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Abstract: Biomarkers currently available for the diagnosis, prognosis, and therapeutic monitoring
of GM1 gangliosidosis type 2 (GM1T2) disease are mainly limited to those discovered in targeted
proteomic-based studies. In order to identify and establish new, predominantly low-molecular-
mass biomarkers for this disorder, we employed an untargeted, multi-analyte approach involving
high-resolution 1H NMR analysis coupled to a range of multivariate analysis and computational
intelligence technique (CIT) strategies to explore biomolecular distinctions between blood plasma
samples collected from GM1T2 and healthy control (HC) participants (n = 10 and 28, respectively).
The relationship of these differences to metabolic mechanisms underlying the pathogenesis of
GM1T2 disorder was also investigated. 1H NMR-linked metabolomics analyses revealed significant
GM1T2-mediated dysregulations in ≥13 blood plasma metabolites (corrected p < 0.04), and these
included significant upregulations in 7 amino acids, and downregulations in lipoprotein-associated
triacylglycerols and alanine. Indeed, results acquired demonstrated a profound distinctiveness
between the GM1T2 and HC profiles. Additionally, employment of a genome-scale network model
of human metabolism provided evidence that perturbations to propanoate, ethanol, amino-sugar,
aspartate, seleno-amino acid, glutathione and alanine metabolism, fatty acid biosynthesis, and
most especially branched-chain amino acid degradation (p = 10−12−10−5) were the most important
topologically-highlighted dysregulated pathways contributing towards GM1T2 disease pathology.
Quantitative metabolite set enrichment analysis revealed that pathological locations associated with
these dysfunctions were in the order fibroblasts > Golgi apparatus > mitochondria > spleen ≈
skeletal muscle ≈ muscle in general. In conclusion, results acquired demonstrated marked metabolic
imbalances and alterations to energy demand, which are consistent with GM1T2 disease pathogenesis
mechanisms.

Keywords: GM1 gangliosidosis; lysosomal storage disorders; nuclear magnetic resonance (NMR)
analysis; NMR-based metabolomics; biomarkers; validation; metabolite set enrichment analysis

1. Introduction

Gangliosidoses represent lysosomal storage disorders (LSDs) arising from the adverse
accumulation of GM1 or GM2 gangliosides; GM1 gangliosidosis (MIM# 230500) has both
central nervous system (CNS) and systemic findings, whilst GM2 disorders (including
Tay-Sachs and Sandhoff diseases) are essentially limited to the former. Both diseases have
autosomal recessive inheritance modes, and are characterized by a series of sequential
clinical presentations, which range from a severe infantile form to a milder, chronic adult
one. Both GM1 and GM2 disorders are debilitating diseases which are currently still
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without any available cures or specific treatments. Notwithstanding, the employment of
facilitatory, albeit aggressive, clinical management approaches has succeeded in enhancing
the lifespan and quality of life for patients with these disorders [1–3].

Abnormal systemic accumulation of GM1 ganglioside in GM1 gangliosidosis arises
from a deficiency of the β-galactosidase enzyme (E.C.3.2.1.23), which hydrolyzes the termi-
nal β-galactosyl residues of this ganglioside, glycoproteins, and glycosaminoglycans [4].
The incidence of GM1 gangliosidosis has been estimated to be 1 in 100,000–2000,000 live
births [5], although this pan-ethnic condition has an enhanced prevalence in Roma, Brazil-
ian, Maltese, and Cypriot populations [1,6].

The pathogenic pathway by which such aberrant GM1 storage induces cell death
features the build-up of toxic products, which in turn cause an inflammatory response and
abnormal mitochondria [7], a mechanism which is common to many neurodegenerative
diseases [7]. Moreover, impairments in the regulation of GM1 content are also directly
featured in the pathogenesis of Huntington’s and Parkinson’s diseases, and also in a cancer
mouse model [8].

Although a developing clinical continuum, GM1 gangliosidosis may be classified into
three major sub-strata, which are generally based on the age at which signs and symptoms
first appear: infantile, juvenile, and adult (types 1, 2, and 3, respectively). Cases of GM1
gangliosidosis are normally clinically suspected on the basis of the observation of stor-
age signs, including gingival hypertrophy, corneal clouding, coarse facial characteristics,
the presence of vacuolated lymphocytes, cherry-red macula, hepatosplenomegaly, and
skeletal dysostosis, along with a known history of psychomotor retrogression [1,9,10].
In 2008, Brunetti-Pierri and Scaglia [1] analyzed published cases with sufficient clinical
data, and with a diagnosis of GM1 gangliosidosis confirmed by either biochemical assay
of β-galactosidase and neuraminidase, and/or by β-galactosidase gene (GLB1) molecular
testing. For juvenile (type 2) gangliosidosis, these researchers calculated the incidences
of a series of clinical features, and these comprised hypotonia (50%), hypertonia (4%),
developmental delay/mental retardation (96%), and seizures (18%) for neurological fea-
tures; dysmorphic features (67%) for more generalized ones; and cherry-red spot (18%),
cardiomyopathy (38%), hepatosplenomegaly (30%), and skeletal abnormalities for the
involvement of other systems. However, in the absence of such signs, diagnosis of this
condition is rendered difficult or complex [9,11].

Notwithstanding, galactosialidosis represents a genetic disorder which is distinct from
GM1 gangliosidosis and its related Morquio B disease, the latter being primarily a skeletal-
connective tissue disease, unlike GM1 gangliosidosis which is a neurological condition.
In galactosialidosis, the acid β-galactosidase gene is unaffected, but since patients present
with deficiencies of both β-galactosidase and sialidase (α-neuraminidase), previously they
were frequently incorrectly diagnosed, sometimes as having a GM1 gangliosidosis variant;
this again presents diagnostic complications.

In view of the complexity of GM1 disease diagnosis, currently it is mainly determined
from the critical assessment of a series of comprehensive observations made on a range of
specimen samples collected for biochemical, histological, ultrastructural, and/or genetic
analyses. Additionally, such diagnoses may be compromised or complicated by a partial
absence or deficit of specimen samples, and consequently this may result in a significant
number of cases remaining completely undiagnosed. Hence, there is a major demand for a
more disease-specific and expedient protocol for the diagnosis and severity monitoring
of GM1 and other debilitating gangliosidosis conditions. With the exception of a small
number of selected cases, ganglioside storage diseases are currently untreatable, and hence
there is an urgent requirement to seek, test, and validate newly-developed therapeutic
strategies. Hence, the identification of novel, clinically-relevant biomarkers (together with
associated imbalances in their corresponding metabolic pathways) for the monitoring and
prognostic stratification of these diseases and their progression are essential [12]. Although
magnetic resonance imaging (MRI) techniques may serve to provide a non-invasive and
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effective means to monitor disease severity in patients with these conditions [13], this
process is expensive and requires onerous, expert-level interpretational skills.

Multicomponent proton (1H) NMR analysis of biofluids such as blood plasma, cere-
brospinal fluid (CSF), and urine, etc., offers a high level of potential regarding the investiga-
tion of metabolic processes, and when coupled with conventional and/or newly-developed
multivariate (MV) data analysis techniques, serves as an extremely powerful means of
probing and tracking, for example, the biochemical basis of human disease etiology [14–
18]. Indeed, this form of combined multianalyte-MV analysis is generally classified as
metabolomics, and has been extensively employed in a very wide range of biomedical and
clinical investigations, including the identification of diagnostic or prognostic biomarkers
for a very wide range of diseases.

In this investigation, we employed an 1H NMR-linked metabolomics strategy in order
to seek and identify potential new biomarkers of disease activity in blood plasma samples
collected from patients suffering from GM1 type 2 (GM1T2, i.e., juvenile classification)
disease. Significant metabolic data acquired were then employed to explore GM1 disease-
mediated disturbances to metabolic pathways, and also the cellular, organ, or tissue
localizations of pathological damage and impairments, using quantitative metabolite set
enrichment analysis (QMSEA). In principle, these data may potentially be utilized to (1)
provide valuable potential biomarkers for the diagnosis and monitoring of such diseases,
and (2) enhance our understanding of disease mechanisms at the biochemical, metabolic,
and cellular, organ and tissue levels. Once established in this study, in principle, these
biomarkers may be validated in future investigations involving animal models of these
diseases which are indeed responsive to therapeutic interventions, since unfortunately, such
promising responses are, to date, predominantly absent in human populations. However,
it should be noted that very recently, the National Institute of Health (NIH) administered
the very first clinical trial for the treatment of GM1 gangliosidosis in humans with a gene
therapy (GT), and the manufacturer of the novel adeno-associated virus-based AXO-AAV-
GM1 product has received a US Food and Drug Administration (FDA) pediatric disease
designation for it [19].

In this study, selected drugs and their metabolites were also detectable in the 1H
NMR profiles of urinary samplings collected from the GM1T2 patient cohort (e.g., the
anticonvulsant valproate and its major glucuronide metabolite [20], and/or the muscle
relaxant tolperisone, etc.). Therefore, here we have elected to focus on both univariate (UV)
and MV metabolomics comparisons of the plasma profiles of GM1T2 patients with those
arising from a healthy human control population, since resonances of, or those putatively
arising from these xenobiotics and/or their metabolites were not visible in the 700 MHz
1H NMR profiles acquired at all. A short account of an experimental pilot study focused
on this LSD, which includes a MV power calculation for future studies, has been reported
in [21].

2. Materials and Methods
2.1. Ethical Approval

This investigation was performed in strict accordance with the Declaration of Helsinki
1975 (revised in 2013). All subjects gave their informed consent for inclusion before they
participated in the study. The Faculty of Health and Life Sciences Research Ethics Commit-
tee, De Montfort University (DMU), Leicester provided ethical approval for the protocol
focused on the collection of blood plasma samples from healthy control (HC) participants
(reference no. 1936). The GM1T2 patients consented to participate in this investigation
under protocol 02-HG-0107 “Neurodegeneration in Glycosphingolipid Storage Disorders”
of the National Human Genome Research Institute Institutional Review Board.

Medications received by the GM1T2 patient cohort comprised the substrate inhibitor
miglustat (n = 1); the anticonvulsant valproate (n = 1); the antihypertensive clonidine,
which is also suitable for the treatment of a range of other conditions (n = 3); lamotrigine
for seizures (n = 2); the muscle relaxant tolperisone (n = 1); the antiepileptic levetiracetam
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(n = 1); orally-inhaled albuterol sulphate for breathing problems (n = 1); the anticonvulsant
lamotrigine (n = 2); the muscarinic antagonist cyclopentolate (n = 1); and diazepam for the
treatment of seizures and anxiety (n = 1).

2.2. Collection of Human Blood Samples

Blood specimens were collected from a group of n = 10 GM1T2 patients (4 males/6
females, age range 3–20 years (mean 11.4 years)) at the National Institute of Health (NIH),
Bethesda, Maryland, USA, and were transported on dry ice to Leicester School of Pharmacy
(LSP), Leicester, Leicestershire, LE1 9BH, UK, and then immediately frozen at −80 ◦C on
arrival. Blood was also collected from n = 28 HC participants (7 males/21 females, age
range 18–54 years (mean 22.4 years)) at LSP. Blood plasma samples were not discolored,
and therefore all were included in the analysis. Whole blood was collected into heparinized
tubes in order to avoid analytical 1H NMR analysis complications arising from the use of
those containing ethylenediamine tetra-acetate (EDTA) or alternative anticoagulants such
as citrate.

2.3. Preparation of Human Blood Plasma Samples for 1H NMR Analysis

Blood plasma samples were thawed at ambient temperature and then immediately
prepared for 1H NMR analysis. This preparation involved centrifuging 500 µL volumes of
sample and removing 350 µL volumes of the supernatant for analysis. A 50 µL aliquot of
0.10 M phosphate buffer (pH 7.00) was then added to the clear supernatants, together with
a small aliquot of an aqueous sodium azide solution as a microbicidal preservative (final
concentration 0.05% (w/v)), and 10% (v/v) 2H2O. These mixtures were then thoroughly
rotamixed, and added to newly-purchased 5-mm diameter NMR tubes ready for high-
resolution 1H NMR analysis.

2.4. 1H NMR Analysis of Plasma Samples

Samples were analyzed using a Bruker AVII 700 MHz NMR spectrometer equipped
with a 1H TCI cyroprobe at an operating frequency of 699,989 MHz and a probe temperature
of 298 K. Spectral acquisition involved the collection of 65,536 data points, using 32 scans
across a spectral width of 1599 ppm. NOSEY presaturation (noesygppr1d) was used for
suppression of the intense water signal located at ca. 4.8 ppm. Moreover, the CPMG pulse
sequence was employed in order to suppress the broad protein signal envelope which
obscures the visibility of many low-molecular-mass metabolite resonances, and hence
also the quantification of their pre-assigned biomolecules. Samples were loaded onto an
automated sample belt in a random order.

2.5. Preprocessing of 1H NMR Biofluid Datasets
1H NMR free induction decays (FIDs) were zero-filled by a factor of 2 and multiplied

by an exponential function corresponding to 0.30 Hz line broadening prior to Fourier
transformation. All spectra were manually-phased and baseline corrected, and chemical
shifts referenced to the lactate-CH3 function doublet located at δ = 1.330 ppm using Topspin
2.1 (Bruker GmbH, 76187 Karlsruhe, Germany) software. The methyl function doublet
resonance of alanine (δ = 1.487 ppm) served as a secondary endogenous chemical shift
reference. All spectra were visually examined for errors in baseline correction or refer-
encing, and were then exported to ACD/Labs Spectrus Processor Academic Edition 12.01
(Advanced Chemistry Development, Inc., Toronto, Canada). Intelligent bucketing was
applied to all spectra simultaneously with bucket widths of 0.04 ± 0.02 ppm. The intense
residual H2O/HOD resonance (δ = 4.7–4.9 ppm) was excluded from all spectra acquired.
Spectral regions which contained only noise were also excluded from all spectra examined
in order to reduce the number of 1H NMR bucket variables for metabolomics analysis, and
consequently the discriminatory potential of all UV and MV analysis models developed.

Prior to statistical analysis, integral regions of each intelligently-selected bucket (ISB)
were constant sum (CS)-normalized, generalized logarithmically (glog)-transformed, and
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Pareto-scaled. 1H NMR spectral resonances were assigned via a consideration of chemical
shift values, coupling patterns and coupling constants, and confirmed by reference to liter-
ature values and the Human Metabolome Database (HMDB, University of Alberta and The
Metabolomics Innovation Centre) [22]. These assignments were further confirmed via the
acquisition of two-dimensional (2D) correlation and total correlation spectroscopy (COSY
and TOCSY respectively) spectra on 3 or more samples within each disease classification.

Median 1H NMR signal-to-noise (STN) ratios were derived from the formula STN =
2.50A/Npp, where A is resonance height, and Npp the widest peak-to-peak noise difference
determined at each frequency region selected.

2.6. Statistical and Computational Intelligence Analysis Strategies Employed

UV, MV, and CIT analyses were performed on two separate models: Model 1 consisted
of the full (untargeted) 1H NMR dataset containing n = 83 ISBs, whereas Model 2 featured
a consideration of the intensities of selected key, well-resolved and clearly visible (i.e.,
targeted) resonances arising from n = 25 specified metabolites, i.e., irrespective of their UV
statistical significance.

UV analysis-of-variance (ANOVA) of 1H NMR ISB intensity data was conducted with
XLSTAT2016 and 2020 software (Addinsoft, Paris, France). In view of clear heterogeneities
of the variances (heteroscedasticities) of ISB and specified metabolite variables (Models 1
and 2, respectively) between disease groups (i.e., GM1T2 vs. HC participants) for at least
some of these, the robust Welch test was employed to determine statistical significance of
differences observed between their mean values. The p values of significant variables were
then Bonferroni-corrected by multiplying them by the total number of variables considered
for both Models. This procedure was adopted in order to maintain a high level of rigor
throughout the UV analysis conducted.

Fold-changes were computed as the GM1T2:HC ratios of their mean values for CS-
normalized datasets, and where indicated, also for isoleucine (Ile)-normalized ones, since
no significant UV differences were found between the HC and GM1T2 classification mean
values of this metabolite in this study. These reference metabolite concentration-normalized
metabolite level fold-changes were employed for the purpose of comparing their values
with those calculated from the mean or median values of an extensive reference dataset
of 1H NMR-determined blood serum biomolecule concentrations determined on 11–12-
year-old childhood and corresponding adulthood (parental) groups in Ref. [23]; the latter
comprised calculated child:adult ratios of mean Ile-normalized concentrations. This ap-
proach was considered essential in view of significant age differences between this study’s
HC and GM1T2 classifications. Hence, any metabolite differences ascribable to participant
age differences were readily determined by comparisons of these two sets of reference
metabolite-normalized fold-change values. Variances and standard errors (SEMs) for Ile-
normalized GM1T2:HC fold-change (mean ratio) indices were computed from a derivation
of Taylor’s expansion as described in [24], and 95% confidence intervals (CIs) for these
were estimated using the t distribution.

A full Pearson-based correlation analysis was also conducted in order to preliminarily
explore inter-relationships between metabolite predictor variables.

Principal component analysis (PCA) was employed to obtain an overview of MV data
structure, the degree of separation between/clustering of the different disease classifications
explored, and also to detect any potential outliers. This primary PCA approach detected
that one of the GM1T2 sampling profiles was a clear outlier, so this was removed prior
to further MV analysis. PCA of the Model 2 dataset described below with 25 specified
plasma biomolecules was performed both with and without the employment of Varimax
rotation and Kaiser normalization, with a maximum of 5 PCs considered (XLSTAT2016
software, Addinsoft, Paris, France). Further MV analysis, including additional PCA, and
partial least squares- and orthogonal partial least squares-discriminatory analyses (PLS-DA
and OPLS-DA, respectively), together with an agglomerative hierarchical clustering (AHC)
analysis strategy, was conducted using MetaboAnalyst v4.0 software ((University of Alberta
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and National Research Council, National Institute for Nanotechnology (NINT), Edmonton,
AB, Canada) [25]. Successful performance of the PLS-DA and OPLS-DA models were
estimated using the leave-one-out cross validation (LOOCV) approach involving a test set
(33% of the original number of samples), the remaining 67% being employed to construct
the model. Q2 and permutation tests were performed to confirm the robustness of such
models, the latter with 2000 permutations.

Further permutation testing was also conducted using partial redundancy analysis
(P-RDA) of the above CS-normalized, glog-transformed, and Pareto-scaled datasets (XL-
STAT2016) in order to explore the possible influence of participant ages and genders on ISB
explanatory variable intensities. For this purpose, the total number of PCs involved in these
models was automatically computationally-determined, and a total of 10,000 permutations
were performed for these models. In this manner, the P-RDA technique explored the effects
of one out of the three possible model output variables via removal of the influence of the
other two as ‘conditioning’ variables’, and therefore this strategy was applied three-fold
with either the ‘between-diseases’, ‘between-ages’, and ‘between-gender’ variables serving
as the prime prediction output ones for each computation.

The random forest (RF) machine learning algorithm technique was employed for
classification and variable selection purposes using the random forest Metaboanalyst v4.0
module, with 1000 trees (ntree) and 7 predictors selected at each node (mtry) following
tuning. Datasets were randomly split into training and test sets containing approximately
two thirds and one third of them respectively. The training set was used to build the RFs
model and obtain an out-of-the-bag (OOB) error value in order to assess the performance
of the classification. The OOB error term is an estimate of the performance of the RF model
(i.e., how often the model classifies a sample incorrectly), and is computed using a test set
(one third of the original dataset which is left out of the bootstrap sample used to construct
the RF model). The OOB error estimate ranges from 0 (a perfect model where 100% of the
test set is correctly classified) to 1 (in which none of the test set was correctly classified).
The test set was then used to determine the accuracy, specificity, and sensitivity of this MV
analysis strategy. This process was repeated 1000 times in order to prevent bias arising from
the random sub-sampling of the training and test sets. The importance of each variable in
the classification was determined by computing the average mean decrease in accuracy
(MDA) (using the OOB error observations) over all iterations. Discriminatory variables
were then ranked in order of importance based on their mean MDA values, and further
examination of these values allowed identification of the number of variables required for
classification purposes (variables with little or no change in MDA value were defined as
redundant and removed).

The support vector machine (SVM) computational intelligence approach was also
employed for the purpose of distinguishing between the GM1T2 and HC 1H NMR blood
plasma profiles, and for this purpose, models were constructed utilizing the above MDA
approach. Sequential minimal optimization (SMO) parameters for SVM classification
models were C = 1.0 for the regularization criterion, and tolerance and epsilon values of
0.001 and 1 × 10−12, respectively; a linear kernel was employed (XLSTAT2014 software).
SVM results acquired were compared with those arising from the use of sigmoidal, radial
basis function (RBF), and power kernels.

For each of these MV data analysis options, model robustness and biomarker reliability
were further evaluated using an area under the receiver-operating curve (AUROC) probing
analysis, which involved ROC curve generation by Monte Carlo cross-validation, which
featured balanced sub-sampling processes using a SVM model builder.

2.7. Model Validation

In order to validate results acquired from MV analysis strategies employed, we
employed stratified randomized sampling techniques to select a validation set of plasma
samples which were used for prediction purposes only.
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Two approaches were instigated for validation testing: The first ‘hold-out’ validation
set comprised n = 6 HC and n = 3 GM1T2 samples. Following removal of these sample
profiles from the dataset, a secondary PLS-DA strategy, which involved randomly-selected
training and validation sets of n = 19 and 9 samples, respectively, was utilized, the latter
serving as a primary validation checking test set. Subsequently, the accuracy of this model’s
ability to successfully predict the classification status of each of the hold-out set of n =
9 samples was determined; this process was repeated a total of 72 times, and results are
reported for the training, test, and hold-out validation sets separately. This n = 9 hold-
out validation method was also applied to the AUROC, RF, and SVM biomarker testing
techniques conducted.

Secondly, for PLS-DA and all other MV and CIT analysis techniques employed in
this study, the degree of predictive classification success of an alternative n = 12 hold-
out validation sampling set (9 HC and 3 GM1T2 specimens) was determined. Mono-
and biclustering AHC-based heatmaps were also generated for the main and hold-out
validation sets of both the GM1T2 and HC sample classifications.

2.8. QMSEA

QMSEA was performed on the Model 2 dataset with built-in metabolite set enrichment
analysis (MSEA) libraries focused on (1) metabolic pathway-associated metabolite sets
(MPAMS) with 99 entries; (2) predicted metabolite sets (PMS) based on a computational
enzyme knockout model with 912 entries; and (3) metabolite sets based on estimates for
the sub-cellular, cellular, tissue, and organ localizations (73 entries) of disturbed GM1T2
chemopathologies based on the dysfunctional metabolite sets detectable [26]. In view
of their complex molecular heterogeneities, biomolecular contributions from the total
lipoprotein-associated triacylglycerols (TAGs) (broad triplet, δ centered at 0.92 ppm) and
‘acute-phase’ glycoproteins (broad -NHCOCH3 singlet resonances, with δ values of 2.03
and 2.07 ppm), and the broad protein aromatic amino acid residue signal (centered at δ
= 8.07 ppm) were excluded from these analyses. The creatine/phosphocreatine (Cr/PCr)
signal (δ = 3.95 ppm) was also excluded in view of its heterogeneity, and also possible
partial overlap with an intense glucose ring proton resonance (Figure 1). Indeed, only
compounds with specified compound names and/or codes recognizable by the software
employed were incorporated.
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4.05 and 4.13 ppm (assignments 29 and 30), respectively.



Cells 2021, 10, 572 9 of 53

Table 1. Chemical shift values, multiplicities, and assignments for resonances present in the 1H NMR profiles of blood
plasma collected from GM1T2 and HC participants (Figure 1).

Resonance
Code

Chemical Shift
(δ/ppm) Multiplicity Assignment Median STN Value *

1 0.92 broad
Very-low-density-lipoprotein

(vLDL)/low-density-lipoprotein
(LDL) TAG-terminal-CH3 functions

413

2 0.926 and 0.997 t and d Isoleucine-CH3 82 and 118

2 0.949 t Leucine-CH3 108

2 0.98 and 1.03 2 × d Valine-CH3′s 226 and 253

3 1.10–1.30 broad vLDL/LDL-bulk-chain-(-CH2-)n 599

4 1.32 d Lactate-CH3 501

5 1.48 d Alanine-CH3 382

6 1.55 broad Lipoprotein TAG-CH2CH2CO 157

7 1.74 broad m Arginine-γ-CH2/Lysine-δ-CH2
protein residues 94

8 1.92 s Acetate-CH3 198

9 2.03 broad

Acute-phase
glycoprotein-carbohydrate side-chain

N-acetyl-sugar-CH3 I
(APG-I)/TAG-CH2-CH = CH-

281

9 2.07 broad

Acute-phase
glycoprotein-carbohydrate side-chain

N-acetyl-sugar-CH3 II
(APG-II)/TAG-CH2-CH = CH-

386

10 2.12 m Glutamine-β-CH2 122

11 2.21 m Lipoprotein
TAG-CH2-CO2

-/Acetone-CH3
111

12 2.43 m Glutamine-γ-CH2 169

13 2.53
1
2 dd (AB coupling

pattern)
Citrate-CH2A/B 107

14 2.75 d Lipoprotein TAG-CH = CH-CH2-CH
= CH/Citrate-CH2A/B

89

15 2.97 broad Albumin lysine residue-ε-CH2 82

16 3.02 t/s Free lysine-ε-CH2/Creatine- and
Creatinine-N-CH3

151

17 3.19 broad
High-density-lipoprotein

phospholipid choline
head-group-N(CH)3

+
459

18 3.22 m Glucose-C2H 478

19 3.39 m Taurine-CH2SO3
2- 279

20 3.41 m Glucose-C2-6H 463

21 3.43 m Glucose-β-C2/5-α-C3/5-H 473

22 3.57 m Glucose-β-C2/5-α-C3/5-H 539

23 3.62 m Unassigned 133

24 3.71 m Glucose-α-C3/6- β-C6-H 434
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Table 1. Cont.

Resonance
Code

Chemical Shift
(δ/ppm) Multiplicity Assignment Median STN Value *

25 3.78 m Glucose-α-C3/6- β-C6-H 451

26 3.82 m Glucose-α-C4/6- β-C4/6-H 444

27 3.89 m Glucose-α-C4/6- β-C4/6-H 421

Cr/PCr 3.94 s Creatine/Phosphocreatine-CH2 151

28 3.99 ms Tyrosine-/Histidine-/Phenylalanine-
α-CH’s 80

29 4.05 s Creatinine-CH2 133

30 4.14 q Lactate-CH 135

31 4.63 d β-Glucose-CH 594

32 4.80 s Residual H2O/HO2H n/a

33 5.25 d α-Glucose-CH 341

34 5.27 broad Lipoprotein TAG-CH = CH- 555

35 5.80 broad Urea-CO-NH2 49

36 6.89 m Tyrosine-CH 57

37 7.01 m Phenylalanine-CH 34

38 7.08 s Histidine-CH 83

39 7.19 m Tyrosine-CH 63

40 7.30 m Phenylalanine-CH 50

41 7.41 m Phenylalanine-CH 30

42 7.80 s Histidine-CH 79

43 8.07 broad Protein aromatic amino acid residue(s) 45

44 8.45 s Formate-CH 63

Abbreviations: s, d, dd, t, q, and m, singlet, doublet, doublet of doublets, triplet, quartet, and multiplet, respectively. Median 1H NMR
signal-to-noise (STN) ratios were determined by the method described in Section 2.5. * The lower limit of quantification (LLOQ) value was
defined as 10 times the 1H NMR noise value.

QMSEA was performed using the globaltest 3 package of MetaboAnalyst v4.0 [25,26]. This
approach employs a generalized linear model to estimate a Q statistic for each metabolite
set, which indicates correlations between the profiles of biomolecule levels observed and
dysregulated enzymatic functions, metabolic pathways and their human body localization
outcomes (these Q statistics for a particular metabolite set represents the mean value of those
computed for each metabolite involved).

2.9. MV Power Calculations

MV power/minimum sample size estimates were made using the power analysis
module of MetaboAnalyst v4.0 [25]. This preliminary pilot study found that for FDR and
overall power levels of 0.05 and 0.80, respectively, a minimum sample size of ca. n =
30 per group was required [21]. Although our figure of n = 28 for the HC group was
almost satisfactory for this purpose, the value of n = 10 patients for the GM1T2 cohort
(n = 9 following outlier removal as described in Section 3.3.1 below) was insufficient.
Nevertheless, such experiences are not at all unusual in the LSD field in view of major
limitations of biofluid sample availabilities in view of their very low incidences.
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3. Results

3.1. 1H NMR Analysis of Study Biofluids Collected

The 700 MHz CPMG 1H NMR spectra of these the human blood plasma samples
collected contained many prominent, sharp signals assignable to wide range of low-
molecular-mass biomolecules; Figure 1 shows the expanded 0.75–4.40 and 5.00–8.70 re-
gions of typical spectra acquired on GM1T2 and HC participants. Indeed, >35 distinct
low-molecular-mass metabolites, and the mobile portions of biomacromolecules, were
detectable in the CPMG spectra acquired on this biofluid, and these included short-chain
organic acid anions (e.g., acetate, formate, citrate, and lactate, etc.); amino acids, includ-
ing leucine, Ile and valine (branched-chain amino acids), glycine, alanine, glutamate,
glutamine, lysine, taurine, histidine, phenylalanine and tyrosine, etc., together with N-
acetylamino acids; and carbohydrates, most especially glucose (Figure 1). As expected,
these 1H NMR profiles also contained relatively broad resonances arising from a series
of lipoprotein-associated TAGs, with 1H NMR-distinguishable very low-, low-, and high-
density-lipoproteins; the acetamido (-NHCOCH3) functions of N-acetylneuraminate and
N-acetylglucosamine residues present in the molecularly-mobile carbohydrate side-chains
of selected ‘acute-phase’ glycoproteins (predominantly α-1-acid glycoprotein); and those
arising from both aliphatic and aromatic amino acid protein residues. A full list of 1H NMR
assignments for biomolecules detectable is provided in Table 1. This table also provides
median STN values for all resonances present.

3.2. Univariate and Preliminary Metabolomics Analysis of Biofluid 1H NMR Profile Datasets

A rigorous univariate, false discovery rate (Bonferroni)-corrected ANOVA Welch test
(WT) system was employed to primarily examine the univariate statistical significance of
‘between-disease’ differences in the mean resonance intensities of CS-normalized, glog-
transformed, and Pareto-scaled 1H NMR-detectable metabolites. For the uncorrected WT,
mean differences between 20 of the biomolecules detectable were found to be significant or
highly significant (p values ranging from 10−5 to 0.04, Table 2). However, application of
the additional Bonferroni adjustment to these WT statistic values narrowed the number
of significant biomolecules to 13. Figure 2a displays a heatmap of the top 25 specified 1H
NMR-identified metabolite variables arising from this analysis, and this clearly confirms
significantly higher plasma levels for 12 or more of them, and lower plasma levels for TAGs
and alanine, in the GM1T2 group of blood plasma samples analyzed. These data clearly
demonstrated that, in a univariate context, plasma valine, glutamine, glutamate, citrate,
creatinine (Cn), lactate, urea, tyrosine, phenylalanine, and histidine were significantly
or highly significantly upregulated in the GM1T2 patient cohort, whereas total plasma
lipoprotein-associated TAGs were significantly downregulated in this group.

Monoclustering AHC analysis shown in the form of heatmaps demonstrated 2 major
metabolite variable clusterings, with 2 sub-clusterings within each of these. The first
and second sub-clusters within the top left-hand side ordinate axis cluster feature (1)
acute-phase glycoprotein/TAG-CH2-CH=CH- signals 1 and 2, total lipoprotein TAGs, and
alanine (all downregulated with respect to GM1T2 disease), and (2) leucine, Ile, glutamine,
and glucose (all upregulated); sub-clusters within the bottom left-hand side ordinate axis
cluster incorporated (1) all upregulated aromatic amino acids (phenylalanine, tyrosine,
histidine, and the PAAR signal), along with urea and formate, and (2) Cn, lactate, valine,
Cr/PCr, glutamate, citrate, 3-aminoisobutyrate (3-AIB), acetate, taurine, and threonine
(mainly also upregulated predictors).
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Table 2. Statistical significance and nature of differences between the 1H NMR-detectable plasma metabolite levels (as 1H
NMR resonance intensity equivalents) of GM1T2 and HC participants.

Metabolite Regulation Status
(↑/↓) * Fold-Change **

Age-Related
Fold-Change (HC

data) ***
WT p Value

Bonferroni-
Corrected WT

p-Value

Total TAGs ↓ 0.75 0.808 (total TAGs)0.842
(total FAs) 4.50 × 10−5 1.12 × 10−3

Isoleucine ↑ 1.04 0.947 ns ns

Leucine ↑ 1.37 0.935 4.67 × 10−4 1.17 × 10−2

Valine ↑ 2.10 0.958 <10−6 <2.50 × 10−5

3-AIB ↑ 1.21 na 9.02 × 10−3 ns

Alanine ↓ 0.87 0.973 4.37 × 10−2 ns

Acetate ↓ 0.96 0.882 ns ns

APG-I/TAGs ↓ 0.91 0.930 ns ns

APG-II/TAGs ↓ 0.93 na 3.41 × 10−2 ns

Glutamine ↑ 1.20 1.052 1.16 × 10−4 2.90 × 10−3

Glutamate ↑ 1.14 1.308**** 4.70 × 10−4 1.17 × 10−2

Citrate ↑ 1.16 1.153 1.16 × 10−3 2.90 × 10−2

HDL-PLs ↑ 1.03 0.859 (total PGs)/0.870
(total cholines) ns ns

α-/β-Glucose ↑ 1.14 0.998 2.91 × 10−2 ns

Taurine ↑ 1.13 1.073 **** 3.58 × 10−2 ns

Cr/PCr ↑ 1.48 0.998 (Cr only) **** 2.80 × 10−3 ns

Cn ↑ 2.65 0.727 2.18 × 10−5 5.45 × 10−4

Lactate ↑ 4.19 1.103 3.27 × 10−6 8.17 × 10−5

Threonine ↑ 1.16 1.225 **** ns ns

Urea ↑ 1.66 0.473 **** 1.55 × 10−3 3.87 × 10−2

Tyrosine ↑ 1.62 1.000 7.41 × 10−5 1.85 × 10−3

Phenylalanine ↑ 1.52 0.918 1.26 × 10−3 3.15 × 10−2

Histidine ↑ 1.91 1.000 2.57 × 10−4 6.42 × 10−3

PAAR ↑ 1.96 na 2.78 × 10−4 6.95 × 10−3

Formate ↑ 1.54 na 4.05 × 10−3 ns

Both uncorrected and Bonferroni-corrected ANOVA Welch test (WT) significance (p) values are provided. Fold-changes were calculated
as the ratio of the GM1T2 group mean value to that of the HC one for each metabolite predictor considered. In addition, provided are
age-related healthy human blood serum metabolite fold-change data calculated from Ref. [23] to permit evaluations of the magnitude of
metabolite concentration differences arising from contrasting age groups alone. Abbreviations: * ↑ and ↓ indicate up- and downregulations
of metabolite concentrations, respectively, in GM1T2 disease; ns, not statistically significant; APG-I and II, magnetically-distinguishable
-NHCOCH3 environments of N-acetylneuraminate and N-acetylglucosamine residues present in the molecularly-mobile carbohydrate
side-chains of acute-phase glycoproteins (their corresponding ISB intensities are those of broad resonances centered at δ = 2.03 and 2.07
ppm, respectively, albeit also with some interferences arising from TAG-CH2-CH=CH- signal(s), more so for the former); FAs, fatty acids;
HDL-PLs, high-density-lipoprotein phospholipids (choline head-group -N(CH3)3

+ resonance); PAAR, broad protein aromatic amino acid
resonance (δ = 8.03–8.10 ppm); PGs, phosphoglycerides; na, not available. ** Indicates fold-change for CS-normalized datasets. *** Indicates
absolute serum fold-changes for two healthy human age groups, i.e., child:adult values [23]. **** Unavailable in Ref. [23], and therefore
calculated from data available in Ref. [22].
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Figure 2. (a) AHC biclustering heatmap diagram displaying the most univariately-significant differences between the 1H NMR
profile predictor metabolite variables of the GM1T2 (green) and HC (red) groups investigated (Model 2 dataset); those for all 25
variables are shown (near right-hand side y-axis).1H NMR datasets were CS-normalized, glog-transformed, and Pareto-scaled prior
to analysis. Transformed metabolite 1H NMR intensities are shown in the far right-hand side y-axis: deep blue and red colorations
represent extremes of low and high concentrations, respectively. The left-hand side of the plot shows results arising from an AHC
analysis of the top 25 metabolite variables monitored, which reveals 2 major metabolite clusterings, with 2 sub-clusterings within
each of these. (b) AHC dendogram of a ‘training’ set consisting of n = 19 HC and n = 6 GM1T2 disease participant sample donors,
and revealing clearly distinctive MV clusterings between the blood plasma 1H NMR profiles of these groups for the Model 1 1H
NMR ISB dataset. (c) As (b), but with inclusion of the hold-out validation sampling set of n = 9 HC and n = 3 GM1T2 samples.
(d) AHC biclustering heatmap diagram performed on the ‘training set’ of 19 HC and 6 GM1T2 for the Model 1 dataset. (e) As
(d), but with incorporation of the hold-out validation sampling set. AHC models applied involved a consideration of maximum
dissimilarities from Euclidean distances. Abbreviations: CONTROL_V and GM1T2_V represent samples of the hold-out validation
set (blue and yellow color-coded labels, respectively).
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The biclustering heatmap approach applied to the full sample dataset of Model
2 (Figure 2a) demonstrated that the top left-hand side metabolite APG-1 and −2/total
TAGs/alanine (all downregulated) sub-cluster, and the leucine/Ile/glutamine/glucose/HDL-
phospholipid (all upregulated) sub-cluster were strongly associated with GM1T2 disease.
Similarly, further GM1T2-linked sub-clusters were those containing all aromatic amino
acids, the protein aromatic amino acid residue resonance, formate, and urea (all upregu-
lated); that containing Cn, Cr/PCr, lactate, valine, glutamate, and citrate (all upregulated);
and less powerfully so, that comprising 3-AIB(↑), acetate(↓), taurine(↑) and threonine(↑),
although no significant differences were noted for acetate and threonine.

Figure 2b,c shows AHC-based mono-clustering analyses of the training set (n = 26
in total), both with and without inclusion of the hold-out validation HC and GM1T2
classification sub-groups, respectively. In addition to confirming a very high level of
distinctiveness between the HC and GMIT2 disease cohorts, these results demonstrated a
100% rate of classification success for the hold-out samples. Morerover, Model 1 biclustering
heatmaps for the training, and training plus hold-out validation sets, are shown in Figure
2e,f, respectively, and the 1H NMR ISBs featured correspond to the up- and downregulated
plasma metabolites tracked in Model 2, for example BCAAs, Cn, lactate, glucose, urea,
aromatic amino acids, etc., for the former, and alanine and lipoprotein-associated TAGs
for the latter (assignments for these ISBs are available in Table 1). As expected, many of
the smaller clusterings detectable correspond to highly-correlated resonances arising from
the same molecular sources, typically those of glucose C2-H to C5-H ring protons (δ =
3.2–3.9 ppm), lipoprotein-linked TAGs (δ = 0.9–5.4 ppm), and the ring protons of aromatic
amino acids (δ = 6.8–8.1 ppm), etc. (Table 1). Notwithstanding, all 12 hold-out validation
samples analyzed were correctly located within their known identity clusters, i.e., the
central GM1T2 one, and those from the HC population either side of it. Curiously, the
GM1T2 group is sub-clustered with the right-hand-side HC one, and hence it appears that
the distinct metabolic patterns identified for the former have a degree of similarity to those
of the latter group.

However, on consideration of differences between the mean ages of the GM1T2
and HC cohorts recruited to this investigation, along with complications associated with
the recruitment of a large-sized healthy control group of infants, juveniles, and young
adults, an already available 1H NMR-determined blood serum metabolite concentration
dataset was referenced to enable direct age-matched comparisons to be made between
the 1H NMR-determined blood serum metabolite levels of healthy children accessible
therein, and our GM1T2 group (age range 3–20 years). This full and very extensive
dataset, extracted from Ellul et al. (2019) [23], provided mean±SD blood serum metabolite
concentrations on a total of n = 1170–1180 child participants aged 11–12 years; this limited
age range is very similar to both the mean and median ages (11.1 and 8.0 years, respectively)
of our GM1T2 participants. In this report [23], corresponding metabolite levels were
also provided for the child participants’ parental adult ‘controls’ (n = 1310–1320). Non-
normalized child:adult fold-change values derived from the ratios of mean metabolite
levels in the child group to those of the adult classification of Ref. [23] are provided in Table
2. Although these data provide evidence for some GM1T2 disease-upregulated amino
acids, creatinine, lactate and urea, along with downregulated lipoprotein-associated TAGs,
these are not strictly comparable since CS normalization was employed in this study to
provide normalized resonance 1H NMR intensity measurements for statistical analysis
(which were also generalized logarithmically (glog)-transformed and Pareto-scaled prior
to its instigation).

Therefore, Ile was selected as an alternative normalization feature as outlined in
Section 2.6. In this manner, statistical evaluations, both univariate and multivariate, were
performed on the Ile-normalized dataset in order to allow comparisons with a similarly-
normalized child dataset obtained from Ref. [23]. Ile normalization was performed by
expressing the raw intensities of both Model 1 and 2 1H NMR resonance bucket intensities
to that of the Ile-CH3 proton resonance (d, δ = 0.997 ppm) in spectra acquired on the GM1T2
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and HC datasets. Corresponding serum Ile concentrations available in the childhood
dataset of Ref. [23] were similarly employed as normalization vectors for all other 1H NMR-
detectable metabolites determined in that study. Metabolites available from the latter source
comprised total triacylglycerols/fatty acids, total phospholipids and cholines, acute-phase
glycoproteins (predominantly α1-acid glycoprotein), acetate, citrate, lactate, and creatinine,
along with the amino acids Ile, leucine, valine, glutamine, phenylalanine, tyrosine, and
histidine. Primarily, comparisons of the Ile-normalized metabolite concentrations of our
GM1T2 patient cohort with those of our study’s more adult HC group were then performed
(Table 3). This analysis revealed that 15 of these biomolecules were significantly different
between these groups when using the WT, and following Bonferroni correction, 8 of these
remained so, specifically downregulated total TAGs and acute-phase glycoprotein signal 2,
together with upregulated valine, tyrosine, histidine, the detectable aromatic amino acid
protein residue, creatinine, and lactate levels.

Table 3. Statistical significance and nature of differences between the 1H NMR-detectable, Ile-normalized (Ile-N) plasma
metabolite levels of GM1T2 and HC participants.

Metabolite Ile-N Fold-Change ±
95% CIs

Age-Related Ile-N
Fold-Change

(HC Data)
Ile-N WT p Value

Ile-N
Bonferroni-Corrected

WT p-Value

Total TAGs 0.74 ± 0.22 0.85 5.53 × 10−3 ns

Isoleucine na na n/a n/a

Leucine 1.32 ± 0.04 0.99 2.21 × 10−5 5.30 × 10−4

Valine 2.00 ± 0.05 1.01 <10−6 <2.5 × 10−4

3-AIB 1.18 ± 0.16 na ns ns

Alanine 0.86 ± 0.22 1.03 0.079 ns

Acetate 0.92 ± 0.16 0.96 ns ns

APG-I/TAGs 0.88 ± 0.27 0.98 4.62 × 10−2 ns

APG-II/TAGs 0.89 ± 0.11 na 3.53 × 10−2 ns

Glutamine 1.16 ± 0.09 1.11 6.83 × 10−3 ns

Glutamate 1.11 ± 0.39 na ns ns

Citrate 1.12 ± 0.09 1.22 0.057 ns

HDL-PLs 1.01 ± 0.19 0.89 (total PGs)/0.92
(total cholines) ns ns

α-/β-Glucose 1.06 ± 0.10 1.05 ns ns

Taurine 1.08 ± 0.11 na ns ns

Cr/PCr 2.59 ± 0.10 na <10−6 <2.50 × 10−4

Cn 2.50 ± 0.11 0.77 3.67 × 10−5 8.81 × 10−4

Lactate 3.98 ± 0.40 1.16 4.98 × 10−6 1.19 × 10−4

Threonine 1.11 ± 0.33 na ns ns

Urea 1.54 ± 0.21 na 2.37 × 10−3 0.057

Tyrosine 1.53 ± 0.14 1.06 2.00 × 10−4 9.60 x 10−3

Phenylalanine 1.43 ± 0.19 0.97 2.45 × 10−3 0.059
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Table 3. Cont.

Metabolite Ile-N Fold-Change ±
95% CIs

Age-Related Ile-N
Fold-Change

(HC Data)
Ile-N WT p Value

Ile-N
Bonferroni-Corrected

WT p-Value

Histidine 1.78 ± 0.19 1.06 4.06 × 10−4 9.74 × 10−3

PAAR 2.11 ± 0.17 na 2.10 × 10−4 5.04 × 10−3

Both uncorrected and Bonferroni-corrected ANOVA Welch test (WT) significance (p) values are provided, as in Table 2. In addition, listed
are fold-changes computed from the GM1T2:HC ratio of mean Ile-N metabolite levels, along with their estimated 95% CIs. Corresponding
Ile-N, age-related child:adult fold-change data calculated from the extensive Ref. [23] dataset for specified metabolites are also provided.
Abbreviations: as Tables 1 and 2.

Subsequently, both GM1T2:HC (this study) and child:adult (Ref. [23] study) fold-
changes (i.e., as ratios of the Ile-normalized mean metabolite concentrations for each of
these biomolecules) were calculated, and these are also available in Table 3. From the
95% CIs computed for this investigation’s Ile-normalized metabolite level GM1T2:HC
fold-changes, it was found that those for lactate > creatinine > valine > histidine > tyrosine
> phenylalanine were significantly greater than corresponding age-based fold-changes
derived from study [23], in that order. However, apert from citrate, those for TAGs and
alanine were found not to be significantly lower than the latter age-based fold-change
values. Notwithstanding, despite the unavailability of comparator data in Ref. [23], the
Ile-normalized mean concentration GM1T2:HC fold-changes of 3-AIB, urea, PAAR, and
formate remained significantly greater than the reference null hypothesis value of 1.00
used for this comparison.

3.3. Multivariate Metabolomics Analysis of Biofluid 1H NMR Profile Datasets
3.3.1. PCA, PLS-DA, and OPLS-DA

Unsupervised PCA was primarily performed on the Model 1 dataset, and follow-
ing the removal of a single outlier sample, this MV approach demonstrated very clear
distinctive clusterings for each of the two disease classifications (Figure 3a,b), and this
proved that this MV analysis technique was efficient for their distinction with the 1H
NMR-bucketed dataset acquired. It was also found to be very effective for the accurate
classification of a hold-out sub-set of n = 12 plasma samples (Figure 3b). Similar results
were obtained for Model 2, and for this analysis, communalities of metabolite predictor
variables were determined from their loadings vectors on principal components (PCs)
1–5. Indeed, these values and their squared cosine values (Table 4) indicated that of the
25 individual biomolecular predictors considered, all aromatic amino acids, along with
formate and urea, all loaded very strongly and positively on PC1; all branched chain
amino acids (BCAAs) loaded significantly and positively on PC2 (this observation is borne
out by the quantitative metabolite enrichment analysis (Section 3.5), which revealed that
imbalances in BCAA catabolism were a major feature of GM1T2 chemopathology); the
powerful discriminatory biomarkers lactate and Cn loaded strongly and positively on PC3,
i.e., their plasma levels were strongly correlated; a combination of the macromolecular
APG-I, APG-II, and HDL-PL biomolecules exerted powerful contributions towards PC4,
the first two positively, and the latter negatively so; and 3-AIB and alanine loaded strongly
(positively and negatively so respectively) on PC5, with positive contributions from ac-
etate and citrate also loading moderately so (however, it should be noted that this PC’s
eigenvalue was only 1.05). The total TAG variable loaded strongly and negatively on both
PC1 and PC2 respectively, these anticorrelations being stronger with the latter. As may be
expected, acetate, a metabolite associated with fatty acid (FA) biosynthesis, also loaded
significantly on PC1, but positively so. Moreover, the Cr/PCr signal positively correlated
with that of their downstream Cn metabolite, with strong loadings on PCs 1 and 3; this is
consistent with their contiguous metabolic pathway(s).

Subsequently, PLS-DA was employed to explore the ability of this technique to distin-
guish between the GM1T2 and HC blood plasma 1H NMR profiles acquired. Figure 3c,d
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displays 3D PLS-DA scores plots for the Model 2 dataset, and these demonstrate clearly
distinctive clusterings for these two groups using the CS-normalized dataset, and also
a very successful classification performance accuracy with the n = 12 hold-out dataset.
To evaluate the performance of this MV classification system, a 10-fold cross-validation
procedure was applied. Q2 values determined for this analytical model were >0.93 and
0.80 for Models 1 and 2, respectively (both analytical strategies containing a maximum of
≥5 orthogonal components); these statistics were very highly significant, since values of
this index of ≥ 0.50 are commonly utilized as a model merit cut-off for this system [17].
Moreover, permutation tests for Q2 (with 2000 permutations) yielded p values of <0.01
and 0.007 respectively for these MV approaches. PLS-DA variable importance parameters
(VIPs) were employed to identify the most important metabolite predictor variables for
distinguishing between these two groups of participants, and in addition to all those de-
tectable from the univariate ANOVA Welch test, for Model 2, formate (GM1T2-upregulated)
was found to serve as a significant NMR-detectable biomarker feature. For this dataset, the
highest VIP values obtained for these distinguishing biomarkers were lactate (2.09) PPAR
(1.91) > Cn (1.72) Cr/PCr (1.53) > histidine (1.48) > valine (1.42) > formate (1.17) > urea
(0.98) > phenylalanine (0.94) > tyrosine (0.92) > leucine (0.85) > total lipoprotein-associated
TAGs (0.85).
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Figure 3. (a,b). PCA scores plot of PC3 versus PC1 for the training (n = 25), and training plus ‘hold-out’
validation (n = 37 in total) Model 1 datasets, respectively (in (b), PC1 and PC3 accounted for 57.2
and 7.1% of total dataset variation respectively). These plots clearly show distinctive clusterings for
the HC (red) and GM1T2 patient (green) study classification participants, and (b) confirms correct
classifications for all hold-out samples evaluated. (c,d). Three-dimensional (3D) PLS-DA scores
plots of component 3 vs. component 2 vs. component 1 for the training, and training plus hold-out
validation, Model 1 datasets, respectively. (e,f). OPLS-DA plot of orthogonal T score [1] versus T score
[1] for the Model 1 training, and complete 1H NMR plasma profile dataset, respectively (the latter
including the n = 12 validation set held out from the analysis shown in the former), again revealing
clear distinctions between the HC and GM1T2 participant clusters. 95% Confidence ellipsoids are
also shown for both participant classifications and their validation sub-sets.

Similarly, application of the OPLS-DA technique also confirmed a high level of dis-
tinction between the GM1T2 and HC groups for the full dataset of Model 1, with a very
clear distinction between them (Figure 3e,f). Indeed, this distinctiveness was also found on
application of this technique to the n = 25 training set alone, and also correctly classified all
12 of the hold-out validation samples. Key discriminatory ISB variables for this MV analy-
sis strategy were determined from the extremes of its associated characteristic p(corr)[1]
versus p [1] S-plot. These included valine, leucine, glutamine, lactate, Cn, citrate, and
histidine at the top right-hand-side of this S-plot (all upregulated in GM1T2 diseases), and
total lipoprotein TAGs and alanine at the bottom left-hand-side of it (both downregulated).
The Q2 value computed from an analysis of the complete Model 1 dataset was 0.55, and the
permutation statistic computed for it had a very highly significant p value of <5 × 10−4. As
expected, a repetitive application of the above MV analysis strategies to the Ile-normalized
Model 2 dataset also provided evidence for a high level of distinctiveness between the
HC and GM1T2 disease groups. For example, PLS-DA yielded Q2 values of >0.80 for
models with ≥4 components, together with a permutation testing statistic p value of 0.007.
Similarly, a corresponding OPLS-DA MV strategy gave rise to an effective classification
model with Q2 and R2Y values of 0.483 and 0.563 (data not shown).
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Table 4. Loadings vectors of metabolites showing their significant contributions towards PCs 1–5 for
the Model 2 dataset (corresponding squared cosine values in brackets). Biomolecular predictors with
loadings vectors of magnitudes within the ±0.40 range were not considered (nc), since they are only
included as significant contributors if they lie outside it [17].

PC PC1 PC2 PC3 PC4 PC5

Eigenvalue 9.69 3.61 2.91 2.40 1.05
Total TAGs −0.50 (0.25) −0.79 (0.62) nc nc nc
Isoleucine nc 0.70 (0.49) nc nc nc
Leucine nc 0.94 (0.88) nc nc nc
Valine 0.47 (0.22) 0.72 (0.53) nc nc nc
3-AIB 0.53 (0.28) nc nc nc 0.69 (0.47)

Alanine nc nc nc 0.40 (0.16) −0.62 (0.38)
Acetate 0.45 (0.20) nc 0.48 (0.23) nc 0.52 (0.28)
APG-1 nc nc nc 0.81 (0.65) nc
APG-2 nc nc nc 0.87 (0.76) nc

Glutamine nc 0.88 (0.78) nc nc nc
Glutamate 0.53 (0.28) nc 0.60 (0.36) nc nc

Citrate nc 0.42 (0.18) 0.60 (0.36) nc 0.45 (0.20)
HDL-PLs −0.42 (0.17) nc nc −0.83 (0.69) nc
Taurine nc nc 0.74 (0.55) nc nc
Cr/PCr 0.65 (0.43) nc 0.60 (0.36) nc nc

Cn 0.50 (0.25) nc 0.75 (0.57) nc nc
Lactate 0.47 (0.22) nc 0.75 (0.57) nc nc

Threonine nc nc 0.87 (0.76) nc nc
Glucose nc 0.56 (0.32) −0.69 (0.47) nc nc

Urea 0.92 (0.85) nc nc nc nc
Tyrosine 0.93 (0.87) nc nc nc nc

Phenylalanine 0.95 (0.90) nc nc nc nc
Histidine 0.93 (0.87) nc nc nc nc

PAAR 0.92 (0.84) nc nc nc nc
Formate 0.93 (0.86) nc nc nc nc

3.3.2. Supporting Model Validation and Predictive Accuracy Estimates

In addition to employing the n = 12 hold-out validation set described above, applica-
tion of an alternative validation method with n = 9 hold-out samples, specifically 6 HC and
3 GM1T2 ones (Section 2.7), provided further supporting evidence for the effectiveness and
predictive classification accuracies of the MV analysis approaches described above. This ap-
proach, which primarily involved application of the PLS-DA strategy to the CS-normalized
dataset, found that the total successful classification rate for this n = 9 validation sample set
was >97%; those for the ‘training’ and ‘test’ sets were ca. 98 and 95% respectively (Table 5).
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Table 5. Mean±SEM predictive accuracies for the training, test and total sets in a PLS-DA-based validation model involving
a ‘hold-out’ sample of n = 9 plasma samples. The mean validation set classification success score is also provided.

GM1T2 Disease HC Total

Training Set (n = 19) 89.35 ± 1.92% 99.91 ± 0.09% 97.95 ± 0.31%
Test Set (n = 9) 83.22 ± 3.17% 99.06 ± 0.53% 94.66 ± 0.95%

Mean Validation Set Classification Success
Score (n = 9) 8.75/9.00 (97.22%)

3.3.3. RF and SVM Classification Strategies

The RF and linear kernel-based SVM computational intelligence analysis strategies
applied displayed very high accuracies for predicting these disease group classifications.
Indeed, these were 98 and 100% overall for RF analysis performed on CS-normalized
Models 1 and 2 datasets respectively (with all 27 HC and 8 out of 9 GM1T2 samples
correctly classified for the former). Key biomarkers found with this RF approach were
valine > Cr/PCr > lactate > total triacylglycerols > leucine > Cn > glutamine > PAAR >
histidine > alanine in that order of importance. Similarly, these classification values were
94.0 and 98.3% for SVM models with totals of 17 and 29 1H NMR ISB variables incorporated
for Model 1, and ≥99% for Model 2 with 10 or more predictor variables incorporated (data
not shown).

However, performance of the SVM analysis with independent training/test (n = 28)
and n = 9 hold-out validation sets yielded outstanding classification results when evaluating
the Model 2 dataset, i.e., 100% correct classification successes. Indeed, 12 repeats of a SVM
application involving n =22 training, n = 6 randomly-selected test, and independent n = 9
hold-out validation sets confirmed this 100% success rate for all sub-set classes, However,
application of SVM strategies involving sigmoidal, RBF, and power kernels were all less
effective at successful classification, with average error rates observed ranging from 1 to 8%.

3.3.4. AUROC Testings of Complete and Hold-out Validation Datasets

Validated and cross-validated determinations of AUROC values were selected as
MV methods to augment the MV analysis approaches employed above, specifically to
evaluate the reliability of biomolecular distinctions between the two sampling groups
explored. Using a linear kernel SVM strategy, estimates of this methods’ accuracies were
then made from validated AUROC indices, which were 0.978 (0.80–1.00), 0.998 (0.985–1.00)
1.00 (1.00–1.00) and 1.00 (1.00–1.00) for systems with 3, 5, 10, and 20 variables, respectively,
considered for the Model 1 dataset (95% CIs in brackets), an observation confirming the
efficacy of this MV testing strategy (Figure 4a,b).

Moreover, application of this approach to the Model 2 dataset yielded corresponding
AUROC values (95% CIs) of 0.872 (0.46–1.00), 0.960 (0.68–1.00), 0.992 (0.91–1.00), and 0.987
(0.91–1.00) for systems with 2, 3, 5, and 10 predictor variables considered, respectively,
for the full dataset (Figure 4c); strategies with 20 and 23 variables incorporated were less
reliable than that with only 5 predictors (although both had 95% CIs of 0.91–1.00), and
therefore those containing 5 predictors only were more than sufficient for distinguishing
the GM1T2 plasma profiles from those of the HC participants. In this case, the order of
effectiveness of these top predictor biomarker variables (with rank frequencies in brackets)
were valine (0.98) > acetate (0.88) > leucine (0.68) > total TAGs (0.48) > HDL-PLs (0.40).

Further testing of the Model 2 dataset involved the n = 9 sample hold-out validation
strategy noted above in Section 3.3.2, and this system was found to have a successful
classification rate of 22/22 HC and 6/6 GM1T2 disease for the training set. Moreover,
a high degree of classification effectiveness for the 9 hold-out validation test samples (6
HC and 3 GM1T2 plasmas) was also achieved. The mean accuracy based on 100 cross-
validations was 0.897 (1000 permutation test p value < 0.001).
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3.4. Further Investigation of Potential Metabolic Influences Exerted by Participant Ages and
Genders

Permutation testing via P-RDA was adopted as a further MV analysis strategy in
order to evaluate the potential effects exerted by the ages and genders of participants
‘nested’ within the two disease classification explanatory variable (when determining
the significance of either the disease group, participant age, and gender variables, the
statistical significance of the considered variable was tested with the other two serving
as ‘conditioning’ ones). These analyses demonstrated that whilst the ‘between-diseases’
effect was indeed highly significant (p = 4.80 × 10−3), as expected, those for the age and
gender factors were not (p = 0.46 and 0.79, respectively). Therefore, there was no evidence
available for the significant contribution of the age and gender demographic variables
towards the variance of any of the 1H NMR ISBs investigated.

Additional investigations of the potential influence of the age variable were explored
by simple Pearson correlation and PCA analysis. For Model 2, only weak linear correlations
were found between total TAGs (r = 0.56), leucine (−0.50), valine (−0.57), alanine (0.48),
and glutamine (−0.38) and participant age; however, these were rendered insignificant
when these were FDR-corrected. Moreover, a PCA model incorporating participant age as
a separate possible predictor variable revealed that it only loaded weakly on all of the first
4 plasma metabolite PCs evaluated (squared cosine values of loading vectors 0.006–0.25),
and this again indicated little or no contributions of the age variable towards variability
of metabolite variables. Interestingly, an increase in plasma TAG concentrations with
increasing age may be expected, and therefore the positive correlation observed between
them may indicate this. Moreover, data available from Ref. [23] demonstrated that the
mean child:adult fold-change of total TAGs and total fatty acids were 0.808 and 0.842,
respectively (Table 2).
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Figure 4. (a) Receiver-operating characteristic (ROC) curves arising from a linear kernel SVM-based
cross-validation analysis of the Model 1 ISB-containing dataset for systems with 2–25 variables. (b)
Predicted class probability plot for the most effective system for Model 1 featuring 10 predictor
variables (all samples were correctly classified). (c) Corresponding ROC curve for analysis of the
Model 2 dataset, showing the best system with only 5 predictors; 95% CIs are also shown.

3.5. Quantitative Pathway Enrichment Analysis of Significant Biomolecules

Firstly, quantitative MPAMS bioinformatics analysis of the Model 2 dataset demon-
strated that GM1T2 disease-induced disturbances in propanoate metabolism, BCAA and
ethanol degradation, FA biosynthesis, and amino-sugar and aspartate metabolism were
the most highly significant, with FDR-adjusted p values ranging from <10−11 (propanoate
metabolism) to <10−4 (aspartate metabolism), as listed in Table 6. Therefore, this provides
evidence that these pathways represent significant features of the GM1T2 disease classifi-
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cation, when comparatively evaluated against the HC group. Changes in seleno-amino
acid, glutathione (GSH), and alanine metabolism were also highlighted as significant, as
were a series of others, albeit less so (Table 6). In total, 20 pathways were significantly en-
riched with the dysregulated Model 2 metabolites, and Figure 5 shows a pathway network
diagram constructed from disturbed enzymes and pathways from the Model 2 GM1T2
dataset.

Table 6. Enrichment overview of QMSEA of the key biomarker dataset, showing pathway ‘hits’, computed Q statistic
parameters, and their corresponding p values. All calculated p values indicated were corrected for multiple comparisons via
the Holm–Bonferroni false discovery rate (FDR) strategy.

Pathway Total Metabolites Hits Q Statistic FDR-Corrected p-value

Propanoate Metabolism 42 2 59.66 7.12 × 10−12

Valine, Leucine and Isoleucine Degradation 60 4 37.97 1.33 × 10−9

Ethanol Degradation 19 1 53.21 3.79 × 10−6

Fatty Acid Biosynthesis 35 1 53.21 3.79 × 10−6

Amino-sugar Metabolism 33 3 27.23 1.90 × 10−5

Aspartate Metabolism 35 3 27.23 1.90 × 10−5

Seleno-Amino Acid Metabolism 28 1 45.64 3.21 × 10−5

Glutathione Metabolism 21 2 36.41 4.25 × 10−5

Alanine Metabolism 17 2 36.41 4.25 × 10−5

Glucose-Alanine Cycle 13 3 27.72 0.00017
Glutamate Metabolism 49 3 27.79 0.00030
Pyruvate Metabolism 48 2 22.98 0.008

Warburg Effect 58 5 19.02 0.014
Gluconeogenesis 35 2 20.28 0.016

Cysteine Metabolism 26 1 16.29 0.037
Lysine Degradation 30 1 16.29 0.037

Arachidonic Acid Metabolism 69 1 16.29 0.037
Malate-Aspartate Shuttle 10 1 16.29 0.037

Urea Cycle 29 4 13.69 0.037
Transfer of Acetyl Groups into

Mitochondria 22 2 10.95 0.049

Secondly, PMS analysis found that 13 dysregulated enzymatic reactions and metabo-
lite transportations/exchanges served as key features of the Model 2 dataset acquired here
(Figure 6 and Table S1); significance levels for these processes ranged from < 10−12 to 0.012).
Many of these significant pathway steps were featured in the BCAA degradation pathway,
although mitochondrial 3-hydroxyacyl-CoA dehydratase (3-hydroxyisobutyryl-CoA) is in-
volved in n-butyrate metabolism; mitochondrial 3-hydroxyisobutyryl-CoA hydrolase in β-
alanine and propionate metabolism, as well as BCAA degradation; mitochondrial acyl-CoA
dehydrogenase (isobutyryl-CoA) in the primary phase of FA metabolism; mitochondrial
malonate-semialdehyde dehydrogenase (acetylating), in inositol, alanine and aspartate,
β-alanine, and propionate metabolism; methylmalonate-semialdehyde dehydrogenase
in inositol and propionate metabolism, in addition to BCAA catabolism; methylmalonyl-
CoA mutase in the degradation of odd-chain numbered FAs, the amino acids methionine
and threonine (together with valine and Ile), and cholesterol, along with the transfer of
amino acid catabolites into the citric acid cycle; and finally, mitochondrial propionyl-CoA
carboxylase for the carboxylation of propionyl CoA to methylmalonyl-CoA.
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Figure 5. QMSEA metabolic pathway network analysis of GM1T2-mediated disturbances to plasma biomolecule patterns
with MetaboAnalyst v4.0. This analysis shows dysregulated metabolic pathways found, and interactions/connectivities
between them. The statistical significance of imbalanced pathway features decreases in the color code order red > orange >
yellow, and their overall GM1T2 disease impact is reflected by their radii, with the most affected ones being denoted by
large values, the least affected by small ones.

Finally, an analysis of metabolite sets based on the sub-cellular and cellular, organ, and
tissular locations of GM1T2′s dysfunctional pathology was performed, and this revealed
that fibroblasts > Golgi apparatus > mitochondria > spleen > skeletal muscle > muscle
were considered to be the most significant sites for GM1T2 disease pathologies. Table
7 lists these sites, the total number of metabolites involved, the number of correct ‘hits’,
FDR-corrected p values (ranging from < 10−11 to 0.033), and associated GM1T2 disease up-
or downregulations in featured metabolites. Key metabolites featured include glycolysis-
related glucose, and the fluid balance biomarker creatinine, the latter involved in 3 of these
locations. Clearly, all these sites are of critical importance for this LSD, and their relevance,
along with those for the above MPAMS and PMS results acquired, are considered further
in the Discussion section below.
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Figure 6. Diagram of predicted metabolite sets (PMSs) arising from a computational enzyme knockout model (the library
contained a total of 912 metabolic sets that are predicted to be modified in the case of dysfunctional enzymes utilizing
a genome-scale network model of human metabolism) via QMSEA with Figure 0. (dark blue) to 0.00 (intense red). All
calculated p values indicated were corrected for multiple comparisons via the Holm–Bonferroni false discovery rate (FDR)
strategy.

Table 7. Overview of organ, tissue, cellular, and sub-cellular localization-based metabolite sets onset by GM1T2-mediated
pathological dysfunctions via QMSEA with fold enrichments and corresponding p values (the library available contained 73
entries). Up- or downregulated plasma metabolite concentrations contributing towards each localization are indicated. All
calculated p values indicated were corrected for multiple comparisons via the Holm–Bonferroni strategy.

Site Total Metabolites
Involved Number of Hits FDR-Adjusted p Value

Metabolites Featured (Up-/Down
Regulation in GM1T2 Disease

Observed)

Fibroblasts 183 1 1.31 × 10−12 Valine↑

Golgi Apparatus 14 1 3.04 × 10−6 Acetate↓

Mitochondria 98 5 4.74 × 10−3 Valine↑/Acetate↓/Urea↑/
Glutamine↑/Leucine↑
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Table 7. Cont.

Site Total Metabolites
Involved Number of Hits FDR-Adjusted p Value

Metabolites Featured (Up-/Down
Regulation in GM1T2 Disease

Observed)

Spleen 170 3 3.33 × 10−2 Glutamate↑/Creatinine↑/
Glutamine↑

Skeletal Muscle 123 5 3.33 × 10−2 Glutamate↑/Creatinine↑/
Taurine↑/Glutamine↑/Leucine↑

Muscle 160 6 3.33 × 10−2 Glutamate↑/Creatinine↑/
Glucose↑/Taurine↑/Leucine↑

4. Discussion

4.1. Key Discriminatory Biomarker Variables Identified by 1H NMR-Linked Metabolomics
Analysis

Bonferroni-corrected univariately-significant discriminatory variables identified com-
prised an extensive series of metabolites, which were dominated by amino acids, organic
acid anions, and lipids, along with Cn and urea as waste products. With the exception
of plasma total TAG concentrations, these observations were predominantly confirmed
when the analysis was repeated using Ile metabolite—rather than CS-normalization (Table
3). All these potential GM1T2 biomarkers detected were extensively confirmed via the
application of a series of MV and CIT analytical approaches, along with their validation
requirements, e.g., Q2 and permutation testing for the MV PLS-DA approach. Critically,
the most important key metabolite discriminators were found to be valine > lactate > Cn >
total TAGs > tyrosine > glutamine > histidine > PAAR (all upregulated in GM1T2 disease,
with the exception of total TAGs) from univariate analysis of CS-normalized datasets,
whereas for the PLS-DA strategy, this order was lactate > PPAR > Cn > Cr/PCr > histidine
> valine > formate > urea (all upregulated). Similarly, the RF CIT technique ranked the
most important predictor variables in the order valine > Cr/PCr > lactate > total TAGs >
leucine > Cn > glutamine (again all upregulated, except for total TAG levels).

The observation of a MV-significant variable that is not significant if subjected to one
or more UV tests is a not unusual occurrence in metabolomics analyses. Possible expla-
nations for such differences are consistency effects, specifically no univariate differences
are observed because of high variance contributions of biological and/or bioanalytical
sources, the escalation of false negatives (type 2 errors) arising from post-hoc ANOVA-type
corrections applied to counter FDRs, and also the MV complementation (and correlation)
of explanatory biomolecule variables when considered together as a whole [17,21]. These
explanations are also applicable to differential ranking orders of metabolites found between
UV and MV methods of data analysis.

Currently-available alternative GM1 disorder biomarkers, which are extensively re-
viewed in [27], include the spectrophotometric determination of aspartate transaminase
(AST) in blood serum or CSF for the monitoring of CNS disease status in infantile gan-
gliosidosis [28,29]. Moreover, epithelial-neutrophil activating peptide-78 (ENA-78), mono-
cyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α),
macrophage inflammatory protein-1β (MIP-1β), and tumor necrosis factor receptor 2
(TNFR2) are also employed as clinical parameters for evaluating CNS disease progression,
and for therapeutic monitoring purposes, along with discrimination between the infantile
and juvenile phenotypes of this condition [30].

Comparative evaluations of Ile-normalized metabolite level GMIT2:HC fold-changes
with those determined from a suitable reference source which compared 1H NMR-determined
blood serum metabolite concentrations of childhood and adulthood populations [23] con-
firmed that lactate, creatinine, valine, histidine, tyrosine, and phenylalanine remained
all highly significantly-upregulated, low-molecular-mass biomolecules in GM1T2 plasma
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samples. However, although comparative evaluations could not be performed for 3-AIB,
urea, the PAAR species and formate in view of the unavailability of biofluid concentration
data in Ref. [23], their Ile-normalized GM1T2:HC fold-changes were all found to be highly
significantly greater than a null hypothesis value of 1.00 (Table 3).

It should also be noted that such age-related fold-change comparisons involved a
consideration of our blood plasma metabolite concentrations with those of blood serum in
Ref. [23]. Notably, Kaluarachchi et al. [31] reported that, for standard 1D NMR analysis, 4
metabolites, specifically VLDL- and LDL-linked TAGs, lactate, and glutamine, had higher
levels in serum over plasma, whereas α-glucose was higher in the latter biofluid. However,
for CPMG 1H NMR profiles, as acquired in this study, no specific distinguishing features,
such as any of those determined in our study, could be assigned. Additionally, a further
study [32] reported that out of 122 metabolites investigated by non-NMR analyses, 9 of
them had ‘between-biofluid’ relative concentration differences of >20%, notably arginine
and specific lipid species, which were not quantified here. Although these biomolecules
featured phenylalanine as one of the 3 amino acids with a significantly greater level in
serum, our results will not be affected by this observation since we detected a highly
significant greater GM1T2:HC Ile-normalized concentration fold-change value for it in
plasma samples over that of the corresponding child:adult measure for serum in Ref. [23]
(Table 3). Furthermore, such fold-changes are expected to be much less affected by this
biofluid nature discrepancy than the raw metabolite levels themselves.

4.2. Potential Pathological Significance of GM1T2-Mediated Alterations to Plasma Metabolic
Profiles Indicated by QMSEA Investigations

MSEA serves to detect biologically-relevant patterns of metabolites that are enriched
significantly in quantitative metabolomics datasets [25]. This approach involves the prior
selection and combination of statistically significant metabolites to determine if any in-
formative patterns of disrupted metabolic pathways, human diseases, and the likely
sub-cellular, cellular, organ, and tissue localizations for these disturbances may be dis-
cerned from predefined metabolite pathways and disease states obtained from the Human
Metabolome Database [26]. The localization option is particularly valuable for the investi-
gation of LSDs in view of the broad spectrum of irregular neurological, dysmorphic, and
skeletal/organ abnormalities involved as clinical features for them (Section 4.3). The MSEA
technique determines whether a dataset of functionally-related biomolecules and their con-
centrations are related to these pathways, diseases, and sources without any requirement to
pre-select them on the basis of an established ‘cut-off’ value. It also has the ability to detect
small but nevertheless consistent modifications from a group of such metabolites, and
which may indeed not be detectable when using standard metabolomics practices [25,26].
Therefore, network QMSEA was conducted in the current study to explore these effects
further.

4.2.1. Plasma Lipoprotein-Associated Lipids and FA Metabolism

One key difference observed was the significantly lower levels of total lipoprotein-
related triacylglycerols in the GM1T2 group, an observation which indicates an overall
impairment in lipid metabolism in patients with this condition. However, comparisons of
Ile-normalized GM1T2:HC metabolite concentration fold-changes with the corresponding
child:adult values computed from Ref. [23] suggested that the difference observed may
arise from age differences between the two participant groups, and therefore further inves-
tigations may be required to explore this. Moreover, since the HC cohort was fasted prior to
blood sample collection, whilst the GM1T2 group was not, we would expect an increase in
plasma TAG levels in the latter cohort, and hence this observation appears to be paradoxical.
However, evidence for disturbed lipid metabolism has also been found in another LSD,
specifically Nieman-Pick type C1 (NPC1) disorder [19]. However, in this disease, elevated
concentrations of the plasma concentrations of lipoproteins and their 1H NMR-visible,
molecularly-mobile TAG components were found in NPC1 patients, and this observation
was consistent with perturbed intracellular transport, which gives rise to the build-up of
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cholesterol and glycosphingolipids in lysosomes and late endosomes. Similarly, in a related
1H NMR-based metabolomics investigation, Duarte et al. [33] found higher plasma total
lipoprotein-, VLDL- and LDL-associated TAG levels in juvenile patients with glycogen stor-
age disease type 1a (GSD1a), but lower HDL phospholipid concentrations in blood plasma
when compared to an age-matched healthy control cohort (this disease is an autosomal
recessive LSD in which gene expression of glucose-6-phosphatase is absent). Contrastingly,
in the current study, GM1T2 disease data revealed lower total lipoprotein-associated TAGs
than, and very similar HDL-phospholipid contents to, the HC group. An important feature
of GM1T2 disease is the hindered intracellular transport of lipids, a process leading to an ab-
normal accumulation of acidic lipidic species in central and peripheral nervous system cells,
particularly neurons. Hence, disease-induced modifications to the plasma levels of lipopro-
teins and their molecularly-mobile, CPMG 1H NMR-detectable TAGs, may be expected.
Notably, it has been shown that a decrease in plasma HDL-cholesterol is the most common
lipoprotein abnormality noted in NPC1 patients, as are diminished LDL-cholesterol and
increased overall TAG concentrations [34,35]. As expected, the terminal-CH3, bulk acyl
chain-(CH2)n-, -CH2 CH2CO, and N-acetylglycoprotein-NHCOCH3/CH2-CH2 -CH= mo-
bile lipid regions of the 1H NMR spectral profiles noted in the current study have been
previously shown to be correlated with plasma triacylglycerol levels, both in humans and
mice [36,37].

Unfortunately, the highly significant downregulations in TAGs observed in GM1T2
plasma could not be considered in the QMSEA investigations conducted in view of the
heterogenous, multicomponent molecular nature of individual FAs, their chain lengths and
unsaturation status, their substitutional status on glycerol backbones in predominantly tri-,
but also di- and monoacylglycerols (sn-1(3) or -2), their plasma lipoprotein densities and
identities, etc. in vivo (potentially important N-acetylsugar-containing molecularly-mobile
carbohydrate side-chains of ‘acute-phase’ glycoproteins were also excluded for this reason,
as was the PAAR species). However, the first stage of FA metabolism, specifically the
acyl-CoA dehydrogenase-catalyzed and FAD-promoted insertion of a trans- -CH=CH-
double bond unit between the C2 and C3 sites of its acyl-CoA thioester substrate in
mitochondria [38], was featured as an important altered function from the PMS analysis
performed, and our results suggest that such a process may indeed be upregulated in
GM1T2 patients.

Moreover, FA biosynthesis was found to be a significantly perturbed pathway in
GM1T2 disease (Table 6), and this was reflected by downregulations in plasma acetate
levels in patients with this condition. Therefore, this may also partially account for the
diminished plasma lipoprotein-associated lipid concentrations found in the GM1T2 cohort.

4.2.2. Propionate (Propanoate) and N-Butyrate (Butanoate) Metabolism

Propionate is physiologically generated as propionyl-coenzyme A from the metabolic
degradation of odd carbon number FAs, and selected amino acids. Since this carboxylic acid
anion has a three-carbon structure, direct entry of the propionyl-CoA product into either
the β-oxidation pathway or the citric acid cycle is precluded. Subsequently, propionyl-CoA
is carboxylated to D-methylmalonyl-CoA, which is then isomerized to L-methylmalonyl-
CoA, the latter being catalytically rearranged to succinyl-CoA by a vitamin B12-dependent
enzyme; succinyl-CoA is, of course, an important citric acid cycle intermediate. Significant
GM1T2-mediated upregulations observed in plasma glutamate and valine were major
contributors to this MPAMS analysis result.

From the PMS analysis conducted, impairments to the activity of mitochondrial
3-hydroxyacyl-CoA dehydratase (3-hydroxyisobutyryl-CoA), an enzyme involved in n-
butyrate metabolism, was featured as the third-most significant one found (this enzyme
catalyzes the dehydration of (3R)-3-hydroxybutanoyl-CoA to crotonoyl-CoA). Glutamate,
which was upregulated in GM1T2 disease (Tables 2 and 3), is a product of n-butyrate
metabolism. Moreover, in a recent study focused on the metabolomics-based discovery of
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metabolic dysfunctions in mice and patients with the related GM2 Sandhoff disease [39],
impairments to n-butyrate metabolism were also detected.

4.2.3. BCAA Degradation

Highly significant GM1T2 disease-induced increases in the mean plasma concentra-
tions of key precursors (leucine and valine), along with marginal elevations in that of the
final product of valine’s BCAA degradation pathway (3-AIB), were observed in the current
study, and this supplies evidence for perturbances to this important catabolic route in
GM1T2 disease, as was also found in a related study targeted on pathogenic mechanisms
involved in NPC1 disease [14]. Although no significant differences between mean plasma
Ile levels were found in a UV context, the powerful loading of it on PC2, along with the
other BCAAs, provides evidence for its MV contribution towards segregation of the HC and
GM1T2 groups in PCA and PLS-DA analyses (Table 4). Consistently, PMS analysis indicated
that disturbances to the mitochondrial enzymes 2-oxoisovalerate dehydrogenase (acylating;
3-methyl-2-oxobutanoate), 3-hydroxyisobutyrate dehydrogenase, 3-hydroxyisobutyryl-
CoA hydrolase, L-3-aminoisobutyrate transaminase, and methylmalonate-semialdehyde
dehydrogenase, together with location-dependent 3-amino-isobutyrate transport and its
exchange (Figure 6 and Table S1), were further significant contributors towards the pro-
found metabolic differences observed between GM1T2 and healthy human blood plasma
samples. Notwithstanding, 3-AIB is also a terminal end-product of thymine catabolism,
although as the (R) rather than the (S) stereoisomer configuration, as it is with BCAA
catabolism [40]. However, both CS- and Ile-normalized plasma 3-AIB levels were found not
to be significantly higher than those of the HC participants following Bonferroni-corrected
univariate testing regimens.

Elevated BCAA levels in blood plasma have been observed in liver damage pa-
tients [41], and cholestatic liver disease, and hepatosplenomegaly is often a very serious or
fatal complication of this condition. However, liver damage is typically absent in GM1T2
patients, which is not usually associated with organomegalies, unlike the more severe GM
type 1 condition [42].

The malonate-semialdehyde dehydrogenase (acetylating) enzyme is also featured in four
additional metabolic pathways, specifically β-alanine, alanine and aspartate, propanoate and
inositol metabolism, although 3 of these (alanine and aspartate, propanoate metabolism) were
also identified in this study as key features involved in GM1T2 chemopathology. Additionally,
methylmalonate-semialdehyde dehydrogenase also plays roles in propionate and inositol
metabolism. Moreover, methylmalonyl-CoA mutase is required for the deterioration of odd-
chain FAs, threonine and cholesterol (the amino acid catabolites are utilized in the citric acid
cycle).

However, it should also be noted that upregulated urinary 3-AIB concentrations may
also arise from single nucleotide polymorphisms (SNPs) in the AGXT2 (D-3-aminoisobutyrate-
pyruvate aminotransferase) gene [43], which are frequently observed in Asian populations
(ca. 40% of these populations are high level excretors of this catabolite and prototypic AGXT2
substrate [44]). Hence, this paradigm may severely limit the applications of urinary 3-AIB as a
diagnostic plasma or urinary biomarker for GM1T2 disease. The rs37369 SNP in AGXT2 has
been found to be represent the genetic foundation of hyper-β-aminoisobutyric aciduria [43].
However, although the mean urinary 3-AIB concentrations in NPC1 patients has been found
to be substantially higher than those of a corresponding heterozygous carrier group [14], ca.
20% of the population recruited to that study were of Asian descent.

Intriguingly, it has been suggested that L-leucine may exert variable effects on both
catabolic and anabolic routes in vivo, and selected investigations have reported its ability
to enhance O2 consumption and mitochondrial function [45], although an alternative
study noted that this particular BCAA had the ability to promote anaerobic glycolysis,
which gave rise to a diminished level of oxidative phosphorylation-dependent oxidative
stress [46]. Moreover, leucine has also been found to exert favorable effects on obese,
diabetic-stage rats developed in a model involving the feeding of a high-fat diet—these
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comprised reduced gluconeogenesis and lipid peroxidation, along with enhanced insulin
sensitivity and mitochondrial function [47].

Very recently, Kaya et al. [48] reported that orally-administered N-acetyl-DL-leucine
(ADLL) to NPC1 patients significantly retarded its rate of clinical disease progression,
with improvements in or stabilization of a range of neurological domains. This agent also
exerted beneficial effects on gait in patients afflicted with Tay-Sachs and Sandhoff diseases
(GM2 gangliosidoses), and also in a mouse model of the latter. These researchers therefore
concluded that the active enantiomer, N-acetyl-L-leucine, offers novel and unanticipated
neuroprotective actions against these LSDs, and that the above studies support the require-
ment for additional assessments in future clinical trials. These observations were supported
by the availabilities of extensive pre-clinical backup data.

4.2.4. Ethanol Degradation

Ethanol metabolism was also noted as a highly significant catabolic pathway in view
of the decreases in plasma acetate level noted in GM1T2 patients, although this was not
found to be statistically significant in a univariate context. This hepatic pathway involves
the conversion of the ethanol to acetaldehyde, and then to acetate and acetyl-CoA, which
serves as a citric acid cycle substrate. Such downregulations in plasma acetate levels may
therefore reflect an imbalance in one or more of the enzymes involved in these reactions,
although further investigations will be required to substantiate this. Intriguingly, excessive
ethanol exposure is known to perturb lysosomal protein degradation [49,50], and subjection
of rats to chronic ethanol administration powerfully interferes with lysosome biogenesis
as well as lysosomal proteolysis [51,52]. Indeed, one report [53] found that hepatic levels
of autophagic vacuoles (AVs) were increased in a mice model which involved the acute
administration of ethanol to these animals, and that this effect was dependent on the
metabolic oxidation of ethanol. These investigators suggested that reactive oxygen species
(ROS) are generated from this oxidation, and that these oxidants suppress the activity of the
mechanistic target of the rapamycin complex 1 (MTORC1, a complex with serine/threonine
protein kinase activity of molecular mass 250 kDa); such ROS now represent key features of
the pathological mechanisms involved in LSDs, e.g., [39]. However, acetaldehyde is itself
highly reactive towards the free amino and thiol functions of selected amino acid residues in
proteins usually via Maillard or Michael addition reactions [54] (e.g., lysyl/N-terminal and
cysteinyl residues respectively, although primary amino functional groups also participate
in Michael addition reactions). Therefore, it is conceivable that this aldehyde directly
inhibits MTORC1 via its reactivity with selected amino acid residues therein.

Therefore, lower levels of acetate observed in the blood plasma of GM1T2 patients
may reflect their relative inability to oxidize endogenous toxic acetaldehyde to this analyte,
and/or any endogenous ethanol available to acetaldehyde, and these observations may
be of both pathological and diagnostic significance. To date, there are no reports available
regarding the dysregulation of alcohol and aldehyde dehydrogenases in LSDs.

However, ethanol, which is readily 1H NMR-detectable in human biofluids such as
blood plasma and urine, was undetectable in all plasma samples explored in this study,
including those from the HC group; the information sheet for participants instructed them
not to consume alcohol within the 24 h period prior to sample collection.

4.2.5. Seleno-Amino Acid and Glutathione (GSH) Metabolism

Perturbations to seleno-amino acid metabolism, which were indicated by MPAMS
analysis as being highly statistically significant following FDR correction (Table 4), were
supported by the observation of strong downregulations in plasma alanine levels. Seleno-
cysteine is an essential proteinogenic amino acid for at least several enzymes, including
glutathione peroxidases, thioredoxin reductases, methionine-R-sulfoxide reductase B1 and
formate dehydrogenases [55]. Of course, glutathione peroxidase is essential for combating
oxidative stress in cells through the direct neutralization of H2O2 to water and O2, in
addition to the conversion of alkyl peroxides in general to alcohols and water [56]. H2O2
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acts as critical precursor of the aggressively-reactive and DNA-damaging hydroxyl radical
(•OH) [57]. Thioredoxins are involved in intracellular redox-signaling, and effectively
respond to oxidative stress in a protective function; indeed, they reduce oxidized cysteinyl
(cystinyl) residues via cleavage of their disulfide bonds [58]. A further selenium-containing
amino acid is selenomethionine [55]. Since mitochondria represent an important source
for the deleterious generation of excessive levels of ROS, further details regarding their
importance in this context is discussed below in Section 4.3.3.

Defects in GSH metabolism were implicated as an important metabolic set imbalance
from the upregulations in plasma glutamate CPMG spectrum ISB resonance intensities
observed in the GM1T2 patient cohort (mean fold-change 1.14 for CS-normalized ISB
intensities). Since the reduced form of this tripeptide is a powerfully defensive endogenous
antioxidant [59], and is also the substrate for glutathione peroxidase, disturbances in its
metabolism may serve as an important feature of GM1T2 pathogenesis. Indeed, it is
present at high millimolar levels (ca. 5 mmol./L) in many human cell types. Imbalances
in ROS generation, notably that from the mitochondrial respiratory chain, have been
speculated to represent key features of both NPC1 [60] and GM2 (Sandhoff) [39] diseases,
and their excessive production in these conditions may serve to generate ‘foreign’ ROS-
induced oxidation products, which have the capacity to trigger inflammatory cascades
via chemotaxis. Indeed, central nervous system (CNS) inflammation is a characteristic of
pathogenesis in mouse models of GM1 and GM2 gangliosidoses [61].

A further consideration is the occurrence of one form of glutathione peroxidase as a
non-selenium-dependent one, and Lawrence and Burk [62] found that the proportion of
the activity of this form in the liver varied from 35% in rats to 100% in guinea pigs. They
also found that non-selenium-dependent glutathione peroxidase activity was limited to
the ‘soluble’ compartment of rat liver.

4.2.6. Aspartate Metabolism

Importantly, imbalances in the mitochondrial metabolism of neuroactive aspartate
represents an important source of brain biomarkers for Alzheimer’s disease, a further
neurodegenerative condition [63]. Transport of acetyl-CoA into mitochondria occurs
via two major routes following its transformation to either citrate or N-acetylaspartate.
The first of these involves the reconversion of mitochondrial citrate to acetyl-CoA via
ATP-citrate lyases, whereas the second features the liberation of mitochondrial acetate
from N-acetylaspartate, which is then reconverted back to acetyl-CoA via the actions of
acetyl-CoA synthetase. For these shuttle processes, the present study found that both
citrate and glutamate were upregulated in GM1T2 blood plasma for the first route, whereas
glutamate alone was upregulated for the second. Since key plasma metabolites from both
these mitochondrial shuttles are significantly modified in GM1T2 disease, this observation
may indicate a more epitomized mitochondrial dysfunction in general, which is discussed
in Section 4.3.3 below.

4.2.7. Amino-Sugar Metabolism

Distinct GM1T2 disease-mediated changes in the plasma concentrations of neuroactive
glutamate and glutamine (upregulations), and acetate (downregulation) provides powerful
support for disturbed amino-sugar metabolism in this condition, and this observation
is fully consistent with known mechanisms for the chemopathology of this LSD. Since
GM1 conditions arise from deficiencies of β-galactosidase with respect to keratin sulfate,
asialofetuin, oligosaccharides equipped with terminal β-linked galactose residues and
lactosylceramide, along with gangliosides themselves [64], the accumulation of GM1
gangliosides in visceral organs, especially the central nervous system, is a hallmark of GM1
gangliosidosis.

Physiologically-active gangliosides comprise an N-acetylneuraminate head group
covalently attached to a ceramide molecule which principally retains them on the cell
membrane’s outer leaflet. Their multiple biological properties include roles as cell surface
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receptors and markers, and intracellular communication agents; they also take part in
cellular cycling and mobility, and the fine-tuning of cellular signaling [65,66].

One major bioanalytical consideration is that the acetamido-CH3 function singlet
signals of N-acetylsugars, which in human plasma predominantly comprise those of
terminal-N-acetylneuraminate and bulk-chain N-acetylglucosamine residues of the car-
bohydrate side-chains of ‘acute-phase’ glycoproteins (δ = 2.03 and 2.07 ppm) [67], were
not markedly elevated in GM1T2 disorder samples, as might be expected in view of its
inflammatory nature; indeed, CNS inflammation serves as an important characteristic of
the pathogenesis of both GM1 and GM2 gangliosidoses [30,61]. However, this observation
is not directly comparable to the findings made in [68], since the low-molecular-mass
N-acetylated saccharide derivatives monitored were detected in the urinary profiles of
these patients.

As might be expected, elevations in low-molecular-mass N-acetylsugar concentrations
such as that of N-acetylneuraminate in biofluids predominantly serve as the basis for
dysfunctions in the lysosome [25], as indeed they do from an examination of the urinary
metabolic profiles of NPC1 patients [14]. However, it was not possible to determine these
in our 1H NMR plasma profiles since firstly, any sharp singlet resonances arising from
such low-molecular-mass N-acetylsugar-containing saccharide species will be largely over-
lapped by the much higher intensity and broader ‘acute-phase’ glycoprotein signals, and
these interferants are themselves overlapped by the similarly broad lipoprotein-associated
TAG-CH2-CH=CH- function signal, as indeed they were in an NMR-based metabolomics
study focused on evaluations of the metabolic profiles of NPC1 disease patients [20]. Sec-
ondly, such species are likely to remain bound to plasma proteins such as albumin and
gamma-globulins, and hence be ‘NMR-invisible’, and concentrations therein may be too
low for 1H NMR detection in any case, even at an operating frequency as high as 700 MHz
as employed here.

However, N-acetyl function acetamido resonances arising from N-acetylamino acids
may also be employed as urinary biomarkers in patients with selected inborn errors of
metabolism, Indeed, in 2003 Krawczyk and Gradowska [69] developed an 1H NMR method
for the analysis of urinary N-acetylaspartylglutamate in Canavan disease.

4.2.8. Alanine Metabolism

The down- and upregulations in alanine and glutamate, respectively, observed in
the current study point to dysregulations in alanine metabolism, which was another
significant pathway found in the HPAMS analysis performed (FDR-corrected p value 4.25
× 10−5). Indeed, these metabolites are also key components of the larger glutamate, alanine,
and aspartate metabolic pathway, and aspartate metabolism per se was also featured
as a very highly significant one from this analysis conducted (Section 4.2.7). Alanine
is biosynthesized from either pyruvate or BCAA sources: the former route involves a
two-stage reductive deamination process, the first of which reacts 2-oxoglutarate with
ammonia to glutamate and H2O via glutamate dehydrogenases and is NADH-promoted,
the second featuring transfer of the glutamate product’s amino function to pyruvate to form
alanine and a regenerated 2-oxoglutarate species (via an aminotransferase enzyme) [70].
The reverse oxidative deamination reaction is catalyzed by the same enzymes, its direction
being predominantly dependent on the relative levels of substrates and products available.
Acetate is also featured in this process, and hence its downregulation, albeit a minor one,
observed in GM2T1 disease plasma samples also indicates its involvement in this pathway.

Since all cells are rich sources of pyruvate, the above transamination reactions are
readily reversible, and alanine is strongly associated with other metabolic pathways, e.g.,
glycolysis, gluconeogenesis, and the citric acid cycle [70].

Moreover, Broer et al. considered alanine metabolism, and its transport and cycling
in the brain [71], and provided evidence that it acts as a critical ammonia transfer carrier
(cycling of brain glutamate and glutamine remains incomplete in the absence of ammo-
nia return to glial cells). For this purpose, these researchers explored the transport and
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metabolism of alanine in guinea pig brain cortical tissue slices and prisms, in neuron and
astrocyte primary cultures, and in synaptosomes. They found that although its uptake by
neurons was mainly moderated by Na+-dependent transporters with the system B(0) iso-
form of the sodium-dependent neutral amino acid transporter (B(0)AT2)-mimetic actions,
that by astrocytes was controlled by system L isoform of the linker for activation of T-cells
family member 2 (LAT2). Notwithstanding, under their experimental conditions, alanine
did not supply any significant levels of carbon sources for energy, nor neurotransmitter
metabolism. Therefore, GM1T2 disease-mediated reductions in available plasma alanine
concentrations, along with upregulations in those of glutamate and glutamine, may exert a
significant influence on this process.

4.3. QMSEA of GM1T2 Pathological Localisations Determined from Metabolic Disturbances
Observed
4.3.1. Fibrobasts

Fibroblasts represent important cell types in GM1 diseases, not least because of their
important involvement in the development of enzyme replacement therapies (ERTs). In-
deed, fibroblasts, in addition to white blood cells, have a deficient level of β-gal enzyme
activity in both GM1 gangliosidosis and galactosialidosis disorders. Interestingly, Condori
et al. [72] successfully performed an ERT study involving genetic fusions of the plant
galactose/galactosamine-binding lectin, (the B-subunit of ricin, abbreviated RTB), and
the human acid β-galactosidase (β-gal) enzyme, employing a biogeneration system based
on plants (both the β-gal:RTB and RTB:β-gal fusion adducts retained lectin and β-gal
activities). They found an efficient take-up of both fusion orientations of the purified pro-
teins into GM1 patient fibroblasts, and this process gave rise to an alleviation of the GM1
ganglioside substrate level with activities similar to those of emanating from mammalian
cell β-gal.

Hence, fibroblasts represent cornerstones for the biosynthesis of GM1, and exogenous
GM1 protects against apoptosis via its ability to promote the synthesis of sphingosine-
1-phosphate [73]. Although evidence for major functional activities of gangliosides in
fibroblasts has been obtained, such behavior is dependent on their specific molecular nature,
and the particular organ sources of these cells. Indeed, fibroblasts from different organs,
e.g., those arising from skin and oral tissues, have demonstrated differential contents of the
glycosaminoglycan hyaluronate, and differential growth responses following transforming
growth factor-β1 (TGF-β1) cytokine stimulation [74].

Moreover, a permanent human cell line which preserved the defect of the lysosomal
enzyme GM1-1019-SV was developed from fibroblasts collected from GM1 patients via
transfection conducted with replication origin-minus simian virus 40 DNA [75]. During
>120 population doublings, such cell lines grew rapidly without undergoing senescence.
Notably, β-gal activity in these cells was 40-fold lower than that of normal fibroblasts.

4.3.2. Golgi Apparatus

GM1 represents a critical constituent of membrane microdomains in many cell types,
and is biosynthesized in the Golgi apparatus by a specific glycosyltransferase; cell surface
levels of GM1 are dependent on the expression of this enzyme [76]. These microdomains are
located at the leading edge in polarized cells, the polarization process involving a series of
co-ordinated cellular rearrangements that prepare cells for migration. The Golgi apparatus
is also oriented towards this leading edge on polarization, and it has been hypothesized
that this contributes towards plasma membrane asymmetry. Since the mechanism featuring
the asymmetric accumulation of GM1 was unclear, Bisel et al. (2013) [77] explored the
decoupling polarization of GM1 and the Golgi apparatus within the plasma membrane,
and found that the regulation and reinforcement of directional selection in cell migration
processes may occur via a synergistic, albeit independent biochemical mediation of Golgi
apparatus polarity by (1) methylerythritol 4-phosphate/extracellular signal-regulated
kinase (MEP/ERK), and (2) phosphoinositide 3-kinase (P13K).
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The biosynthesis of gangliosides GM1 and GM2 in intact rat liver Golgi vesicles is
stimulated by phosphatidylglycerol as much as or even more so than by detergents (Triton
X-100 and octyglucoside, respectively) [78].

4.3.3. Mitochondria

In LSDs, both lysosomal dysfunction and diminishing autophagic fluxes exert a major
impact on mitochondrial function, and these flux perturbations may occur during the final
stage of the autophagy process, i.e., autophagosome clearance, in which the lysosome has
an essential involvement. Indeed, the autophagic clearance of malfunctional mitochondria
serves as an important criterion for their quality control [79]. A significant number of dam-
aged mitochondria and autophagosomes remain in the cytosol, an observation indicating a
perturbed and incomplete autophagic flux [80].

In GM1 gangliosidosis mouse models, GM1-ganglioside accumulates in the glycosphin
golipid-enriched microdomain (GEM) components of mitochondria-associated endoplas-
mic reticulum (ER) membranes (MAMs) in the brains of these animals [79]. In this location,
it has been suggested that this ganglioside interacts with the phosphorylated class of inosi-
tol triphosphate receptor-1, a process which influences this channel’s activity, and inducing
a calcium ion (Ca2+)-mediated-ER stress response. Subsequently, Ca2+ ions passage into
mitochondria, a process resulting in a localized overload with this metal ion, along with
activation of the mitochondrial apoptotic pathway [81]. β-Galactosidase (−/−) mouse
astrocyte mitochondria were found to be morphologically abnormal, with a diminished
mitochondrial membrane potential (∆Ψm) [82].

One major route for the adverse generation of intracellular ROS is mitochondrial
energy metabolism [78]. Such ROS, including superoxide anion and hydrogen perox-
ide (O2

•- and H2O2 respectively), which may both serve as important precursors to the
aggressively-reactive hydroxyl radical (•OH), which reacts at diffusion-controlled rates
with many critical biomolecules such as DNA, proteins, and polyunsaturated FAs (PUFAs);
in the absence of sufficient protective batteries of intracellular antioxidants, these adverse
reactions may cause much damage to cells and tissues [83]. Currently, much evidence
is available that enhanced levels of oxidative stress induced by ROS are involved in the
chemopathologies of neurodegenerative disorders, including Alzheimer’s, Huntington’s,
and Parkinson’s diseases [84]. Moreover, inflammatory responses featured in Sandhoff
disease also lead to enhanced levels of oxidative stress (OS), which may give rise to neural
damage and death [39]. Intriguingly, Vasquez et al. [60] suggested that OS represents
a key mechanistic feature involved in the etiology and pathogenesis of NPC1 disease.
Moreover, autophagy activation coupled with an enhanced sensitivity to OS can give rise
to mitochondrial dysfunction [82,85].

The dysfunctions in seleno-amino acid and GSH metabolism found in this study
(Section 4.2.5) suggest that intracellular antioxidant responses to excess ROS production,
i.e., those of glutathione peroxidase and its GSH substrate, may be impaired in GM1T2
disease. However, for an investigation involving astrocytes, GSH and GSH-associated
enzymes (glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione-S-
transferase (GST)) were found to be of high abundance in their cytosolic fractions, whereas
those present in their mitochondrial pools were relatively low [86]. Nevertheless, since
they remain important sites of both O2

− and H2O2, GSH-, and GSH enzyme-containing
neural cell mitochondria may serve to offer significant barriers against the biomolecular
attack of toxic and chemically-reactive ROS within the nervous system. Notably, differences
observed between the sub-cellular distributions of these species in differing neural cells may
serve as a therapeutically-relevant platform for the distinctive expression of neurotoxicity
in selected cellular and/or sub-cellular compartments.

As noted in [39] for Sandhoff disease, the biosynthesis of GSH is linked to oxidative
stress and inflammatory cascades, and disruptions in energy supply may give rise to an
enhanced mitochondrial respiratory chain activity in mitochondria, a process engender-
ing the deleterious generation of ROS, including the aggressively-reactive •OH radical if
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conditions for its formation are optimal. Hence, activation of GSH pathways such as its
biosynthetic one implicated in the current study may be required to combat and scavenge
toxic ROS species. Consistently, it is now clearly accepted that lysosomes play impor-
tant roles in the maintenance and efficient healthy functional status of other intracellular
organelles, especially mitochondria [87].

Both autophagy and protein catabolism may be activated by enhanced requirements
for energy, as was found in an investigation focused on MPS I and VII mice [13]. Moreover,
Ou et al. [39] found increased brain concentrations of amino acids, along with their deriva-
tives and dipeptides, in Sandhoff disease mice, and this observation is consistent with
upregulated protein catabolism. In this study, we found upregulations in the plasma levels
of no fewer than 10 amino acids, of which 7 were statistically significant, and this may
also reflect an increased level of protein catabolism. Such energy deficits can also trigger
lipid and carbohydrate metabolism, induced by a diminished adiposity, which is indeed
frequently encountered in subjects with LSDs [88]. Similarly, an enhanced level of mem-
brane lipid biosynthesis, which is activated by the inflated lysosome and associated cellular
swelling, will also be expected to exert an effect on lipid metabolism, and our observation
of markedly decreased plasma lipoprotein-associated TAG levels, and dysregulations in
associated FA biosynthetic routes (Table 4), support this. Indeed, depletions in essential
precursors arising from lysosomal actions may exert a critical influence on the extent of
autophagy, in addition to the general metabolic status of patients afflicted with GM1T2
disease.

Interestingly, in a proteomic analysis of brain in a mouse model of mucopolysacchari-
dosis I, Ou et al. [89] discovered a cytoskeletal system abnormality, which was partially
ascribed to a modified cellular architecture arising from adverse storage accumulation.

The determination of CSF lactate levels has been previously proposed for investiga-
tions of electron transport chain inborn errors. Fortunately, Hutcheson et al. [90] explored
reference concentration ranges for this CSF marker in children, and also its relationship
with its corresponding plasma lactate levels (median values were 1.4 and 1.5 mmol./L
respectively). CSF lactate was found to be ≥3.0 mmol./L in 8/11 children with mito-
chondrial electron transport chain disorders; however, 2 of these also had normal plasma
values, and therefore in principal CSF lactate can be upregulated despite this marker being
within the normal level range for plasma. Hence, if CSF lactate is raised significantly in
GM1T2 patients in view of mitochondrial abnormalities, then plasma lactate values may
also be elevated, as indeed they are in the current study. Notably, in [89], the correlation
observed between CSF and plasma lactate levels was not very strong (R2 = 0.14). Moreover,
hypoxia, rapid exertion (e.g., as in a seizure), sepsis, cardiac disorders, and chronic diseases
in general, may also give rise to significant increases in plasma lactate [91]. Although
commonly utilized as a metabolic abnormality measurement, including lactic acidosis, this
agent also exerts toxic actions towards neurons when present at high concentrations [92];
notably, the primary stage of cerebral ischemia involves the accumulation of lactic acid,
and consequently the brain’s pH value is lowered to values within the 6.0–6.7 range.

4.3.4. Spleen and Muscular/Skeletomuscular Systems

Although only marginally significant, the spleen, and muscular/skeletomuscular
systems were organ and tissue localizations also displaying statistical significance in
the QMSEA modeling experiments conducted. Such observations are highly relevant
to the GM1 disease process, since children with the GM1 type 1 disorder develop an
enlarged spleen and liver (hepatosplenomegaly), and skeletal abnormalities, together
with seizures, marked intellectual disabilities, joint stiffness, distended abdomen, muscle
weakness, gait problems, and corneal clouding [1–3]. However, for the GM1T2 condition,
only mild skeletal abnormalities are observed, along with a slowly progressive, more
generalized neurodegeneration (with an onset ranging from 7 months and 3 years of
age) [1]. Furthermore, usually GM1T2 disease is not associated with organomegaly and
corneal clouding problems.
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Notwithstanding, one study based in Brazil [93] reported on 12 subjects from 10
unrelated families with type 2 and type 3 GM1 disorder (n = 4 and 8, respectively), and
found that at onset, 6 of these presented with skeletal deformities, the remaining 6 with
neurological symptoms. Moreover, 9/12 of them had a noticeable muscle atrophy.

4.3.5. Consideration of Marginally Significant QMSEA Location-Based Metabolite Sets

Marginally significant contributions from the bladder, pancreas, and prostate gland
were also notable in this study. However, to date, there appears to be only very limited litera-
ture available on urinary sequelae in LSDs. Gografe et al. [94] demonstrated a mononuclear
cell infiltrate located in the lower urinary tract in a mouse model of mucopolysaccharidosis
type IIIB, and this gave rise to urinary retention, which has not, however, been confirmed
in humans. Notwithstanding, one case report of a patient with Hunter syndrome revealed
a neurogenic bladder disorder, although this was a secondary development to cervical
myelopathy [95]. Furthermore, in 2014 McNamara et al. reported, for the first time, a
neurogenic bladder dysfunction in a neuronopathic Gaucher disease patient [96].

Literature information available on associations of prostate gland conditions with
LSDs is very sparse. However, one study [97], which explored linkages between Gaucher
disease and cancer incidence, found that cancer sub-groups, including prostate cancer,
failed to provide any evidence for statistically significant higher risks. Similarly, there
is little or no information available on pancreatic function in LSDs, although it has been
found that the induction of autophagy in pancreatic ductal adenocarcinoma arises as part
of a wider transcriptional process that controls the activation of lysosome biogenesis and
function, along with nutrient scavenging, which is mediated by transcription factors [98].

Notwithstanding, Gray-Edwards et al. [99] recently reported that from a clinical
viewpoint, modifications in blood biomarkers monitored by them (specifically aspartate
aminotransferase, lactate dehydrogenase, plus Ca2+, Cn, and albumin levels) may provide
indications of muscle atrophy, hepatosplenomegaly, and/or progressive cachexia, which
all represent recognized sequelae of GM1 gangliosidosis disorder, and also further LSDs
(this study is further reviewed in Section 4.4 below).

4.4. Overview of Potential Contributions of Dysregulated Plasma Biomolecule Concentrations,
Metabolic Pathways and Pinpointed Disorder Locations to GM1T2 Disease Pathogenesis

To date, information available regarding the impact of metabolic deficiencies and asso-
ciated physiological alterations on GM1T2 disease progression remains limited. The major
purpose of the lysosome is the recycling of biomolecular macromolecules to their con-
stituent monomers for biological harnessing, and one or more deficiencies of key lysosomal
enzymes can give rise to the deleterious build-up of undegraded or partially-degraded
high-molecular-mass substrates, along with a stimulation of primary biosynthetic routes for
these substrates in view of deactivated recycling processes. Therefore, demands for energy
and energy sources by these cells would be expected to escalate in view of an increased
biosynthesis of gangliosides, and then lead to an enhanced mitochondrial activity which, in
turn, will produce an excessive level of chemically-reactive ROS, which can exert damaging
effects towards many critical biomolecules and cells. Our data are therefore consistent with
those of Ou et al. [39], who offered a similar explanation for results acquired in a study
focused on metabolic profiling in Sandhoff disease, in which increased ROS generation
was suggested to give rise to cell damage and hence inflammatory processes, which are
major features of disease progression in GM2 gangliosidoses [61].

One recent study explored novel biomarkers for human GM1 gangliosidosis disease,
and also their ability to effectively respond to the clinical efficacy of GT in a feline model
system [98]. For this purpose, a panel of such biomarkers were developed using blood,
CSF, urine, 7 T magnetic resonance imaging (MRI), and coupled single-voxel in vivo 1H
magnetic resonance spectroscopy (MRS) in GM1 cats, and these parameters were compared
to those acquired on untreated human GM1 patients. Of the many biomarkers determined,
the most promising were found to be N-acetylaspartate, and in view of a significant spectral
overlap, an MRS combination of glycerophosphocholine and phosphocholine (GPC/PCh),
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which were GM1-upregulated biomolecules monitored directly in the brain, and which
normalized following GT in cats. Although it was not possible to detect and determine
N-acetylamino acids in our plasma 1H NMR profiles in view of major overlap from highly
intense N-acetylated glycoprotein and lipid resonances within the acetamido proton region
(δ = 1.95–2.20 ppm), HDL-associated phospholipid concentrations were found not to be
significantly different from those of the HC group. Moreover, in [99], CSF concentrations
of lactate dehydrogenase (LDH) and aspartate aminotransferase (AST), which are known
to be increased in patients with other LSD and CNS conditions [100–102], were found
to be related to the CNS disease severities of both GT-treated and untreated GM1 cats.
Disturbances in the blood-brain barrier may allow plasma LDH to reach the CSF, although
its generation by neoplastic tissue, or by white blood cells and exogenous bacterial sources,
may also be responsible for this observation [103–105].

Further MRS-detectable metabolic modifications found in [99] were in the cerebellum,
the most altered voxel observed in untreated feline GM1 disease, where, with the exception
of the glutamate neurotransmitter and its glutamine precursor, all biomolecules monitored
had significantly different contents than those of the healthy group. These comprised
the neuronal markers N-acetylaspartate alone (↓ at 4 and 8 months ages) or combined
as overlapping MRS signals with and N-acetylglutamate (↓ at 8 months only), the glial
cell biomarker myo-inositol (↑ at 8 months), the demyelination markers GPC/PCh (↑ at 4
and 8 months), and an MRS signal composite of the metabolism markers Cr and PCr (↑
at 8 months only); ↑ and ↓ symbols correspond to up- and downregulations, respectively.
In cats receiving GT, all GM1-altered metabolite levels were ameliorated either partially or
completely at a time-point of >3 years post-injection.

Metabolite concentrations from the cerebellar voxel were found to be strongly related
to clinical signs. Indeed, N-acetylaspartate was strongly and positively correlated with
clinical function, and higher levels of this biomarker correctly predicted improvements in
clinical status. However, GPC/PCh and inositol phosphate were found to be negatively
correlated to neurologic function.

However, glutamate and glutamine were significantly upregulated in the corona
radiata voxel of GM1 disease cats at an age of 4 months only. These values were normalized
following GT, as they were in the thalamus [99]. Hence, elevated plasma levels of these
amino acids found in GM1T2 plasma may be related to these observations.

Since Cr may be directly converted to Cn via a non-enzymatic dehydration process,
or indirectly via a PCr intermediate generated from the actions of Cr kinase [106], the
GM1T2-upregulated concentrations of plasma Cn observed in the current study may be
associated with significantly higher cerebellar GM1 Cr and PCr contents. A plot of the raw
intensity of the plasma Cn resonance to that of Cr/PCr was linear and highly significant
(r = 0.85, p =2.30 × 10−8), and this provided evidence for the same or related metabolic
sources for these metabolites (the y-intercept of this plot was also significantly greater than
zero, p = 0.017). However, no significant difference in the [Cr/PCr]:[Cn] signal intensity
ratio was found between the HC and GM1T2 classifications. Although Cr is a highly
significant contributor to the Cr/PCr signal, it is also likely to contain contributions from
PCr in view of very similar chemical shift values for these biomolecules’ -CH2 function
resonances (δ = 3.93 (this study) and 3.936 [21], respectively at pH 7.0). Although there is
only a sparse level of scientific literature reports available on the presence and detectability
of PCr in human plasma, it has been found to be present in extracts of whole blood [107].
Furthermore, Griffiths [108] reported that only traces of PCr and Cr phosphokinase were
found in a mixed population of young erythrocytes, but not in mature cells, and therefore it
appears that a significant proportion of whole blood PCr is present within the extracellular
plasma matrix, although its 1H NMR distinction from Cr remains problematic.

As reported in [99], blood markers monitored in humans, i.e., in infantile, late in-
fantile, and juvenile GM1 patients, revealed that although hypocalcemia was detected in
the youngest age group, this was not the case for the late infantile and juvenile (GM1T2)
ones. The extent of hypoalbuminemia in these patients was found to be enhanced with
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disease severity, and varied from no significant decreases observed in juvenile patients to
pronounced ones in infantile ones; this parameter was also noted in GM1 cats irrespec-
tive of disease time-point, and was improved following GT treatment. However, blood
Cn concentrations were found to be diminished somewhat in late-infantile and juvenile
patients when expressed relative to those of the infantile cohort. Although it appears that
the latter disease classification had significantly lower mean blood Cn values than that of
age-matched HCs, individual Cn level fold-changes for the other two GM1 groups ranged
from 0.8–1.2 and as much as 0.5–1.5 for the infantile and juvenile patients, respectively.
Therefore, the higher values observed for the latter group are more consistent with our
findings of a mean fold-change value of 2.65 found here for this marker in GM1T2 plasma
samples; however, the ‘between-participant’ coefficient of variation of CS-normalized
plasma Cn levels in this group was only 11%. In addition to the availability of higher levels
of Cr and PCr precursors for Cn synthesis/biosynthesis, possible explanations for this 1H
NMR-detectable upregulation are provided in Section 5.

Finally, if and when ERT is established as a valuable therapeutic strategy for GM1T2
disease, in principle the biomarkers discovered here may be validated against this form of
treatment in both humans and animal models.

4.5. Comparative Evaluations with Metabolomics Datasets Acquired on Plasma/Serum Samples
Collected from Patients with other LSDs

Unfortunately, previously conducted untargeted NMR-linked metabolomics investi-
gations of LSDs, which are focused on blood plasma or serum as a bioanalytical matrix, are
limited to only two conditions, namely NPC1 [20] and GSD1a [33] diseases. In conjunc-
tion with upregulated VLDL-TAG terminal-CH3, HDL/LDL/VLDL bulk chain-(CH2)n-
and further altered lipid resonances, univariately-significant NPC1 disease-mediated en-
hancements of plasma concentrations of Ile, valine, alanine, arginine, proline, glutamate,
histidine, and phenylalanine, and also that of butane-1,2-diol, were reported in [20]. As
observed here, this NPC1 study discovered disturbances in the metabolism of a wide array
of both essential and non-essential amino acids, and with the exception of proline and
arginine, all of these were featured as GM1T2 biomarkers in the current study (again all
upregulated, excluding alanine).

In addition to disturbances in lipoprotein TAG profiles discussed in Section 4.2.1,
GSD1a disease blood plasma samples collected from juveniles was found to have statistically-
significant upregulations in lactate, acetate, the ketone bodies acetone, and 3-D-hydroxybuty
rate concentrations, and in Cr:Cn concentration ratios [33]. Furthermore, downregulated
plasma glucose was also observed in patients with this condition, and a tentatively-assigned
1H NMR α-hydroxy-butyrate biomarker signal for GSD1a disease was also found. More-
over, this study reported plasma Cr:Cn ratios of 0.9 and 3.6 for age-matched HC and GSD1a
participants, respectively. However, since we found an at least partial superimposition
of PCr and Cr resonances at ca.3.95 ppm and an operating frequency of 700 MHz, we
computed (Cr + PCr):Cn ratios for our study’s HC and GM1T2 cohorts, which were only
0.61 ± 0.22 and 0.68 ± 0.09 (mean±SEM) respectively (p >0.05, ANOVA). As tentative
comparators, these ratio indices are more similar to those of the HC group of the GSD1a
study than they are to the LSD patients evaluated [33].

Hence, it appears that the blood-plasma-based biomarkers identified here may be
transferable for application to the diagnosis and prognostic monitoring of other LSDs.
Additionally, future 1H NMR-linked MV comparisons of contributory biomarkers may
indeed serve as valuable strategies for exploring the similarities or distinctiveness of
perturbations to metabolic patterns of differential LSDS. Assuming similar collection
methods and sampling collection tubes used, or after making sufficient allowances for
any such differences in these approaches, future studies focused on the meta-analysis
of untargeted metabolomics datasets from a range of LSDs or related disorders may be
reliably conducted.

Recently, an extensive review of literature reports available on metabolomics- and
biomarker-based investigations of lipid storage diseases was made available [21]. This re-
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view confirmed the sparsity of literature reports focused on untargeted blood plasma/serum-
based metabolomics investigations of such LSDs, although an increasing number of these
are now available with the employment of urine as a tracking medium, e.g., [14]. How-
ever, the prevalence of those focused on more targeted blood-based investigations are now
steadily increasing, e.g., cholesterol oxidation products/7-ketocholesterol for NPC1 disease,
and sphingolipids for Fabry disease, etc. [21].

5. Potential Limitations of the Study

One major limitation of this study is the absence of one or more suitable control
groups of blood plasma samples collected from patients afflicted with other, non-GM1T2
LSDs in order to confirm that our metabolomics findings are sufficiently specific for the
diagnosis of this debilitating condition alone, and not others. However, in view of problems
associated with the availability and accessibility of samples from such very rare LSD cases,
the investigators elected to make comparisons of the results acquired in this study with
those arising from the only two previously reported 1H NMR-based metabolomics studies
of blood plasma collected from patients with NPC1 and GSD1a diseases (Section 4.5).

Evidence provided suggested that one of the most significant predictor variables
found in this metabolomics study was total TAG levels (mainly vLDL- and LDL-associated
lipids); however, one limitation of this is that these significant macromolecules, which were
downregulated in GM1T2 disease plasma samples, may arise from the differential dietary
regimens associated with age differences between GM1T2 and the control participants, i.e.,
the GM1T2 cohort was somewhat younger (Section 2.2). However, application of P-RDA
permutation tests found that neither the age, nor gender predictor variables provided any
significant contributions to any 1H NMR ISB variances, but disease status did. A further
major limitation of this study was the fasting process which our protocol instituted for the
HC participants, but not so for the GM1T2 patient cohort; usually, chylomicrons disappear
from the human circulation following overnight fasting episodes [109]. Nevertheless, this
problem was not readily avoidable since it is very difficult to achieve the execution of
a satisfactory pre-biofluid sampling fasting program in GM1T2 patients in view of the
debilitating nature of their disease course, together with the intensive and strict nature of
their attentive clinical management. However, conversely it was found that total plasma
lipoprotein-associated TAG levels were significantly higher in the pre-fasted HC group
than they were in GM1T2D patients. Moreover, although we may expect plasma Cn
levels to significantly rise with increasing participant age [110], the converse effect was
observed with the younger GM1T2 patient cohort (plasma and serum Cn concentrations
are usually routinely used to monitor renal function in the management of selected clinical
conditions [104]). Interestingly, Cn production may also be diminished in patients with low
skeletal muscle mass, and hence serum/plasma concentrations of it have been employed as
a surrogate measure of muscle mass [111]. Although muscle atrophy is a relatively common
symptom in GM1 type 1 and GM1T2 diseases, our observation of upregulated Cn in GM1T2
patients is at variance with the expected decrease, and therefore this observation requires
an alternative explanation. Indeed, Cn is featured as a potential biomarker associated
with muscle, skeletal muscle, and spleen localizations of dysregulated metabolism and
metabolic pathways in this LSD (Table 5); nevertheless, for muscle and skeletal muscle, it
would be expected to be downregulated in associated biofluids and tissues.

Notwithstanding, plasma Cn levels may also be significantly affected by both glomeru-
lar filtration rate (GFR)- and non-GFR-linked variables, including dietary, exercise, preg-
nancy, and stress parameters, along with kidney disease and age [111]. Furthermore, the
GM1T2-induced upregulations of it found here may also be ascribable to dietary sources
and the differential fasting status of the two groups of participants involved in this inves-
tigation. Indeed, creatine in dietary meat is chemically transformed to Cn during high
temperature cooking processes [112], and is readily absorbed following ingestion, a process
conceivably reinforcing and enhancing plasma Cn levels. Interestingly, Herder et al. [113]
discovered that springbok antelopes with a GM2 gangliosidosis disorder resembling hu-
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man Sandhoff disease also presented with polycystic kidney disease—human patients
with the latter condition typically display high plasma/serum Cn concentrations [114]. Al-
though this finding may be incidental, there remains the possibility of a genetic association
between these two conditions.

In order to further explore the possible contributions of age differences between
the GM1T2 and HC groups studied, we accessed an already available very extensive 1H
NMR-based dataset which reported blood serum concentrations of most of the metabo-
lites determined in the current study, for both an 11–12-year-old childhood cohort and
their parental ‘controls’. From this dataset, child:adult fold-changes for Ile-normalized
mean levels available serum biomolecules were calculated, and these were then compared
with corresponding Ile-normalized metabolite GM1T2:HC fold-changes and their 95%
CIs computed from our 700 MHz 1H NMR-based dataset. These comparisons confirmed
statistically significant GM1T2 disease-mediated upregulations in the BCAAs leucine and
valine, the aromatic amino acids tyrosine, phenylalanine and histidine, and Cn, lactate and
HDL-associated phospholipids (the marked increases in Cn and lactate concentrations be-
ing very highly significant). Furthermore, some evidence for a significant downregulation
in plasma citrate was also obtained.

Similarly, the marked upregulations found for a wide range of plasma amino acids in
GM1T2 patients (with the exception of alanine and Ile), may also arise from an increased
level of dietary protein sources in this unfasted participant cohort. Indeed, the feeding
of a low-protein diet to rats was found to decrease plasma levels of essential amino acids
during an absorptive state, and this observation provided evidence that diminished plasma
amino acid levels may serve as an early signal of protein deficiency [115]. However, as
with the above considerations for plasma creatinine, in the current study the potentially
complicating influence of diet appears to be highly unlikely in view of the substantial
corresponding downregulations observed for total lipoprotein-associated TAGs discovered
in this group (fold-change 0.75 for CS-normalized data).

It should also be noted that this study was limited by the small size of the GM1T2
patient cohort sample donors, and this arises from the very rare nature of this disease,
and hence the extremely limited availability of such sample donors. Although such small
sample sizes are a frequent concern in metabolomics investigations of LSDs, and for
this study prior power calculations performed recommended a minimum sample size of
approximately 30 participants per group [21], fortunately the application of both UV and
MV metabolomics analysis options still found very highly statistically significant metabolic
distinctions between this classification and the HC one. These observations arose from
the highly profound biomolecular differences observed between their plasma 1H NMR
profiles. Notwithstanding, the reliabilities and accuracies of the results acquired may be
impacted by this GM1T2 sample size limitation, and therefore should be interpreted with
some caution.

Further evidentiary support was provided by the data analysis strategies applied,
which were highly rigorous, and included the primary tracking of sample outliers with
PCA. Furthermore, robust Welch tests were implemented for the univariate ANOVA
models employed, and Bonferroni- corrections were then applied for the performance of
post-hoc tests in order to avoid potential issues with false positives (type I errors).

Another limitation of the study is that GM1T2 patients commonly receive dietary
supplements, and these may engender some phenotypically-unrelated differences between
their plasma 1H NMR profiles and those of the HC group, as indeed may the possible
differential dietary habits of these two participant groups (the authors were informed that
one of the GM1T2 participants was receiving vitamin B6).

An additional complication is potential interferences mediated by the therapeutic
agents received by the GM1T2 participant cohort; however, it should be noted that many of
these patients continuously and commonly receive a range of such medications, including
miglustat (substrate inhibitor usually for the treatment of late-onset GM1 gangliosidosis),
anticonvulsants such as valproate and clonidine for a range of GM1 comorbidities, and
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tolperisone as a muscle relaxant, etc. In principle, the drug therapies administered to the
GM1T2 cohort may have the ability to exert significant influences on the plasma levels of
endogenous metabolites; however, extensive studies addressing the effect of these drugs on
the human plasma and urinary metabolomes, most especially those of LSD patients, remain
unperformed. Although one of the GM1T2 participants was not undergoing any therapy,
the remainder were receiving a combination of medications (documented in Section 2.1).
From available literature data, the maximal observed blood plasma concentrations of these
drugs are provided in Section S1 of the Supplementary Materials. From these data, potential
1H NMR-detectable interferences arising from the resonances of these xenobiotics and/or
their metabolites in the GM1T2 plasma profiles are only likely to be ascribable to valproate
or levetiracetam, since maximal plasma levels of the majority of other therapeutic agents
featured are below or close to the limit of 1H NMR detection for this technique, even at an
operating frequency of 700 MHz. However, one clear observation was the complete absence
of resonances attributable to drugs and/or metabolites in the 1H NMR profiles of all GM1T2
blood plasma samples acquired. This was confirmed via the acquisition of 2D COSY and
TOCSY spectra of the samples concerned in view of the possible or likely overlap of these
signals with those of selected endogenous biomolecules. The urinary excretion of both
miglustat and valproate, along with metabolites of the latter, have been previously explored
in the urinary 1H NMR profiles of patients with NPC1 disease [20]; for this study, a similar
urinalysis confirmed that low levels of miglustat and valproate/valproate glucuronide
were present in the urine of the single GM1T2 patients receiving these therapies. These
data will be presented elsewhere.

Notwithstanding, as required, none of the HC participants were taking any medi-
cations or supplements (on the participant information sheet for this study, they were
instructed not to for a minimum period of 7 days prior to biofluid sample collections). As
expected, signals ascribable to or derived from xenobiotics, e.g., common analgesics such
as aspirin, paracetamol, and ibuprofen, were also not found in any of the HC group partic-
ipant spectra obtained, and nor were those of any metabolites of these drugs. Similarly,
ethanol was undetectable in these samples.

Confirmation of the importance and discriminatory potential of the biomarkers found
in this study will be best achieved by the multicomponent 1H NMR analysis of additional
samples collected from very rare GM1T2 patients, and also perhaps an improved participant
age range matching for the HC participants.

Finally, an additional potential limitation is complications with the employment of
enrichment ratios for the computation of pathway activities using QMSEA. Indeed, this
approach does not consider the uncertainties or errors associated with assigning metabolites
to specified pathways. As a hypothetical example, the ascription of 3 1H NMR-determined
metabolites to a single pathway containing a total of 8 metabolites will yield a relatively
high enrichment ratio of 3/8; however, if all three of these pathway-linked metabolites are
also active in alternative pathways, then confidence in the implication of this pathway from
metabolomics datasets will be limited. This limitation is reviewed and discussed in [116]
in detail.

6. Conclusions

This study provides valuable information regarding the abnormal metabolic status
of GM1T2 blood plasma, and the probable dysfunctional metabolic pathways giving rise
to them. Indeed, significant GM1T2-mediated upregulations in a series of free amino
acids (notably BCAAs, the neurotransmitter glutamate and its glutamine precursor, and
aromatic classes), Cn, lactate, citrate, and further metabolites, along with downregulations
in total lipoprotein-associated TAGs and alanine, were found. Application of a range of MV
analysis techniques and CITs all demonstrated clear segregations between the GM1T2 and
HC metabolic profiles for both full 1H NMR ISB and assigned metabolite variable datasets.
QMSEA supported important roles for the involvement of propanoate metabolism, BCAA
and ethanol degradation, FA biosynthesis, and other pathways involved in the pathogenesis
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of GM1T2 disease. Furthermore, this strategy was employed to explore potential organ,
tissue, cellular, and sub-cellular locations of pathological activities associated with these
altered metabolite sets, and found that fibroblasts > Golgi apparatus > mitochondria >
spleen≈ skeletal muscle≈muscle in general were the major contributors to GM1T2 disease
pathology in that order of importance. Indeed, these represent key sites for this condition’s
clinical features and symptomatic developments. Overall, the results acquired provided
evidence for highly significant alterations to energy demand and metabolic pathways, both
of which are major features of the mechanisms of GM1T2 disorder pathogenesis. Indeed,
combinations of a series of potential biomarkers in the form of a disturbed metabolic
‘signature’ or pattern offers major advantages over the use of only a single, targeted
biomarker for diagnostic or prognostic evaluation purposes in LSDs. Therefore, global
metabolomics profiling of biofluid samples may provide a valuable innovative probe for
improving our understanding of these mechanisms, and also for the seeking and validation
of potential diagnostic biomarkers for this debilitating condition. Such investigations pave
the way for future explorations of metabolic imbalances found in GM1 gangliosidosis and
other LSDs, primarily those focused on (1) the discovery of longitudinal responses (i.e.,
repeated biofluid samplings of each patient over time) in order to reliably and rigorously
monitor disease severity and progression, and (2) future successful validation of the
biomarkers of disease activities and progression found here in blood plasma, and perhaps
also further biofluids such as CSF and/or urine, both in animal models and ultimately
humans. Such validation processes in humans may now indeed be realized in view of the
advent of the availability of a potentially successful GT treatment for human GM1 disease.

Finally, this study confirms the value of multicomponent 1H NMR spectroscopic
analysis as a rapid and virtually non-invasive strategy to seek and detect biomarkers for
GM1T2 disease, information which may be transferable to the diagnosis and prognostic
monitoring of other LSDs. Indeed, this knowledge may facilitate the design, development,
and operation of new pattern recognition-based chemopathological tracking methods for
the diagnosis and such disorders, and also provide state-of-the-art information regarding
dysfunctional metabolic pathways, and the sources and localizations of those involved.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
409/10/3/572/s1, Table S1: Tabular representation of dysfunctional PMS enzymes, and metabolite
transport and transfer processes indicated for involvement in GM1T2 pathology. Clearly, BCAA
catabolism represents a major feature of the pathogenesis of this disease, Section S1: Scientific
Literature Data Available on the Maximal Blood Plasma Concentrations of Drugs Received by the
GM1T2 Patient Cohort.

Author Contributions: Conceptualization, M.G.; methodology, B.C.P., Y.L.L. and M.G.; software,
B.C.P. and M.G.; validation, M.G.; formal analysis, B.C.P. and Y.L.L.; investigation, B.C.P., Y.L.L. and
M.G.; resources, M.G. and C.J.T.; data curation, B.C.P. and M.G.; writing-original draft preparation,
B.C.P. and M.G.; writing-review and editing, M.G. and C.J.T.; visualization, B.C.P. and M.G.; supervi-
sion, M.G. and C.J.T.; project administration, M.G.; funding acquisition, M.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Tay-Sachs and Allied Diseases (NTSAD) Foun-
dation, grant number NTSAD_DMUMG1.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and Research Ethics Committee of The Faculty of Health and Life Sciences,
De Montfort University (DMU), Leicester for the protocol focused on the collection of blood plasma
samples from HC participants (reference no. 1936). The GM1T2 patients consented to participate
in this investigation under protocol 02-HG-0107 “Neurodegeneration in Glycosphingolipid Storage
Disorders” of the National Human Genome Research Institute Institutional Review Board.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Data supporting reported results can be obtained from the correspon-
dence author (mgrootveld@dmu.ac.uk).

https://www.mdpi.com/2073-4409/10/3/572/s1
https://www.mdpi.com/2073-4409/10/3/572/s1


Cells 2021, 10, 572 49 of 53

Acknowledgments: The authors are eternally grateful to all project participants for the kind donation
of their blood samples for NMR analysis. We are also very grateful to the National Institutes of Health
Undiagnosed Diseases Program, National Institutes of Health Office of Rare Diseases Research and
National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, for
the kind provision of GM1T2 biofluid samples for collaborative research purposes, and also for very
helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Brunetti-Pierri, N.; Scaglia, F. GM1 gangliosidosis: Review of clinical, molecular, and therapeutic aspects. Mol. Genet. Metab. 2008,

94, 391–396. [CrossRef] [PubMed]
2. Regier, D.S.; Proia, R.L.; D’Azzo, A.; Tifft, C.J. The GM1 and GM2 gangliosidoses: Natural history and progress toward therapy.

Pediatr. Endocrinol. Rev. 2016, 13 (Suppl. 1), 663–673.
3. Masingue, M.; Dufour, L.; Lenglet, T.; Saleille, L.; Goizet, C.; Ayrignac, X.; Ory-Magne, F.; Barth, M.; Lamari, F.; Mandia, D.; et al.

Natural history of adult patients with GM2 gangliosidosis. Ann. Neurol. 2020, 87, 609–617. [CrossRef] [PubMed]
4. Okada, S.; O’Brien, J.S. Generalized gangliosidosis: Beta-galactosidase deficiency. Science 1968, 160, 1002–1004. [CrossRef]

[PubMed]
5. Sinigerska, I.; Chandler, D.; Vaghjiani, V.; Hassanova, I.; Gooding, R.; Morrone, A.; Kremensky, I.; Kalaydjieva, L. Founder

mutation causing infantile GM1-gangliosidosis in the Gypsy population. Mol. Genet. Metab. 2006, 88, 93–95. [CrossRef]
6. Sperb, F.; Vairo, F.; Burin, M.; Mayer, F.Q.; Matte, U.; Giugliani, R. Genotypic and phenotypic characterization of Brazilian patients

with GM1 gangliosidosis. Gene 2013, 512, 113–116. [CrossRef]
7. Ballabio, A.; Gieselmann, V. Lysosomal disorders: From storage to cellular damage. Biochim. Biophys. Acta 2009, 1793, 684–696.

[CrossRef] [PubMed]
8. Bisel, B.; Pavone, F.S.; Calamai, M. GM1 and GM2 gangliosides: Recent developments. Biomol. Concepts 2014, 5, 87–93. [CrossRef]

[PubMed]
9. Hofer, D.; Paul, K.; Fantur, K.; Beck, M.; Bürger, F.; Caillaud, C.; Fumic, K.; Ledvinova, J.; Lugowska, A.; Michelakakis, H.;

et al. GM1 gangliosidosis and Morquio B disease: Expression analysis of missense mutations affecting the catalytic site of acid
beta-galactosidase. Hum. Mutat. 2009, 30, 1214–1221. [CrossRef]

10. Caciotti, A.; Garman, S.C.; Rivera-Colón, Y.; Procopio, E.; Catarzi, S.; Ferri, L.; Guido, C.; Martelli, P.; Parini, R.; Antuzzi, D.; et al.
GM1 gangliosidosis and Morquio B disease: An update on genetic alterations and clinical findings. Biochim. Biophys. Acta 2011,
1812, 782–790. [CrossRef]

11. Hofer, D.; Paul, K.; Fantur, K.; Beck, M.; Roubergue, A.; Vellodi, A.; Poorthuis, B.J.; Michelakakis, H.; Plecko, B.; Paschke, E.
Phenotype determining alleles in GM1 gangliosidosis patients bearing novel GLB1 mutations. Clin. Genet. 2010, 78, 236–246.
[CrossRef]

12. Jarnes Utz, J.R.; Kim, S.; King, K.; Ziegler, R.; Schema, L.; Redtree, E.S.; Whitley, C.B. Infantile gangliosidoses: Mapping a timeline
of clinical changes. Mol. Genet. Metab. 2017, 121, 170–179. [CrossRef] [PubMed]

13. Renaud, D.L. Leukoencephalopathies associated with macrocephaly. Semin. Neurol. 2012, 32, 51–54. [CrossRef]
14. Ruiz-Rodado, V.; Luque-Baena, R.M.; te Vruchte, D.; Probert, F.; Lachmann, R.H.; Hendriksz, C.J.; Wraith, J.E.; Imrie, J.; Elizondo,

D.; Sillence, D.; et al. 1H NMR-linked urinary metabolic profiling of Niemann-Pick class C1 (NPC1) disease: Identification of
potential new biomarkers using correlated component regression (CCR) and genetic algorithm (GA) analysis strategies. Curr.
Metab. 2014, 2, 88–121. [CrossRef]

15. Ruiz-Rodado, V.; Nicoli, E.-R.; Probert, F.; Smith, D.A.; Morris, M.; Wassif, C.A.; Platt, F.M.; Grootveld, M. 1H NMR-linked
metabolomics analysis of liver from a mouse model of NP-C1 disease. J. Proteome Res. 2016, 15, 3511–3527. [CrossRef]

16. Quansah, E.; Ruiz-Rodado, V.; Grootveld, M.; Probert, F.; Zetterstrom, T.S.Z. 1H NMR-based metabolomics reveals neurochemical
alterations in the brain of adolescent rats following acute methylphenidate administration. Neurochem. Internat. 2017, 108, 109–120.
[CrossRef]

17. Grootveld, M. Metabolic Profiling: Disease and Xenobiotics; Issues in Toxicology Series; Royal Society of Chemistry: Cambridge, UK,
2014; ISBN 1849731632.

18. López-Rubio, E.; Elizondo, D.A.; Grootveld, M.; Jerez, J.M.; Luque-Baena, R.M. Computational Intelligence Techniques in Medicine;
Special issue of Computational and Mathematical Methods in Medicine; Hindawi Publishing Corporation: London, UK, 2014.

19. Available online: https://www.umassmed.edu/es/news/news-archives/2019/05/nih-administers-first-clinical-trial-treatment-
for-gm1-gangliosidosis-a-lysosomal-storage-disorder/. (accessed on 24 November 2020).

20. Probert, F.; Ruiz-Rodado, V.; Zhang, X.; te Vruchte, D.; Claridge, T.D.W.; Edgar, M.; Zonato-Tocchio, A.; Lachmann, R.H.; Platt,
F.M.; Grootveld, M. Urinary excretion and metabolism of miglustat and valproate in patients with Niemann-Pick type C1 Disease:
One- and two-Dimensional solution-state 1H NMR studies. J. Pharm. Biomed. Anal. 2016, 117, 276–288. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ymgme.2008.04.012
http://www.ncbi.nlm.nih.gov/pubmed/18524657
http://doi.org/10.1002/ana.25689
http://www.ncbi.nlm.nih.gov/pubmed/31995250
http://doi.org/10.1126/science.160.3831.1002
http://www.ncbi.nlm.nih.gov/pubmed/5647842
http://doi.org/10.1016/j.ymgme.2005.12.009
http://doi.org/10.1016/j.gene.2012.09.106
http://doi.org/10.1016/j.bbamcr.2008.12.001
http://www.ncbi.nlm.nih.gov/pubmed/19111581
http://doi.org/10.1515/bmc-2013-0039
http://www.ncbi.nlm.nih.gov/pubmed/25372744
http://doi.org/10.1002/humu.21031
http://doi.org/10.1016/j.bbadis.2011.03.018
http://doi.org/10.1111/j.1399-0004.2010.01379.x
http://doi.org/10.1016/j.ymgme.2017.04.011
http://www.ncbi.nlm.nih.gov/pubmed/28476546
http://doi.org/10.1055/s-0032-1306384
http://doi.org/10.2174/2213235X02666141112215616
http://doi.org/10.1021/acs.jproteome.6b00238
http://doi.org/10.1016/j.neuint.2017.03.003
https://www.umassmed.edu/es/news/news-archives/2019/05/nih-administers-first-clinical-trial-treatment-for-gm1-gangliosidosis-a-lysosomal-storage-disorder/.
https://www.umassmed.edu/es/news/news-archives/2019/05/nih-administers-first-clinical-trial-treatment-for-gm1-gangliosidosis-a-lysosomal-storage-disorder/.
http://doi.org/10.1016/j.jpba.2015.08.011
http://www.ncbi.nlm.nih.gov/pubmed/26397207


Cells 2021, 10, 572 50 of 53

21. Percival, B.C.; Gibson, M.; Wilson, P.B.; Platt, F.M.; Grootveld, M. Metabolomic studies of lipid storage disorders, with special
reference to Niemann-Pick type C disease: A critical review with future perspectives. Int. J. Mol. Sci. 2020, 21, 2533. [CrossRef]

22. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al.
HMDB 4.0—The human metabolome database for 2018. Nucleic Acids Res. 2018, 4, D608–D617.

23. Ellul, S.; Wake, M.; Clifford, S.A.; Lange, K.; Würtz, P.; Juonala, M.; Dwyer, T.; Carlin, J.B.; Burgner, D.P.; Saffery, R. Metabolomics:
Population epidemiology and concordance in Australian children aged 11–12 years and their parents. BMJ Open 2019, 9, 106–117.
[CrossRef]

24. van Vliet, L.J.; van Kempen, G.M.P. Mean and variance of ratio estimators used in fluorescence ratio imaging. Cytometry Part. A J.
Quant. Cell Sci. 2000, 39, 300–305. [CrossRef]

25. Chong, J.; Soufan, O.; Li, C.; Caraus, J.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent
and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [CrossRef]

26. Xia, J.; Wishart, D.S. MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data.
Nucleic Acids Res. 2010, 38, W71–W77. [CrossRef]

27. Elmonem, M.A.; Abdelazim, A.M. Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches.
Clinica Chimica Acta 2020, 509, 195–209. [CrossRef]

28. Lee, J.S.; Choi, J.-M.; Lee, M.; Kim, S.Y.; Lee, S.; Lim, B.C.; Cheon, J.-E.; Kim, I.-O.; Kim, K.J.; Choi, M.; et al. Diagnostic challenge
for the rare lysosomal storage disease: Late infantile GM1 gangliosidosis. Brain Dev. 2018, 40, 383–390. [CrossRef] [PubMed]
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