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Ubiquitin–proteasome and lysosome–autophagy are the two main cellular degra-
dation systems controlling cellular homeostasis in eukaryotes. The autophagy pathway
started attracting particular attention only two decades ago, after the ATG genes were
discovered in yeast, and their counterparts in higher eukaryotes. Since then, a tremendous
amount of autophagy-related knowledge was gained leading to deciphering its molecular
mechanisms and their regulations. Notably, the significance of autophagy in the pathophys-
iology of human disease and aging was demonstrated [1]. These findings stimulated and
accelerated the work progress on the possible roles of autophagy in different organisms.
Although the autophagy pathway is evolutionarily conserved, substantial differences in
lifestyle, overall structure and morphology impose the existence of numerous kingdom-
specific features. The work on the function of autophagy in plants is lagging behind the
studies performed on mammals, which are motivated by the potent therapeutic function
of autophagy in metabolic, cardiovascular, neurodegenerative, inflammatory and other
diseases. In addition to the basic research dedicated to understanding the molecular mecha-
nisms of autophagy [2,3], the work in plants is also motivated by potential biotechnological
applications related to the role of autophagy in stress response [4] and plant performances
in agriculture [5].

This Special Issue of Cells includes nine articles, providing an insight into the current
progress on autophagy-related research in plants. Here, the significance of autophagy in
nutrient management is reported in several articles. In a review article, Chen et al. [6]
summarized the role of autophagy in the recycling and remobilization of nitrogen and
other nutrients as iron, manganese and zinc during plant senescence. This highlights
the links between autophagy, inorganic phosphate and carbon assimilation. In addition,
the cross-talk of autophagy and senescence-related cysteine proteases is discussed, and the
accumulation of some specific proteases in autophagy-deficient mutants suggest that these
enzymes provide potential compensatory mechanisms and alternative nitrogen remobi-
lization pathways to autophagy in low nitrogen conditions. The major conclusion of the
work by Bedu at al. [7] is that the basal autophagy activity might be a part of the integral
response of the nitrogen metabolism to nitrate availability; the mRNA steady state levels of
ATG genes and of nitrogen assimilation-related enzymes are strongly correlated regardless
of the nitrogen nutrition status. The study by Lornac et al. [8] used N and S isotopes
to show that autophagy is also involved in sulphur remobilization from rosette leaves
to seeds. However, depending on the sulphate availability in the soil, the nature of the
sulphur-mobile molecules mobilized through the autophagy-dependent remobilization
process is different. In line with the role of autophagy in nutrient remobilization, the study
by Lopez-Vidal et al. [9] confirms the role of autophagy in metabolic changes occurring
during pepper fruit ripening and reveals its implication in the recycling of organelles in this
crop. The work by Tarnowski et al. [10] focuses on the role of the selective autophagy cargo
receptor NBR1. The authors postulated that NBR1 can fine-tune plant response to sulphur
deficit, by controlling the selective degradation of multiple targets in sulphur-deficient
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conditions. Two examples of such potential targets are provided, ribosomal protein S6
(RPS6) recognized by NBR1 in an ubiquitin-independent way and the kinase of RPS6 rec-
ognized by C-terminal UBA (ubiquitin associated) domain of NBR1. Interaction with these
(and possibly other) targets might influence ribosome activities and/or biogenesis during
sulphur-deficit and possibly other stresses. It is worth highlighting that a list of the proteins
targeted at NBR1-mediated autophagy in different stresses has been recently reviewed [11].

The role of autophagy in ribosome turnover (ribophagy) is the subject of the interest-
ing review by Kazibwe et al. [12]. The regulation of ribosome quality and the number is
essential for cell homeostasis, to maintain proper translation, and to cope with environ-
mental stresses. Authors discuss the autophagy-dependent degradation of ribosomal RNA
and ribosomal proteins in yeast and animals and summarize evidence for the existence of
ribophagy in plants.

Autophagy, as a part of the vesicular transport system, shares some components with
other vesicular trafficking machineries, such as endo- and exo-cytic pathways. Their crosstalk
must be coordinated during plant responses to abiotic and biotic stresses. The links
between autophagosomes (double-membrane vesicles) as part of the autophagy pathway,
and multivesicular bodies (single-membrane vesicles) as part of the endocytic system,
is thoroughly discussed by Wang et al. [13]. The review focuses on the coordinated action
of these two pathways during the hormone-mediated response of plants to biotic and
abiotic stresses. Extensive interactions in the regulation and function of both types of
vesicles in yeast and animals are also discussed.

The structural and mechanistic studies on the protein machinery involved in au-
tophagy initiation and autophagosome biogenesis, are summarized in the review by
Lai et al. [14]. Structural data mainly obtained by X-ray crystallography, are mostly only
available for the yeast and mammalian proteins and complexes. Notably, the structure
of the trimeric Arabidopsis ATG9 protein that was recently determined by cryoelectron
microscopy, is the only available structure of ATG9 discovered to date. This represents
a milestone in the field of plant autophagy that will facilitate further works in yeast,
animal and plants on the function of this transmembrane protein in the biogenesis of
autophagosomes.

All the articles cited above focused on macroautophagy, which is the most well
studied type of autophagy in plant and relies on autophagosome biogenesis. The review
by Sienko et al. [15] introduces plant microautophagy that consists of the direct uptake
of cargoes into the vacuole by the invagination of the vacuolar/lysosomal membrane.
Authors discuss evidence for microautophagy in yeast, animals and plants, and consider
possible techniques, based on the methods and experience of other organisms, to study
this process in plants.

Overall, this Special Issue provides important information on the recent advances in
autophagy in plants, and the potential future directions of autophagy-related studies.
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