. In 2008, 480 to 685 million tons of rice were produced on 160 million
ha [18]. At the present rate of human population growth, the requirement for global rice production in
2020 is estimated at 140 million tons, representing a 50% increase compared to 2009 [19,20].

Although rice production has improved substantially over time, it is inadequate to cope with the
increasing global demand [21]. Since 2000, global rice production has been less than rice consumption
and the deficit has been addressed by drawing on bumper stocks [18]. The annual shortage of rice is
estimated to increase from 400,000 tons in 2016 to 800,000 tons by 2030 [22].

3. Impact of Climate Change on Rice Production

On 16 December 2002, the UN General Assembly declared the year 2004 as the International Year
of Rice [23]. Decreasing hunger and poverty are key goals of the United Nations [18]; however, the rate
of improvement in rice yield has diminished over time [24]. Rice yield growth has declined from 2.3%
per year during the 1970s and 1980s to 1.5% during the 1990s, and to <1.0% during the first decade of
the present century [24].

Rice is produced across a wide range of agro-climatic environments around the world and its
productivity is affected by biotic stresses [25]. Biotic stresses resulting from climate change can
impair varietal resistance to rice blast [26,27]. Climate change may change pathogen distribution and
development rates, and alter the resistance, growth, and metabolism of rice [28]. Each stage of the
rice blast disease cycle, from the germination of spores to the development of lesions, is significantly
influenced by climatic factors such as temperature, precipitation, and dew, and are likely to affect
pathogen distribution due to altered effectiveness of preventive approaches [28,29]. Consequently,
management approaches that exploit host resistance will be greatly impacted by climate change [30].
Quantitative analyses of the effects of climate change on pathogens are lacking in field and laboratory
research and in modeling-based assessments [31]. Therefore, mitigating the impact of biotic stresses
on rice is key to increasing and stabilizing rice yield. Fungal diseases alone are estimated to reduce
annual rice production by 14% globally [32]. Increased frequency and magnitude of extreme weather
events combined with increased air temperature and atmospheric CO2 concentration due to climate
change are projected to spread rice diseases to new areas [33,34].

There has been limited research on rice diseases under field conditions that realistically mimic
climate change, which has severely restricted the development of options for improved rice adaptation
and disease control in future growing conditions [35]. There has also been limited success in identifying
traits in rice for enhanced tolerance to drought and monsoon conditions [36].

A crucial challenge to rice production is rice blast, caused by the fungus Pyricularia oryzae Cavara
1892. Rice blast is one of the most serious and recurrent difficulties affecting lowland and upland rice
production around the world [37–42]. Rice blast is responsible for yield losses of about 10% to 30%
annually [43–45]. In favorable conditions, this disease can devastate entire rice plants within 15 to 20 d
and cause yield losses of up to 100% [46].

Rice blast has become more difficult to control because of the pathogen’s ability to survive and
multiply in harsh environmental conditions and easily spread to new fields [47,48]. Varietal resistances
have declined due to the appearance of new and more virulent strains of the pathogen, making
management and control more challenging [49]. Additionally, fungicides and plant breeding have
failed to provide long-lasting control of rice blast because they are too static to deal with the dynamic
interactions between the pathogen and rice, which are influenced by the surrounding environment [50].
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Understanding the effects of the rice blast pathogen, the efficacy of rice defense mechanisms, and the
impact of climate change on rice blast are crucial for enhancing global food security [31].

Strategies to mitigate the negative effects of climate change are key to increasing rice production [51].
Understanding the effects of changing air temperature, rainfall, and sea level due to climate change
would enable modifications in crop management for improved rice production [18]. Changes in
duration, intensity, and frequency of rainfall would greatly impact the effectiveness of chemical control
measures [30]. Rainfall following application of fungicide may increase its coverage on foliage [52],
but a high amount or high intensity of rainfall can reduce fungicide coverage on foliage [53]. With
long periods of rainy and cloudy conditions, both growth of rice and its resistance to rice blast are
weakened [54]. Rice blast epidemics are favored by extended periods of rain, lack of sunshine, and
dew, which induce the release of conidia [54]. The effect of rainfall on the dispersion of conidia is most
prominent at the start of a rainy season and during heavy rains [55,56].

Sea level rise is an important concern for rice production since it could result in flooding of
low-lying areas and intensify soil salinity [57,58]. Since rice blast can be spread by water, conidia in
infected fields could spread to new fields with flooding [59]. Additionally, increased soil salinity due
to flooding can restrict rice growth and grain formation [57,60], which could reduce resistance to rice
blast [61].

The effects of atmospheric CO2 concentration on rice blast are not well understood [28].
In a meta-analysis summarizing the response of rice yield to increased atmospheric CO2 and O3

concentrations, Ainsworth (2008) found that high CO2 concentrations are anticipated to increase yield,
while increased O3 concentrations and elevated air temperature are anticipated to reduce yield. Other
researchers have reported that elevated CO2 concentrations are likely to increase the spread of rice
blast [62–65]. Published results from simulation modeling research to predict the impact of climate
change on rice blast are scarce; therefore, most assumptions are based on the epidemiology of the
disease at specific temperature, humidity, and CO2 levels [28].

In China, it has been predicted that climate change will reduce rice yield by up to 37% during the
next 20 to 80 years [66]. Global warming may result in the need for greater resource investment to
achieve equivalent or lesser rice production [67,68]. Increased salinity of water used in rice production
resulting from a 0.3-m rise in sea level due to climate change is expected to reduce rice production by
0.5 million tons annually [69]. Since 40% of the world’s total rice area is rainfed, changes in rainfall due
to climate change will affect rice production [11]. Drought stress can severely damage or even kill rice
plants when it occurs during the reproductive stages, and variation in the start of the rainy season
leads to variation in the start of planting, which influences rice growth and development [18]. Global
climate change, rising scarcity of water resources, and drought stress will severely influence future rice
production [70].

4. Impact of Elevated Carbon Dioxide on Rice

Increased atmospheric CO2 concentration enhances rice biomass production, but it can have
a negative effect on grain yield if it is associated with increased air temperature, as projected with
climate change [71–75]. Each 75-ppm increase in atmospheric CO2 concentration is expected to
increase rice yield by 0.5 tons ha−1, while each 1 ◦C increase in average air temperature during the
growing season is projected to decrease rice yield by 0.6 tons ha−1 [75]. This is because rice is a C3

crop, thereby having reduced photosynthetic efficiency due to photorespiration in hot conditions [75].
Greater CO2 levels can also reduce transpirational cooling and increase maintenance respiration when
night air temperature exceeds 21 ◦C [73,76]. Responses of rice to elevated CO2 concentrations depend
on nitrogen supply; greater CO2 levels with limited nitrogen and the absence of sinks for excess
carbon can limit photosynthetic capacity and growth [72]. Increases in crop canopy and biomass with
elevated CO2 concentrations increases host size for a pathogen population [77–80]. A larger amount
of crop residues can also increase pathogen survival and increase inoculum for subsequent crops
and neighboring fields [29]. The impact of greater atmospheric CO2 concentration on plant diseases
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is in part due to changes in host physiology and anatomy, such as reduced nutrient concentration
and increased carbohydrate concentration in leaves, plant fiber content, leaf wax, layers of epidermal
cells, and mesophyll cells [81–83]. Increased leaf blast and sheath blight severity has been associated
with reduced silicon content in susceptible rice varieties under elevated CO2 levels [64]. Additionally,
increased leaf wax and epidermal thickness in rice can result in greater physical susceptibility to
pathogens, along with enhanced pathogen fecundity and changes in pathogen virulence, activity,
abundance, and distribution [29,82,83].

In high humidity environments, rice blast lesions produce spores in abundance, which are
dispersed by wind and serve as inoculum for a new cycle of infection [84]. In comparison, a lack of
humidity or rainfall can reduce disease severity [28]. Strong winds that blow soil particles can injure
rice plants, creating wounds for easy penetration by pathogens [85]. Wind also stimulates transpiration
of the host and promotes silicification of leaf tissue [86] and strengthens the resistance reaction of the
host [54].

5. Impact of Warmer Air Temperature on Rice

According to the Intergovernmental Panel on Climate Change [87], the average annual global
air temperature from 1990 to 2100 could increase by 1.8 to 5.8 ◦C, which would greatly threaten rice
productivity and global food security. Optimal maximum daily air temperature during the growing
season for rice grain yield is 23 to 26 ◦C [88]. Air temperature above 33 ◦C negatively affects anther
dehiscence, pollen viability, spikelet fertility, and dry matter accumulation in grain [89–91]. A 2 ◦C
increase in average air temperature during grain filling can decrease rice yield by 15% to 17% [92,93].
Increased air temperature due to climate change is also expected to enhance growth and sporulation of
the rice blast pathogen [94].

The temperature under which rice is cultivated affects its susceptibility to the blast disease [95].
In cold subtropical zones, an increase in air temperature is expected to cause an increase in the severity
of rice blast due to increased risk of infection [84,96]. Long periods of leaf dampness, high relative
humidity, and temperatures of 17 to 28 ◦C favor rice blast growth [97]. Low humidity or dew favors the
infection of rice blast [98]. When night air temperature rises above 20 ◦C there is less spore liberation
and infection is absent, but rapid growth of lesions is favored by alternating daily minimum and
maximum air temperatures of 25/32 ◦C to 20/32 ◦C [28,99]. Mild air temperature of 16 to 24 ◦C may
sustain the sporulation capacity of lesions [28]. However, greater air temperatures that are predicted
to occur as a result of climate change may reduce the incidence of rice blast in most rice growing
zones [28]. More detailed modeling research and climate monitoring that take into consideration other
factors affecting rice blast would be beneficial for disease management [28].

6. Disease Cycle of Rice Blast

Rice blast is caused by a filamentous ascomycete fungus and is a polycyclic disease spread by
asexual spores (conidia) that infect aboveground tissues of rice plants [40,43,100–103]. The infection
route requires an infection cell, called an appressorium, which uses a pressure-driven mechanism
to break the tough cuticle of the rice plant and stick firmly by means of an adhesive carried in the
spore apex, generating turgor pressure of up to 8.0 MPa that ruptures the cuticle of the affected
rice [104–107]. Once inside the tissue, the fungus produces invasive hyphae that quickly colonize
living host cells, secreting effector molecules to overpower host immunity and aid infection [108].
The effectors are transported into host cytoplasm by the aid of a biotrophic interfacial complex, a
plant-derived membrane-rich structure in which effectors amass during transit to the host [108–111].
The pathogen can replicate quickly and successively by mitosis, nuclear migration, and death of conidia
from which the infection originated, and produce appressoria capable of infecting aerial structures and
hyphae capable of infecting roots of young and old rice plants [43,107,112,113]. Autophagic cell death
of conidia is connected to cell cycle control and produces conidiophores that are dispersed to other
tissues and plants by wind and water splash to reinitiate the infection cycle by attachment of a spore that
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germinates and forms an appressorium [32,34,43,106,114]. This allows the pathogen to infect epidermal
cells with bulbous invasive hyphae that proliferate and grow from cell to cell, often through pit
fields which invade neighboring cells through plasmodesmata that requires mitogen-activated protein
kinase signaling and manipulation of jasmonate signaling [45,115–117]. Appressorium penetration is a
septin-dependent process and is linked to a burst of reactive oxygen species in the infected cell [107,118].
Rice blast conidia can spread within 230 m from their source; dispersal is favored in darkness and
with high relative humidity and winds greater than 3.5 m s−1 [119]. The primary source of inoculum
is infected residue and seeds of rice, and in the tropics, airborne conidia are present throughout the
year, enabling stable epidemics to occur year-round [100,120,121]. Initial symptoms of rice blast are
oval-shaped lesions that are 0.3 to 0.5 cm wide and 1.0 to 1.5 cm long, ranging from white to gray and
surrounded by darker borders, and older lesions are typically larger and may coalesce to kill entire
leaves [122,123].

Environmental conditions favoring sporulation and lesion development include extended periods
of leaf dampness, 92% to 96% relative humidity, and 25 to 28 ◦C air temperature [32,116,124].
Peak spore production occurs during the night when relative humidity is 100% and air temperature is
near 22 ◦C [28,43]. Fungal growth within rice cells causes death of the infected tissues and necrotic
lesions within 3 to 5 d [43]. The pathogen survives in the residue of host plants’ tissues and the cycle
repeats [100,119]. Under favorable conditions, there can be one cycle per week, with a single lesion
producing hundreds of spores each night for more than 20 d [38]. Drought stress and excess nitrogen
application increases susceptibility of rice to the rice blast pathogen. Though rice blast may tend to
develop under dry conditions, its response is variable [125–127].

7. Strategies to Circumvent Rice Blast for Food Security

Crop diseases including rice blast are increasingly worrisome to rice farmers around the world
and threaten global food security [128]. Since rice is an essential source of calories for much of the
world’s population, decreased rice yield due to rice blast is a serious threat to global food security.
The basis for integrated management of rice blast is knowledge of the pathogen and monitoring for
its appearance to implement control practices before yield loss exceeds control cost. A mechanistic
understanding of the complex interactions among the pathogen, host, and environment will lead to
accurate forecasts of pathogen distribution and greatly advance management of rice blast for global
food security in the presence of climate change.

Food security is influenced by a complex set of sociopolitical and trade issues that are often more
important than production and processing [38]. These challenges could be partially addressed by
clearly communicated policies and research agendas, such as the ‘New Rice for Africa’ program by
African Rice Center, which is focused on developing rice varieties with enhanced tolerance to harsh
growing conditions with limited fertilizer and pesticide use [129].

Sustainable increases in rice production for global food security will require efforts to enhance the
capacity of rice production systems to mitigate and adapt to climate change. Mitigation could involve
strategies focused on increasing rice yield in the presence of rice blast and climate change [48,92],
and reducing greenhouse gas emissions [18], while adaptation includes adjustments to decrease
rice vulnerability to rice blast. Policies on rice research and development should include provisions
for technology transfer to farmers and agricultural professionals to ensure that new varieties and
production practices are adopted [18].

Crop simulation modeling is a useful tool for studying the impact of climate change on crop
growth and yield in diverse agro-climatic conditions, with several models for rice available, including
CERES-Rice [130] and ORYZA [131]. Models for estimating crop yield loss from rice blast should be
integrated with crop growth models [132–135]. Disease tolerance, an area not commonly addressed in
yield-loss assessment, should also be taken into account with projected climatic conditions [136].

Rice blast could be effectively managed through integrated use of cultural practices, chemicals,
resistant varieties, and biocontrol agents. Segregation of affected grains reduces the spread of rice
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blast [137]. Additionally, broadcast sowing should be avoided because it can produce clusters of
high plant densities due to non-uniform seed distribution, creating a favorable microclimate for the
development of rice blast [119,138]. Transfer of agricultural technologies to farmers is more effective
when the state, non-governmental, and private sectors work in partnership [139–141]. Local leaders,
agricultural professionals, and government or non-profit educators will be key for technology transfer
and adoption of best practices for controlling rice blast to improve food security [141,142]. Coordination
among researchers from a variety of disciplines to map vulnerability and create early warning systems
could enable the development of successful and sustainable adaptation strategies to reduce losses from
rice blast [28].

Retrospective analysis of long-term data and herbarium specimens will add knowledge on
the biology, distribution, and adaptive responses of plant pathogens and their vectors to climate
change [135,143]. Increased collection of quantitative data on rice diseases and their pathogens will
increase the ability to counteract new risks posed by climate change for endemic pathogens and
circumvent new introductions [144]. A challenge will be linking this data to host–pathogen interactions
on a spatial scale to determine future management options and comprehensive knowledge of the hosts,
pathogen, and disease epidemiology in a cropping system, since parasitic and saprotrophic fitness
should be considered [50].

Natural products for controlling rice blast that are safe for the environment, humans, and
other organisms, such as microbial antagonists [145], are gaining interest as alternatives to chemical
fungicides [146,147]. Examples include Streptomyces bacteria [148] and the biocontrol agent P. fluorescens
Pf7-14, which produces antifungal phenazine-1-carboxylic acid [149]. Fungicides are an option for
controlling rice blast, but care should be taken to avoid overuse of similar active ingredients and the
development of pathogen resistance [137,150–152].

Crop breeding is a critical component of global food security, especially for rice [153,154].
Long-lasting and durable resistance to rice blast from a single gene is feasible but not often available,
since the pathogen can rapidly mutate and attack resistant cultivars [47]. Many genes resistant to rice
blast have been identified and are widely used as resistant donors in breeding programs including Piz,
Piz-t, Pit, Pik, Pik-m, Pik-p, Pita, Pita-2, and Pib [155]. Pi21 appears to slow the plant’s defense responses,
which may support optimization of defense mechanisms [156]. Ptr is a new class broad-spectrum
resistant gene that is also required for classical nucleotide-binding leucine-rich repeat against rice
blast [157]. The Pigm locus contains a cluster of genes encoding nucleotide-binding leucine-rich repeat
receptors that confer durable resistance to the fungus [128]. Gumei 4 (GM4)-derived varieties or
near-isogenic lines with the Pigm resistance locus (NIL-Pigm) display high resistance and durability to
rice blast and could be used to improve resistance against the blast disease [128,158]. The durability of
resistance can be improved by crossing rice varieties with complementary genes to achieve multigenic
resistance against a wide spectrum of pathogen races, thereby reducing selection pressure on a single
blast isolate [159]. It is also important to consider pathogen evolution and the effectiveness of resistant
plant varieties for accurate assessment of rice blast in the future [31]. Transgenic solutions should
receive serious consideration in integrated disease management strategies to improve food security [25].
Transgenic rice lines harboring rice blast resistance gene Pi-d2 transformed from vectors of pCB6.3kb,
pCB5.3kb, and pZH01-2.72kb, displayed various levels of resistance (up to 92%) against 39 strains of rice
blast [155].

Empirical investigations assessing the impacts of climate change on physical, chemical, and
biological control of rice blast are critical to develop new tools and tactics for disease control; however,
climate is only one driver of change when assessing future impacts of plant diseases [31]. Research
to improve the adaptive capacity of rice by increasing its resilience to rice blast may not involve a
completely new approach, although managing this disease may have an added advantage of mitigating
rising CO2 concentrations [160]. All crop protection practices for future research should be part of
an integrated approach and should focus on developing adaptation and mitigation strategies for the
control of rice blast in future climate conditions. Integrated solutions and international coordination in
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their implementation will be essential for effective control of this devastating disease to improve global
food security [35].
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